Articles | Volume 7, issue 1
https://doi.org/10.5194/esurf-7-17-2019
https://doi.org/10.5194/esurf-7-17-2019
Research article
 | 
10 Jan 2019
Research article |  | 10 Jan 2019

Long-profile evolution of transport-limited gravel-bed rivers

Andrew D. Wickert and Taylor F. Schildgen

Related authors

The Water Table Model (WTM) (v2.0.1): coupled groundwater and dynamic lake modelling
Kerry L. Callaghan, Andrew D. Wickert, Richard Barnes, and Jacqueline Austermann
Geosci. Model Dev., 18, 1463–1486, https://doi.org/10.5194/gmd-18-1463-2025,https://doi.org/10.5194/gmd-18-1463-2025, 2025
Short summary
Late Quaternary glacial maxima in southern Patagonia: insights from the Lago Argentino glacier lobe
Matias Romero, Shanti B. Penprase, Maximillian S. Van Wyk de Vries, Andrew D. Wickert, Andrew G. Jones, Shaun A. Marcott, Jorge A. Strelin, Mateo A. Martini, Tammy M. Rittenour, Guido Brignone, Mark D. Shapley, Emi Ito, Kelly R. MacGregor, and Marc W. Caffee
Clim. Past, 20, 1861–1883, https://doi.org/10.5194/cp-20-1861-2024,https://doi.org/10.5194/cp-20-1861-2024, 2024
Short summary
A double-Manning approach to compute robust rating curves and hydraulic geometries
Andrew D. Wickert, Jabari C. Jones, and Gene-Hua Crystal Ng
EGUsphere, https://doi.org/10.5194/egusphere-2023-3118,https://doi.org/10.5194/egusphere-2023-3118, 2024
Preprint archived
Short summary
Glacier Image Velocimetry: an open-source toolbox for easy and rapid calculation of high-resolution glacier velocity fields
Maximillian Van Wyk de Vries and Andrew D. Wickert
The Cryosphere, 15, 2115–2132, https://doi.org/10.5194/tc-15-2115-2021,https://doi.org/10.5194/tc-15-2115-2021, 2021
Short summary
Computing water flow through complex landscapes – Part 3: Fill–Spill–Merge: flow routing in depression hierarchies
Richard Barnes, Kerry L. Callaghan, and Andrew D. Wickert
Earth Surf. Dynam., 9, 105–121, https://doi.org/10.5194/esurf-9-105-2021,https://doi.org/10.5194/esurf-9-105-2021, 2021
Short summary

Related subject area

Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Automatic detection of floating instream large wood in videos using deep learning
Janbert Aarnink, Tom Beucler, Marceline Vuaridel, and Virginia Ruiz-Villanueva
Earth Surf. Dynam., 13, 167–189, https://doi.org/10.5194/esurf-13-167-2025,https://doi.org/10.5194/esurf-13-167-2025, 2025
Short summary
Investigating uncertainty and parameter sensitivity in bedform analysis by using a Monte Carlo approach
Julius Reich and Axel Winterscheid
Earth Surf. Dynam., 13, 191–217, https://doi.org/10.5194/esurf-13-191-2025,https://doi.org/10.5194/esurf-13-191-2025, 2025
Short summary
Geomorphic imprint of high-mountain floods: insights from the 2022 hydrological extreme across the upper Indus River catchment in the northwestern Himalayas
Abhishek Kashyap, Kristen L. Cook, and Mukunda Dev Behera
Earth Surf. Dynam., 13, 147–166, https://doi.org/10.5194/esurf-13-147-2025,https://doi.org/10.5194/esurf-13-147-2025, 2025
Short summary
A numerical model for duricrust formation by water table fluctuations
Caroline Fenske, Jean Braun, François Guillocheau, and Cécile Robin
Earth Surf. Dynam., 13, 119–146, https://doi.org/10.5194/esurf-13-119-2025,https://doi.org/10.5194/esurf-13-119-2025, 2025
Short summary
Width evolution of channel belts as a random walk
Jens M. Turowski, Fergus McNab, Aaron Bufe, and Stefanie Tofelde
Earth Surf. Dynam., 13, 97–117, https://doi.org/10.5194/esurf-13-97-2025,https://doi.org/10.5194/esurf-13-97-2025, 2025
Short summary

Cited articles

Acosta, V. T., Schildgen, T. F., Clarke, B. A., Scherler, D., Bookhagen, B., Wittmann, H., von Blanckenburg, F., and Strecker, M. R.: Effect of vegetation cover on millennial-scale landscape denudation rates in East Africa, Lithosphere, 7, 408–420, https://doi.org/10.1130/L402.1, 2015. a
Aguirre-Pe, J. and Fuentes, R.: Resistance to Flow in Steep Rough Streams, J. Hydraul. Eng., 116, 1374–1387, https://doi.org/10.1061/(ASCE)0733-9429(1990)116:11(1374), 1990. a
Aron, G. and Miller, A.: Adaptation of Flood Peaks and Design Hydrographs from Gaged to Nearby Ungaged Watersheds, J. Am. Water Resour. As., 14, 313–321, https://doi.org/10.1111/j.1752-1688.1978.tb02169.x, 1978. a, b, c, d, e, f
Ashmore, P.: Channel Morphology and Bed Load Pulses in Braided, Gravel-Bed Streams, Geogr. Ann. A, 73, 37–52, https://doi.org/10.2307/521212, 1991. a
Attal, M. and Lavé, J.: Pebble abrasion during fluvial transport: Experimental results and implications for the evolution of the sediment load along rivers, J. Geophys. Res.-Earth, 114, 1–22, https://doi.org/10.1029/2009JF001328, 2009. a, b
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Rivers can raise or lower their beds by depositing or eroding sediments. We combine equations for flow, channel/valley geometry, and gravel transport to learn how climate and tectonics shape down-valley profiles of river-bed elevation. Rivers steepen when they receive more sediment (relative to water) and become straighter with tectonic uplift. Weathering and breakdown of gravel is needed to produce gradually widening river channels with concave-up profiles that are often observed in the field.
Share