Articles | Volume 7, issue 1
https://doi.org/10.5194/esurf-7-17-2019
https://doi.org/10.5194/esurf-7-17-2019
Research article
 | 
10 Jan 2019
Research article |  | 10 Jan 2019

Long-profile evolution of transport-limited gravel-bed rivers

Andrew D. Wickert and Taylor F. Schildgen

Related authors

Late Quaternary glacial maxima in Southern Patagonia: insights from the Lago Argentino glacier lobe
Matias Romero, Shanti B. Penprase, Maximillian S. Van Wyk de Vries, Andrew D. Wickert, Andrew G. Jones, Shaun A. Marcott, Jorge A. Strelin, Mateo A. Martini, Tammy M. Rittenour, Guido Brignone, Mark D. Shapley, Emi Ito, Kelly R. MacGregor, and Marc W. Caffee
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-24,https://doi.org/10.5194/cp-2024-24, 2024
Short summary
A double-Manning approach to compute robust rating curves and hydraulic geometries
Andrew D. Wickert, Jabari C. Jones, and Gene-Hua Crystal Ng
EGUsphere, https://doi.org/10.5194/egusphere-2023-3118,https://doi.org/10.5194/egusphere-2023-3118, 2024
Short summary
Glacier Image Velocimetry: an open-source toolbox for easy and rapid calculation of high-resolution glacier velocity fields
Maximillian Van Wyk de Vries and Andrew D. Wickert
The Cryosphere, 15, 2115–2132, https://doi.org/10.5194/tc-15-2115-2021,https://doi.org/10.5194/tc-15-2115-2021, 2021
Short summary
Computing water flow through complex landscapes – Part 3: Fill–Spill–Merge: flow routing in depression hierarchies
Richard Barnes, Kerry L. Callaghan, and Andrew D. Wickert
Earth Surf. Dynam., 9, 105–121, https://doi.org/10.5194/esurf-9-105-2021,https://doi.org/10.5194/esurf-9-105-2021, 2021
Short summary
Computing water flow through complex landscapes – Part 2: Finding hierarchies in depressions and morphological segmentations
Richard Barnes, Kerry L. Callaghan, and Andrew D. Wickert
Earth Surf. Dynam., 8, 431–445, https://doi.org/10.5194/esurf-8-431-2020,https://doi.org/10.5194/esurf-8-431-2020, 2020
Short summary

Related subject area

Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Role of the forcing sources in morphodynamic modelling of an embayed beach
Nil Carrion-Bertran, Albert Falqués, Francesca Ribas, Daniel Calvete, Rinse de Swart, Ruth Durán, Candela Marco-Peretó, Marta Marcos, Angel Amores, Tim Toomey, Àngels Fernández-Mora, and Jorge Guillén
Earth Surf. Dynam., 12, 819–839, https://doi.org/10.5194/esurf-12-819-2024,https://doi.org/10.5194/esurf-12-819-2024, 2024
Short summary
A machine learning approach to the geomorphometric detection of ribbed moraines in Norway
Thomas J. Barnes, Thomas V. Schuler, Simon Filhol, and Karianne S. Lilleøren
Earth Surf. Dynam., 12, 801–818, https://doi.org/10.5194/esurf-12-801-2024,https://doi.org/10.5194/esurf-12-801-2024, 2024
Short summary
Stream hydrology controls on ice cliff evolution and survival on debris-covered glaciers
Eric Petersen, Regine Hock, and Michael G. Loso
Earth Surf. Dynam., 12, 727–745, https://doi.org/10.5194/esurf-12-727-2024,https://doi.org/10.5194/esurf-12-727-2024, 2024
Short summary
Time-varying drainage basin development and erosion on volcanic edifices
Daniel O'Hara, Liran Goren, Roos M. J. van Wees, Benjamin Campforts, Pablo Grosse, Pierre Lahitte, Gabor Kereszturi, and Matthieu Kervyn
Earth Surf. Dynam., 12, 709–726, https://doi.org/10.5194/esurf-12-709-2024,https://doi.org/10.5194/esurf-12-709-2024, 2024
Short summary
Geomorphic risk maps for river migration using probabilistic modeling – a framework
Brayden Noh, Omar Wani, Kieran B. J. Dunne, and Michael P. Lamb
Earth Surf. Dynam., 12, 691–708, https://doi.org/10.5194/esurf-12-691-2024,https://doi.org/10.5194/esurf-12-691-2024, 2024
Short summary

Cited articles

Acosta, V. T., Schildgen, T. F., Clarke, B. A., Scherler, D., Bookhagen, B., Wittmann, H., von Blanckenburg, F., and Strecker, M. R.: Effect of vegetation cover on millennial-scale landscape denudation rates in East Africa, Lithosphere, 7, 408–420, https://doi.org/10.1130/L402.1, 2015. a
Aguirre-Pe, J. and Fuentes, R.: Resistance to Flow in Steep Rough Streams, J. Hydraul. Eng., 116, 1374–1387, https://doi.org/10.1061/(ASCE)0733-9429(1990)116:11(1374), 1990. a
Aron, G. and Miller, A.: Adaptation of Flood Peaks and Design Hydrographs from Gaged to Nearby Ungaged Watersheds, J. Am. Water Resour. As., 14, 313–321, https://doi.org/10.1111/j.1752-1688.1978.tb02169.x, 1978. a, b, c, d, e, f
Ashmore, P.: Channel Morphology and Bed Load Pulses in Braided, Gravel-Bed Streams, Geogr. Ann. A, 73, 37–52, https://doi.org/10.2307/521212, 1991. a
Attal, M. and Lavé, J.: Pebble abrasion during fluvial transport: Experimental results and implications for the evolution of the sediment load along rivers, J. Geophys. Res.-Earth, 114, 1–22, https://doi.org/10.1029/2009JF001328, 2009. a, b
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Rivers can raise or lower their beds by depositing or eroding sediments. We combine equations for flow, channel/valley geometry, and gravel transport to learn how climate and tectonics shape down-valley profiles of river-bed elevation. Rivers steepen when they receive more sediment (relative to water) and become straighter with tectonic uplift. Weathering and breakdown of gravel is needed to produce gradually widening river channels with concave-up profiles that are often observed in the field.