Articles | Volume 7, issue 1
https://doi.org/10.5194/esurf-7-17-2019
https://doi.org/10.5194/esurf-7-17-2019
Research article
 | 
10 Jan 2019
Research article |  | 10 Jan 2019

Long-profile evolution of transport-limited gravel-bed rivers

Andrew D. Wickert and Taylor F. Schildgen

Related authors

Influence of network geometry on long-term morphodynamics of alluvial rivers
Fergus McNab, Taylor F. Schildgen, Jens Martin Turowski, and Andrew D. Wickert
EGUsphere, https://doi.org/10.5194/egusphere-2025-2468,https://doi.org/10.5194/egusphere-2025-2468, 2025
Short summary
Technical Note: A double-Manning approach to compute robust rating curves and hydraulic geometries
Andrew D. Wickert, Jabari C. Jones, and Gene-Hua Crystal Ng
EGUsphere, https://doi.org/10.5194/egusphere-2025-1409,https://doi.org/10.5194/egusphere-2025-1409, 2025
Short summary
The Water Table Model (WTM) (v2.0.1): coupled groundwater and dynamic lake modelling
Kerry L. Callaghan, Andrew D. Wickert, Richard Barnes, and Jacqueline Austermann
Geosci. Model Dev., 18, 1463–1486, https://doi.org/10.5194/gmd-18-1463-2025,https://doi.org/10.5194/gmd-18-1463-2025, 2025
Short summary
Late Quaternary glacial maxima in southern Patagonia: insights from the Lago Argentino glacier lobe
Matias Romero, Shanti B. Penprase, Maximillian S. Van Wyk de Vries, Andrew D. Wickert, Andrew G. Jones, Shaun A. Marcott, Jorge A. Strelin, Mateo A. Martini, Tammy M. Rittenour, Guido Brignone, Mark D. Shapley, Emi Ito, Kelly R. MacGregor, and Marc W. Caffee
Clim. Past, 20, 1861–1883, https://doi.org/10.5194/cp-20-1861-2024,https://doi.org/10.5194/cp-20-1861-2024, 2024
Short summary
A double-Manning approach to compute robust rating curves and hydraulic geometries
Andrew D. Wickert, Jabari C. Jones, and Gene-Hua Crystal Ng
EGUsphere, https://doi.org/10.5194/egusphere-2023-3118,https://doi.org/10.5194/egusphere-2023-3118, 2024
Preprint archived
Short summary

Related subject area

Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Surface grain-size mapping of braided channels from SfM photogrammetry
Loïs Ribet, Frédéric Liébault, Laurent Borgniet, Michaël Deschâtres, and Gabriel Melun
Earth Surf. Dynam., 13, 607–627, https://doi.org/10.5194/esurf-13-607-2025,https://doi.org/10.5194/esurf-13-607-2025, 2025
Short summary
Spatiotemporal denudation rates of the Swabian Alb escarpment (southwestern Germany) dominated by anthropogenic impact, lithology, and base-level lowering
Mirjam Schaller, Daniel Peifer, Alexander B. Neely, Thomas Bernard, Christoph Glotzbach, Alexander R. Beer, and Todd A. Ehlers
Earth Surf. Dynam., 13, 571–591, https://doi.org/10.5194/esurf-13-571-2025,https://doi.org/10.5194/esurf-13-571-2025, 2025
Short summary
Short communication: Learning how landscapes evolve with neural operators
Gareth G. Roberts
Earth Surf. Dynam., 13, 563–570, https://doi.org/10.5194/esurf-13-563-2025,https://doi.org/10.5194/esurf-13-563-2025, 2025
Short summary
Sediment aggradation rates in Himalayan rivers revealed through the InSAR differential residual topographic phase
Jingqiu Huang and Hugh D. Sinclair
Earth Surf. Dynam., 13, 531–547, https://doi.org/10.5194/esurf-13-531-2025,https://doi.org/10.5194/esurf-13-531-2025, 2025
Short summary
The glacial paleolandscapes of Southern Africa: the legacy of the Late Paleozoic Ice Age
Pierre Dietrich, François Guillocheau, Guilhem A. Douillet, Neil P. Griffis, Guillaume Baby, Daniel P. Le Héron, Laurie Barrier, Maximilien Mathian, Isabel P. Montañez, Cécile Robin, Thomas Gyomlai, Christoph Kettler, and Axel Hofmann
Earth Surf. Dynam., 13, 495–529, https://doi.org/10.5194/esurf-13-495-2025,https://doi.org/10.5194/esurf-13-495-2025, 2025
Short summary

Cited articles

Acosta, V. T., Schildgen, T. F., Clarke, B. A., Scherler, D., Bookhagen, B., Wittmann, H., von Blanckenburg, F., and Strecker, M. R.: Effect of vegetation cover on millennial-scale landscape denudation rates in East Africa, Lithosphere, 7, 408–420, https://doi.org/10.1130/L402.1, 2015. a
Aguirre-Pe, J. and Fuentes, R.: Resistance to Flow in Steep Rough Streams, J. Hydraul. Eng., 116, 1374–1387, https://doi.org/10.1061/(ASCE)0733-9429(1990)116:11(1374), 1990. a
Aron, G. and Miller, A.: Adaptation of Flood Peaks and Design Hydrographs from Gaged to Nearby Ungaged Watersheds, J. Am. Water Resour. As., 14, 313–321, https://doi.org/10.1111/j.1752-1688.1978.tb02169.x, 1978. a, b, c, d, e, f
Ashmore, P.: Channel Morphology and Bed Load Pulses in Braided, Gravel-Bed Streams, Geogr. Ann. A, 73, 37–52, https://doi.org/10.2307/521212, 1991. a
Attal, M. and Lavé, J.: Pebble abrasion during fluvial transport: Experimental results and implications for the evolution of the sediment load along rivers, J. Geophys. Res.-Earth, 114, 1–22, https://doi.org/10.1029/2009JF001328, 2009. a, b
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Rivers can raise or lower their beds by depositing or eroding sediments. We combine equations for flow, channel/valley geometry, and gravel transport to learn how climate and tectonics shape down-valley profiles of river-bed elevation. Rivers steepen when they receive more sediment (relative to water) and become straighter with tectonic uplift. Weathering and breakdown of gravel is needed to produce gradually widening river channels with concave-up profiles that are often observed in the field.
Share