Articles | Volume 7, issue 2
https://doi.org/10.5194/esurf-7-459-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-7-459-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Long-term erosion rates as a function of climate derived from the impact crater inventory
Stefan Hergarten
CORRESPONDING AUTHOR
Institut für Geo- und Umweltnaturwissenschaften, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
Thomas Kenkmann
Institut für Geo- und Umweltnaturwissenschaften, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
Related authors
Stefan Hergarten
EGUsphere, https://doi.org/10.5194/egusphere-2024-1070, https://doi.org/10.5194/egusphere-2024-1070, 2024
Short summary
Short summary
Toma hills are more or less isolated hills in the deposits of rock avalanches and their origin is still enigmatic. This paper presents results of numerical simulations based on a modified version of a friction law that was originally introduced for snow avalanches. The model produces more or less isolated hills on the valley floor, which look much like toma hills. The results presented here provide the perhaps first explanation for the occurrence of toma hills based on a numerical model.
Stefan Hergarten
EGUsphere, https://doi.org/10.5194/egusphere-2024-336, https://doi.org/10.5194/egusphere-2024-336, 2024
Short summary
Short summary
Faceted topographies are impressing footprints of active tectonics in geomorphology. This paper investigates the evolution of faceted topographies at normal faults and its interaction with the river network theoretically and numerically. As a main result beyond several relations for the the geometry of facets, the horizontal displacement associated to normal faults is crucial for the dissection of initially polygonal facets into triangular facets bounded by almost parallel rivers.
Stefan Hergarten
Geosci. Model Dev., 17, 781–794, https://doi.org/10.5194/gmd-17-781-2024, https://doi.org/10.5194/gmd-17-781-2024, 2024
Short summary
Short summary
The Voellmy rheology has been widely used for simulating snow and rock avalanches. Recently, a modified version of this rheology was proposed, which turned out to be able to predict the observed long runout of large rock avalanches theoretically. The software MinVoellmy presented here is the first numerical implementation of the modified rheology. It consists of MATLAB and Python classes, where simplicity and parsimony were the design goals.
Stefan Hergarten
Earth Surf. Dynam., 12, 219–229, https://doi.org/10.5194/esurf-12-219-2024, https://doi.org/10.5194/esurf-12-219-2024, 2024
Short summary
Short summary
Large landslides turn into an avalanche-like mode of flow at high velocities, which allows for a much longer runout than predicted for a sliding solid body. In this study, the Voellmy rheology widely used in models for hazard assessment is reinterpreted and extended. The new approach predicts the increase in runout length with volume observed in nature quite well and may thus be a major step towards a more consistent modeling of rock avalanches and improved hazard assessment.
Stefan Hergarten
Nat. Hazards Earth Syst. Sci., 23, 3051–3063, https://doi.org/10.5194/nhess-23-3051-2023, https://doi.org/10.5194/nhess-23-3051-2023, 2023
Short summary
Short summary
Rockslides are a major hazard in mountainous regions. In formerly glaciated regions, the disposition mainly arises from oversteepened topography and decreases through time. However, little is known about this decrease and thus about the present-day hazard of huge, potentially catastrophic rockslides. This paper presents a new theoretical framework that explains the decrease in maximum rockslide size through time and predicts the present-day frequency of large rockslides for the European Alps.
Jannick Strüven and Stefan Hergarten
Hydrol. Earth Syst. Sci., 27, 3041–3058, https://doi.org/10.5194/hess-27-3041-2023, https://doi.org/10.5194/hess-27-3041-2023, 2023
Short summary
Short summary
This study uses dendritic flow patterns to analyze the recession behavior of aquifer springs. The results show that the long-term recession becomes slower for large catchments. After a short recharge event, however, the short-term behavior differs strongly from the exponential recession that would be expected from a linear reservoir. The exponential component still accounts for more than 80 % of the total discharge, much more than typically assumed for karst aquifers.
Stefan Hergarten and Alexa Pietrek
Earth Surf. Dynam., 11, 741–755, https://doi.org/10.5194/esurf-11-741-2023, https://doi.org/10.5194/esurf-11-741-2023, 2023
Short summary
Short summary
The transition from hillslopes to channelized flow is typically attributed to a threshold catchment size in landform evolution models. Here we propose an alternative concept directly based on topography. Using this concept, channels and hillslopes self-organize, whereby the catchment size of the channel heads varies over some range. Our numerical results suggest that this concept works better than the established idea of a strict threshold catchment size.
Moritz Liebl, Jörg Robl, Stefan Hergarten, David Lundbek Egholm, and Kurt Stüwe
Geosci. Model Dev., 16, 1315–1343, https://doi.org/10.5194/gmd-16-1315-2023, https://doi.org/10.5194/gmd-16-1315-2023, 2023
Short summary
Short summary
In this study, we benchmark a topography-based model for glacier erosion (OpenLEM) with a well-established process-based model (iSOSIA). Our experiments show that large-scale erosion patterns and particularly the transformation of valley length geometry from fluvial to glacial conditions are very similar in both models. This finding enables the application of OpenLEM to study the influence of climate and tectonics on glaciated mountains with reasonable computational effort on standard PCs.
Stefan Hergarten
Earth Surf. Dynam., 10, 671–686, https://doi.org/10.5194/esurf-10-671-2022, https://doi.org/10.5194/esurf-10-671-2022, 2022
Short summary
Short summary
Many studies on modeling landform evolution have focused on mountain ranges, while large parts of Earth's surface are quite flat and alluvial plains have been preferred locations for human settlements. Conducting large-scale simulations of fluvial erosion and sediment transport, this study reveals that rivers in a tectonically inactive foreland are much more dynamic than rivers in a mountain range; the local redistribution of deposits in the foreland is the main driver of the dynamics.
Stefan Hergarten and Jörg Robl
Geosci. Model Dev., 15, 2063–2084, https://doi.org/10.5194/gmd-15-2063-2022, https://doi.org/10.5194/gmd-15-2063-2022, 2022
Short summary
Short summary
The influence of climate on landform evolution has attracted great interest over the past decades. This paper presents a simple model for simulating the influence of topography on precipitation and the decrease in precipitation over large continental areas. The approach can be included in numerical models of large-scale landform evolution and causes only a moderate increase in the numerical complexity. It opens a door to investigating feedbacks between climate and landform evolution.
Stefan Hergarten
Earth Surf. Dynam., 9, 937–952, https://doi.org/10.5194/esurf-9-937-2021, https://doi.org/10.5194/esurf-9-937-2021, 2021
Short summary
Short summary
This paper presents a new approach to modeling glacial erosion on large scales. The formalism is similar to large-scale models of fluvial erosion, so glacial and fluvial processes can be easily combined. The model is simpler and numerically less demanding than established models based on a more detailed description of the ice flux. The numerical implementation almost achieves the efficiency of purely fluvial models, so that simulations over millions of years can be performed on standard PCs.
Anne-Laure Argentin, Jörg Robl, Günther Prasicek, Stefan Hergarten, Daniel Hölbling, Lorena Abad, and Zahra Dabiri
Nat. Hazards Earth Syst. Sci., 21, 1615–1637, https://doi.org/10.5194/nhess-21-1615-2021, https://doi.org/10.5194/nhess-21-1615-2021, 2021
Short summary
Short summary
This study relies on topography to simulate the origin and displacement of potentially river-blocking landslides. It highlights a continuous range of simulated landslide dams that go unnoticed in the field due to their small scale. The computation results show that landslide-dammed lake volume can be estimated from upstream drainage area and landslide volume, thus enabling an efficient hazard assessment of possible landslide-dammed lake volume – and flooding magnitude in case of dam failure.
Stefan Hergarten
Earth Surf. Dynam., 8, 841–854, https://doi.org/10.5194/esurf-8-841-2020, https://doi.org/10.5194/esurf-8-841-2020, 2020
Short summary
Short summary
Many contemporary models of large-scale fluvial erosion focus on the detachment-limited regime where all material entrained by the river is immediately excavated. This limitation facilitates the comparison with real river profiles and strongly reduces the numerical complexity. Here a simple formulation for the opposite case, transport-limited erosion, and a new numerical scheme that achieves almost the same numerical efficiency as detachment-limited models are presented.
Stefan Hergarten
Earth Surf. Dynam., 8, 367–377, https://doi.org/10.5194/esurf-8-367-2020, https://doi.org/10.5194/esurf-8-367-2020, 2020
Short summary
Short summary
Models of fluvial erosion have a long history in landform evolution modeling. Interactions between rivers and processes acting at hillslopes (e.g., landslides) are receiving growing interest in this context. While present-day computer capacities allow for applying such coupled models, there is still a scaling problem when considering rivers to be linear elements on a topography. Based on a reinterpretation of old empirical results, this study presents a new approach to overcome this problem.
Georg Trost, Jörg Robl, Stefan Hergarten, and Franz Neubauer
Earth Surf. Dynam., 8, 69–85, https://doi.org/10.5194/esurf-8-69-2020, https://doi.org/10.5194/esurf-8-69-2020, 2020
Short summary
Short summary
The evolution of the drainage system in the Eastern Alps is inherently linked to different tectonic stages. This leads to a situation in which major orogen-parallel alpine rivers, such as the Salzach and the Enns, are characterized by elongated east–west-oriented catchments. We investigate the stability of present-day drainage divides and the stability of reconstructed paleo-drainage systems. Our results indicate a progressive stability of the network towards the present-day situation.
S. Hergarten, J. Robl, and K. Stüwe
Earth Surf. Dynam., 4, 1–9, https://doi.org/10.5194/esurf-4-1-2016, https://doi.org/10.5194/esurf-4-1-2016, 2016
Short summary
Short summary
Longitudinal river profiles are increasingly used for unraveling the tectonic history on a regional scale. In the last years, the introduction of the so-called chi transform brought significant technical progress, but this method is still limited to the domain governed by fluvial erosion covering only a small part of the surface. Here we present and compare extensions of the method towards smaller catchment sizes where hillslope processes or debris flows significantly contribute to erosion.
S. Hergarten and J. Robl
Nat. Hazards Earth Syst. Sci., 15, 671–685, https://doi.org/10.5194/nhess-15-671-2015, https://doi.org/10.5194/nhess-15-671-2015, 2015
Short summary
Short summary
Snow avalanches and debris flows are abundant natural hazards in mountainous regions. Numerical models describing rapid mass movements are essential for hazard studies and mitigation strategies, but only a few software tools are available for this purpose. This paper presents a new method using the shallow water equations widely applied to lakes and oceans. It introduces appropriate correction terms for steep terrain and can be implemented in a variety of fluid-dynamics software packages.
S. Hergarten, G. Winkler, and S. Birk
Hydrol. Earth Syst. Sci., 18, 4277–4288, https://doi.org/10.5194/hess-18-4277-2014, https://doi.org/10.5194/hess-18-4277-2014, 2014
S. Hergarten, J. Robl, and K. Stüwe
Earth Surf. Dynam., 2, 97–104, https://doi.org/10.5194/esurf-2-97-2014, https://doi.org/10.5194/esurf-2-97-2014, 2014
Stefan Hergarten
EGUsphere, https://doi.org/10.5194/egusphere-2024-1070, https://doi.org/10.5194/egusphere-2024-1070, 2024
Short summary
Short summary
Toma hills are more or less isolated hills in the deposits of rock avalanches and their origin is still enigmatic. This paper presents results of numerical simulations based on a modified version of a friction law that was originally introduced for snow avalanches. The model produces more or less isolated hills on the valley floor, which look much like toma hills. The results presented here provide the perhaps first explanation for the occurrence of toma hills based on a numerical model.
Stefan Hergarten
EGUsphere, https://doi.org/10.5194/egusphere-2024-336, https://doi.org/10.5194/egusphere-2024-336, 2024
Short summary
Short summary
Faceted topographies are impressing footprints of active tectonics in geomorphology. This paper investigates the evolution of faceted topographies at normal faults and its interaction with the river network theoretically and numerically. As a main result beyond several relations for the the geometry of facets, the horizontal displacement associated to normal faults is crucial for the dissection of initially polygonal facets into triangular facets bounded by almost parallel rivers.
Stefan Hergarten
Geosci. Model Dev., 17, 781–794, https://doi.org/10.5194/gmd-17-781-2024, https://doi.org/10.5194/gmd-17-781-2024, 2024
Short summary
Short summary
The Voellmy rheology has been widely used for simulating snow and rock avalanches. Recently, a modified version of this rheology was proposed, which turned out to be able to predict the observed long runout of large rock avalanches theoretically. The software MinVoellmy presented here is the first numerical implementation of the modified rheology. It consists of MATLAB and Python classes, where simplicity and parsimony were the design goals.
Stefan Hergarten
Earth Surf. Dynam., 12, 219–229, https://doi.org/10.5194/esurf-12-219-2024, https://doi.org/10.5194/esurf-12-219-2024, 2024
Short summary
Short summary
Large landslides turn into an avalanche-like mode of flow at high velocities, which allows for a much longer runout than predicted for a sliding solid body. In this study, the Voellmy rheology widely used in models for hazard assessment is reinterpreted and extended. The new approach predicts the increase in runout length with volume observed in nature quite well and may thus be a major step towards a more consistent modeling of rock avalanches and improved hazard assessment.
Stefan Hergarten
Nat. Hazards Earth Syst. Sci., 23, 3051–3063, https://doi.org/10.5194/nhess-23-3051-2023, https://doi.org/10.5194/nhess-23-3051-2023, 2023
Short summary
Short summary
Rockslides are a major hazard in mountainous regions. In formerly glaciated regions, the disposition mainly arises from oversteepened topography and decreases through time. However, little is known about this decrease and thus about the present-day hazard of huge, potentially catastrophic rockslides. This paper presents a new theoretical framework that explains the decrease in maximum rockslide size through time and predicts the present-day frequency of large rockslides for the European Alps.
Jannick Strüven and Stefan Hergarten
Hydrol. Earth Syst. Sci., 27, 3041–3058, https://doi.org/10.5194/hess-27-3041-2023, https://doi.org/10.5194/hess-27-3041-2023, 2023
Short summary
Short summary
This study uses dendritic flow patterns to analyze the recession behavior of aquifer springs. The results show that the long-term recession becomes slower for large catchments. After a short recharge event, however, the short-term behavior differs strongly from the exponential recession that would be expected from a linear reservoir. The exponential component still accounts for more than 80 % of the total discharge, much more than typically assumed for karst aquifers.
Stefan Hergarten and Alexa Pietrek
Earth Surf. Dynam., 11, 741–755, https://doi.org/10.5194/esurf-11-741-2023, https://doi.org/10.5194/esurf-11-741-2023, 2023
Short summary
Short summary
The transition from hillslopes to channelized flow is typically attributed to a threshold catchment size in landform evolution models. Here we propose an alternative concept directly based on topography. Using this concept, channels and hillslopes self-organize, whereby the catchment size of the channel heads varies over some range. Our numerical results suggest that this concept works better than the established idea of a strict threshold catchment size.
Moritz Liebl, Jörg Robl, Stefan Hergarten, David Lundbek Egholm, and Kurt Stüwe
Geosci. Model Dev., 16, 1315–1343, https://doi.org/10.5194/gmd-16-1315-2023, https://doi.org/10.5194/gmd-16-1315-2023, 2023
Short summary
Short summary
In this study, we benchmark a topography-based model for glacier erosion (OpenLEM) with a well-established process-based model (iSOSIA). Our experiments show that large-scale erosion patterns and particularly the transformation of valley length geometry from fluvial to glacial conditions are very similar in both models. This finding enables the application of OpenLEM to study the influence of climate and tectonics on glaciated mountains with reasonable computational effort on standard PCs.
Stefan Hergarten
Earth Surf. Dynam., 10, 671–686, https://doi.org/10.5194/esurf-10-671-2022, https://doi.org/10.5194/esurf-10-671-2022, 2022
Short summary
Short summary
Many studies on modeling landform evolution have focused on mountain ranges, while large parts of Earth's surface are quite flat and alluvial plains have been preferred locations for human settlements. Conducting large-scale simulations of fluvial erosion and sediment transport, this study reveals that rivers in a tectonically inactive foreland are much more dynamic than rivers in a mountain range; the local redistribution of deposits in the foreland is the main driver of the dynamics.
Stefan Hergarten and Jörg Robl
Geosci. Model Dev., 15, 2063–2084, https://doi.org/10.5194/gmd-15-2063-2022, https://doi.org/10.5194/gmd-15-2063-2022, 2022
Short summary
Short summary
The influence of climate on landform evolution has attracted great interest over the past decades. This paper presents a simple model for simulating the influence of topography on precipitation and the decrease in precipitation over large continental areas. The approach can be included in numerical models of large-scale landform evolution and causes only a moderate increase in the numerical complexity. It opens a door to investigating feedbacks between climate and landform evolution.
Stefan Hergarten
Earth Surf. Dynam., 9, 937–952, https://doi.org/10.5194/esurf-9-937-2021, https://doi.org/10.5194/esurf-9-937-2021, 2021
Short summary
Short summary
This paper presents a new approach to modeling glacial erosion on large scales. The formalism is similar to large-scale models of fluvial erosion, so glacial and fluvial processes can be easily combined. The model is simpler and numerically less demanding than established models based on a more detailed description of the ice flux. The numerical implementation almost achieves the efficiency of purely fluvial models, so that simulations over millions of years can be performed on standard PCs.
Anne-Laure Argentin, Jörg Robl, Günther Prasicek, Stefan Hergarten, Daniel Hölbling, Lorena Abad, and Zahra Dabiri
Nat. Hazards Earth Syst. Sci., 21, 1615–1637, https://doi.org/10.5194/nhess-21-1615-2021, https://doi.org/10.5194/nhess-21-1615-2021, 2021
Short summary
Short summary
This study relies on topography to simulate the origin and displacement of potentially river-blocking landslides. It highlights a continuous range of simulated landslide dams that go unnoticed in the field due to their small scale. The computation results show that landslide-dammed lake volume can be estimated from upstream drainage area and landslide volume, thus enabling an efficient hazard assessment of possible landslide-dammed lake volume – and flooding magnitude in case of dam failure.
Stefan Hergarten
Earth Surf. Dynam., 8, 841–854, https://doi.org/10.5194/esurf-8-841-2020, https://doi.org/10.5194/esurf-8-841-2020, 2020
Short summary
Short summary
Many contemporary models of large-scale fluvial erosion focus on the detachment-limited regime where all material entrained by the river is immediately excavated. This limitation facilitates the comparison with real river profiles and strongly reduces the numerical complexity. Here a simple formulation for the opposite case, transport-limited erosion, and a new numerical scheme that achieves almost the same numerical efficiency as detachment-limited models are presented.
Stefan Hergarten
Earth Surf. Dynam., 8, 367–377, https://doi.org/10.5194/esurf-8-367-2020, https://doi.org/10.5194/esurf-8-367-2020, 2020
Short summary
Short summary
Models of fluvial erosion have a long history in landform evolution modeling. Interactions between rivers and processes acting at hillslopes (e.g., landslides) are receiving growing interest in this context. While present-day computer capacities allow for applying such coupled models, there is still a scaling problem when considering rivers to be linear elements on a topography. Based on a reinterpretation of old empirical results, this study presents a new approach to overcome this problem.
Georg Trost, Jörg Robl, Stefan Hergarten, and Franz Neubauer
Earth Surf. Dynam., 8, 69–85, https://doi.org/10.5194/esurf-8-69-2020, https://doi.org/10.5194/esurf-8-69-2020, 2020
Short summary
Short summary
The evolution of the drainage system in the Eastern Alps is inherently linked to different tectonic stages. This leads to a situation in which major orogen-parallel alpine rivers, such as the Salzach and the Enns, are characterized by elongated east–west-oriented catchments. We investigate the stability of present-day drainage divides and the stability of reconstructed paleo-drainage systems. Our results indicate a progressive stability of the network towards the present-day situation.
S. Hergarten, J. Robl, and K. Stüwe
Earth Surf. Dynam., 4, 1–9, https://doi.org/10.5194/esurf-4-1-2016, https://doi.org/10.5194/esurf-4-1-2016, 2016
Short summary
Short summary
Longitudinal river profiles are increasingly used for unraveling the tectonic history on a regional scale. In the last years, the introduction of the so-called chi transform brought significant technical progress, but this method is still limited to the domain governed by fluvial erosion covering only a small part of the surface. Here we present and compare extensions of the method towards smaller catchment sizes where hillslope processes or debris flows significantly contribute to erosion.
S. Hergarten and J. Robl
Nat. Hazards Earth Syst. Sci., 15, 671–685, https://doi.org/10.5194/nhess-15-671-2015, https://doi.org/10.5194/nhess-15-671-2015, 2015
Short summary
Short summary
Snow avalanches and debris flows are abundant natural hazards in mountainous regions. Numerical models describing rapid mass movements are essential for hazard studies and mitigation strategies, but only a few software tools are available for this purpose. This paper presents a new method using the shallow water equations widely applied to lakes and oceans. It introduces appropriate correction terms for steep terrain and can be implemented in a variety of fluid-dynamics software packages.
S. Hergarten, G. Winkler, and S. Birk
Hydrol. Earth Syst. Sci., 18, 4277–4288, https://doi.org/10.5194/hess-18-4277-2014, https://doi.org/10.5194/hess-18-4277-2014, 2014
S. Hergarten, J. Robl, and K. Stüwe
Earth Surf. Dynam., 2, 97–104, https://doi.org/10.5194/esurf-2-97-2014, https://doi.org/10.5194/esurf-2-97-2014, 2014
Related subject area
Physical: Planetary Geomorphology
Long-runout landslides with associated longitudinal ridges in Iceland as analogues of Martian landslide deposits
An overview of sedimentary volcanism on Mars
Deep-seated gravitational slope deformation scaling on Mars and Earth: same fate for different initial conditions and structural evolutions
Rainfall intensity bursts and the erosion of soils: an analysis highlighting the need for high temporal resolution rainfall data for research under current and future climates
Groundwater seepage landscapes from distant and local sources in experiments and on Mars
Giulia Magnarini, Anya Champagne, Costanza Morino, Calvin Beck, Meven Philippe, Armelle Decaulne, and Susan J. Conway
Earth Surf. Dynam., 12, 657–678, https://doi.org/10.5194/esurf-12-657-2024, https://doi.org/10.5194/esurf-12-657-2024, 2024
Short summary
Short summary
We show that Icelandic long-runout landslides with longitudinal ridges represent good analogues of Martian landforms. The large record of long-runout landslides with longitudinal ridges emplaced after the Last Glacial Maximum in Iceland offers a unique opportunity to study the possible relation between the development of these landforms and environmental conditions. This could have implications for reconstructing Martian paleoclimatic and paleoenvironmental conditions.
Petr Brož, Dorothy Oehler, Adriano Mazzini, Ernst Hauber, Goro Komatsu, Giuseppe Etiope, and Vojtěch Cuřín
Earth Surf. Dynam., 11, 633–661, https://doi.org/10.5194/esurf-11-633-2023, https://doi.org/10.5194/esurf-11-633-2023, 2023
Short summary
Short summary
The aim of this review is to summarise the current knowledge about mud-volcano-like structures on Mars, address critical aspects of the process of sedimentary volcanism, identify key open questions, and point to areas where further research is needed to understand this phenomenon and its importance in the Red Planet's geological evolution.
Olga Kromuszczyńska, Daniel Mège, Krzysztof Dębniak, Joanna Gurgurewicz, Magdalena Makowska, and Antoine Lucas
Earth Surf. Dynam., 7, 361–376, https://doi.org/10.5194/esurf-7-361-2019, https://doi.org/10.5194/esurf-7-361-2019, 2019
Short summary
Short summary
Deep-seated gravitational spreading features are spectacular on Mars on the hillslopes of Valles Marineris, both in terms of landform freshness and size. This paper compares their dimensions and those in terrestrial analogue sites in the Tatra Mountains. Gravitational spreading is thought to be inactive in both locations. We find that the height-to-width ratio, ~0.24, is similar in spite of much larger strain in Valles Marineris. We explore the implications.
David L. Dunkerley
Earth Surf. Dynam., 7, 345–360, https://doi.org/10.5194/esurf-7-345-2019, https://doi.org/10.5194/esurf-7-345-2019, 2019
Short summary
Short summary
Soil erosion, especially in vulnerable conditions such as post-fire landscapes or tilled agricultural soils, is greatly affected by the occurrence of bursts of intense rainfall. These are often set within longer periods of less intense rain. This paper documents the nature of the intensity bursts at two Australian locations and shows that high-resolution rainfall records are required in order to make estimates of the intensity. Hourly rainfall data are not suitable for this task.
W. A. Marra, S. J. McLelland, D. R. Parsons, B. J. Murphy, E. Hauber, and M. G. Kleinhans
Earth Surf. Dynam., 3, 389–408, https://doi.org/10.5194/esurf-3-389-2015, https://doi.org/10.5194/esurf-3-389-2015, 2015
Short summary
Short summary
Groundwater seepage creates valleys with typical theater-shaped valley heads, which are found on Earth and on Mars. For a better interpretation of these systems, we conducted scale experiments on the formation such valleys. We find that entire landscapes, instead of just the shape of the valleys, provide insights into the source of groundwater. Landscapes filled with valleys indicate a local groundwater source in contrast to sparsely dissected landscapes formed by a distal source of groundwater.
Cited articles
Brocklehurst, S. H.: How glaciers grow, Nature, 493, 173–174,
https://doi.org/10.1038/493173a, 2013. a
Egholm, D. L.: Erosion by cooling, Nature, 504, 380–381,
https://doi.org/10.1038/504380a, 2013. a
Ferrier, K. L., J. T. Perron and, S. M., Rosener, M., Stock, J. D., Huppert,
K. L., and Slosberg, M.: Covariation of climate and long-term erosion rates
across a steep rainfall gradient on the Hawaiian island of Kaua´i, GSA
Bull., 125, 1146–1163, https://doi.org/10.1130/B30726.1, 2013. a
Ganti, V., von Hagke, C., Scherler, D., Lamb, M. P., Fischer, W. W., and
Avouac, J.-P.: Time scale bias in erosion rates of glaciated landscapes, Sci.
Adv., 2, e1600204, https://doi.org/10.1126/sciadv.1600204, 2016. a
Herman, F. and Champagnac, J.-D.: Plio-Pleistocene increase of erosion rates
in mountain belts in response to climate change, Terra Nova, 28, 2–10,
https://doi.org/10.1111/ter.12186, 2016. a
Herman, F., Seward, D., Valla, P. G., Carter, A., Kohn, B., Willett, S. D., and
Ehlers, T. A.: Worldwide acceleration of mountain erosion under a cooling
climate, Nature, 504, 423–426, https://doi.org/10.1038/nature12877, 2013. a, b, c, d
Johnson, B. C. and Bowling, T. J.: Where have all the craters gone? Earth's
bombardment history and the expected terrestrial cratering record, Geology,
42, 587–590, https://doi.org/10.1130/G35754.1, 2014. a
Koppes, M., Hallet, B., Rignot, E., Mouginot, J., Wellner, J. S., and Boldtand,
K.: Observed latitudinal variations in erosion as a function of glacier
dynamics, Nature, 526, 100–103, https://doi.org/10.1038/nature15385, 2015. a
Ludwig, W. and Probst, J.-L.: Predicting the oceanic input of organic carbon by
continental erosion, Global Biogeochem. Cy., 10, 23–41,
https://doi.org/10.1029/95GB02925, 1996. a, b
Marshall, J. A., Roering, J. J., Bartlein, P. J., Gavin, D. G., Granger, D. E.,
Rempel, A. W., Praskievicz, S. J., and Hales, T. C.: Frost for the trees: Did
climate increase erosion in unglaciated landscapes during the late
Pleistocene?, Sci. Adv., 1, e1500715, https://doi.org/10.1126/sciadv.1500715, 2015. a
Molnar, P.: Late Cenozoic increase in accumulation rates of terrestrial
sediment: How might climate change have affected erosion rates?, Annu. Rev.
Earth Pl. Sc., 32, 67–89, 2004. a
Molnar, P. and England, P.: Late Cenozoic uplift of mountain ranges and
global climate change: chicken or egg?, Nature, 346, 29–34, 1990. a
Montgomery, D. R. and Brandon, M. T.: Topographic controls on erosion rates in
tectonically active mountain ranges, Earth. Planet. Sc. Lett., 201,
481–489, https://doi.org/10.1016/S0012-821X(02)00725-2, 2002. a
Moon, S., Chamberlain, C. P., Blisniuk, K., Levine, N., Rood, D. H., and
Hilley, G. E.: Climatic control of denudation in the deglaciated landscape of
the Washington Cascades, Nat. Geosci., 4, 469–473,
https://doi.org/10.1038/ngeo1159, 2011. a
Neukum, G., Ivanov, B. A., and Hartmann, W. K.: Cratering records in the inner
solar system in relation to the lunar reference system, Space Sci. Rev., 96,
55–86, https://doi.org/10.1023/A:1011989004263, 2001. a
Pedersen, V. K. and Egholm, D. L.: Glaciations in response to climate
variations preconditioned by evolving topography, Nature, 493, 206–210,
https://doi.org/10.1038/nature11786, 2013. a
Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world map of the
Köppen-Geiger climate classification, Hydrol. Earth Syst. Sci., 11,
1633–1644, https://doi.org/10.5194/hess-11-1633-2007, 2007. a, b
Portenga, E. W. and Bierman, P. R.: Understanding Earth's eroding surface
with 10Be, GSA Today, 21, 4–10, https://doi.org/10.1130/G111A.1, 2011. a, b
Riebe, C. S., Kirchner, J. W., Granger, D. E., and Finkel, R. C.: Minimal
climatic control on erosion rates in the Sierra Nevada, California,
Geology, 29, 447–450, https://doi.org/10.1130/0091-7613(2001)029<0447:MCCOER>2.0.CO;2, 2001. a, b
Schildgen, T. F., van der Beek, P. A., Sinclair, H. D., and Thiede, R. C.:
Spatial correlation bias in late-Cenozoic erosion histories derived from
thermochronology, Nature, 559, 89–93, https://doi.org/10.1038/s41586-018-0260-6, 2018. a
Schumer, R. and Jerolmack, D. J.: Real and apparent changes in sediment
deposition rates through time, J. Geophys. Res., 114, F00A06,
https://doi.org/10.1029/2009JF001266, 2009. a
Stöffler, D. and Ryder, G. G.: Stratigraphy and isotope ages of Lunar
geologic units: chronological standard for the inner solar system, Space Sci.
Rev., 96, 9–54, https://doi.org/10.1023/A:1011937020193, 2001. a
Summerfield, M. A. and Hulton, N. J.: Natural controls of fluvial denudation
rates in major world drainage basins, J. Geophys. Res., 99, 13871–13883,
https://doi.org/10.1029/94JB00715, 1994. a, b, c
Syvitski, J. P. M., Vorörösmarty, C. J., Kettner, A. J., and Green, P.:
Impact of humans on the flux of terrestrial sediment to the global coastal
ocean, Science, 308, 376–380, https://doi.org/10.1126/science.1109454, 2005. a
Valla, P. G., Herman, F., van der Beek, P. A., and Braun, J.: Inversion of
thermochronological age-elevation profiles to extract independent estimates
of denudation and relief history – I: Theory and conceptual model, Earth.
Planet. Sc. Lett., 295, 511–522, https://doi.org/10.1016/j.epsl.2010.04.033, 2010. a
von Blanckenburg, F.: The control mechanisms of erosion and weathering at basin
scale from cosmogenic nuclides in river sediment, Earth Planet. Sc. Lett.,
242, 224–239, https://doi.org/10.1016/j.epsl.2005.11.017, 2006. a
Wang, P., Scherler, D., Liu-Zeng, J., Mey, J., Zhang, J.-P. A. Y., and Shi, D.:
Tectonic control of Yarlung Tsangpo Gorge revealed by a buried canyon
in Southern Tibet, Science, 346, 978–981, https://doi.org/10.1126/science.1259041,
2014. a
Whipple, K. X., DiBiase, R. A., and Crosby, B. T.: Bedrock rivers, in:
Fluvial Geomorphology, edited by: Shroder, J. and Wohl, E., vol. 9 of
Treatise on Geomorphology, 550–573, Academic Press, San Diego, CA, USA,
2013. a
Willenbring, J. K. and Jerolmack, D. J.: The null hypothesis: globally steady
rates of erosion, weathering fluxes and shelf sediment accumulation during
Late Cenozoic mountain uplift and glaciation, Terra Nova, 28, 11–18,
https://doi.org/10.1111/ter.12185, 2015. a, b
Willenbring, J. K. and von Blanckenburg, F.: Long-term stability of global
erosion rates and weathering during late-Cenozoic cooling, Nature, 465,
211–214, https://doi.org/10.1038/nature09044, 2010.
a, b, c, d
Willenbring, J. K., Codilean, A. T., Ferrier, K. L., McElroy, B., and
Kirchner, J. W.: Short Communication: Earth is (mostly) flat, but mountains
dominate global denudation: apportionment of the continental mass flux over
millennial time scales, revisited, Earth Surf. Dynam. Discuss., 2, 1–17,
https://doi.org/10.5194/esurfd-2-1-2014, 2014. a, b
Wobus, C., Whipple, K. X., Kirby, E., Snyder, N., Johnson, J., Spyropolou,
K., Crosby, B., and Sheehan, D.: Tectonics from topography: Procedures,
promise, and pitfalls, in: Tectonics, Climate, and Landscape Evolution,
edited by: Willett, S. D., Hovius, N., Brandon, M. T., and Fisher, D. M.,
vol. 398 of GSA Special Papers, Geological Society of America, Boulder,
Washington, D.C., 55–74, https://doi.org/10.1130/2006.2398(04), 2006. a, b
Wulf, G., Hergarten, S., and Kenkmann, T.: Combined remote sensing analyses and
landform evolution modeling reveal the terrestrial Bosumtwi impact
structure as a Mars-like rampart crater, Earth. Planet. Sc. Lett., 506,
209–220, https://doi.org/10.1016/j.epsl.2018.11.009, 2019. a, b
Yanites, B. J. and Ehlers, T. A.: Global climate and tectonic controls on the
denudation of glaciated mountains, Earth. Planet. Sc. Lett., 325–326,
63–75, https://doi.org/10.1016/j.epsl.2012.01.030, 2012. a
Zhang, P.-Z., Molnar, P., and Downs, W. R.: Increased sedimentation rates and
grain sizes 2–4 Myr ago due to the influence of climate change on erosion
rates, Nature, 410, 891–897, https://doi.org/10.1038/35073504, 2001. a
Short summary
Our study reveals that worldwide mean erosion rates on the million-year timescale are very similar to present-day erosion rates in contrast to the majority of the previously published results. Concerning the dependence of erosion on climate, we found that the long-term erosion efficacy of the tropical zone has been about 5 times higher than that of the cold zones, while the erosional efficacy of the present-day arid zone has been as high as that of the temperate zone.
Our study reveals that worldwide mean erosion rates on the million-year timescale are very...