Articles | Volume 8, issue 4
https://doi.org/10.5194/esurf-8-1053-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-8-1053-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
GERALDINE (Google Earth Engine supRaglAciaL Debris INput dEtector): a new tool for identifying and monitoring supraglacial landslide inputs
William D. Smith
CORRESPONDING AUTHOR
School of Geography, Politics and Sociology, Newcastle University,
Newcastle upon Tyne, UK
Stuart A. Dunning
School of Geography, Politics and Sociology, Newcastle University,
Newcastle upon Tyne, UK
Stephen Brough
School of Geography, Politics and Sociology, Newcastle University,
Newcastle upon Tyne, UK
Department of Geography and Planning, School of Environmental
Sciences, University of Liverpool, Liverpool, UK
Neil Ross
School of Geography, Politics and Sociology, Newcastle University,
Newcastle upon Tyne, UK
Jon Telling
School of Natural and Environmental Sciences, Newcastle University,
Newcastle upon Tyne, UK
Related authors
No articles found.
Sonam Rinzin, Stuart Dunning, Rachel Joanne Carr, Simon Allen, Sonam Wangchuk, and Ashim Sattar
EGUsphere, https://doi.org/10.5194/egusphere-2025-3206, https://doi.org/10.5194/egusphere-2025-3206, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
This study redefines dangerous glacial lakes in Bhutan by integrating flood modelling with downstream exposure and vulnerability data. It finds that around 22,399 people, 2,613 buildings, and critical infrastructure are at risk from GLOFs. Thorthormi Tsho is classified as very high danger, with five other lakes posing high threats. Fourteen LGUs face high or very high GLOF danger, including six and three lakes not previously recognized, highlighting the need for stronger GLOF preparedness.
Sonam Rinzin, Stuart Dunning, Rachel Joanne Carr, Ashim Sattar, and Martin Mergili
Nat. Hazards Earth Syst. Sci., 25, 1841–1864, https://doi.org/10.5194/nhess-25-1841-2025, https://doi.org/10.5194/nhess-25-1841-2025, 2025
Short summary
Short summary
We modelled multiple glacial lake outburst flood (GLOF) scenarios (84 simulations) and tested the effect of nine key input parameters on the modelling results using r.avaflow. Our results highlight that GLOF modelling results are subject to uncertainty from the multiple input parameters. The variation in the volume of mass movement entering the lake causes the highest uncertainty in the modelled GLOF, followed by the DEM dataset and the origin of mass movement.
Robert G. Bingham, Julien A. Bodart, Marie G. P. Cavitte, Ailsa Chung, Rebecca J. Sanderson, Johannes C. R. Sutter, Olaf Eisen, Nanna B. Karlsson, Joseph A. MacGregor, Neil Ross, Duncan A. Young, David W. Ashmore, Andreas Born, Winnie Chu, Xiangbin Cui, Reinhard Drews, Steven Franke, Vikram Goel, John W. Goodge, A. Clara J. Henry, Antoine Hermant, Benjamin H. Hills, Nicholas Holschuh, Michelle R. Koutnik, Gwendolyn J.-M. C. Leysinger Vieli, Emma J. Mackie, Elisa Mantelli, Carlos Martín, Felix S. L. Ng, Falk M. Oraschewski, Felipe Napoleoni, Frédéric Parrenin, Sergey V. Popov, Therese Rieckh, Rebecca Schlegel, Dustin M. Schroeder, Martin J. Siegert, Xueyuan Tang, Thomas O. Teisberg, Kate Winter, Shuai Yan, Harry Davis, Christine F. Dow, Tyler J. Fudge, Tom A. Jordan, Bernd Kulessa, Kenichi Matsuoka, Clara J. Nyqvist, Maryam Rahnemoonfar, Matthew R. Siegfried, Shivangini Singh, Verjan Višnjević, Rodrigo Zamora, and Alexandra Zuhr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2593, https://doi.org/10.5194/egusphere-2024-2593, 2024
Short summary
Short summary
The ice sheets covering Antarctica have built up over millenia through successive snowfall events which become buried and preserved as internal surfaces of equal age detectable with ice-penetrating radar. This paper describes an international initiative to work together on this archival data to build a comprehensive 3-D picture of how old the ice is everywhere across Antarctica, and how this will be used to reconstruct past and predict future ice and climate behaviour.
Charlotte M. Carter, Michael J. Bentley, Stewart S. R. Jamieson, Guy J. G. Paxman, Tom A. Jordan, Julien A. Bodart, Neil Ross, and Felipe Napoleoni
The Cryosphere, 18, 2277–2296, https://doi.org/10.5194/tc-18-2277-2024, https://doi.org/10.5194/tc-18-2277-2024, 2024
Short summary
Short summary
We use radio-echo sounding data to investigate the presence of flat surfaces beneath the Evans–Rutford region in West Antarctica. These surfaces may be what remains of laterally continuous surfaces, formed before the inception of the West Antarctic Ice Sheet, and we assess two hypotheses for their formation. Tectonic structures in the region may have also had a control on the growth of the ice sheet by focusing ice flow into troughs adjoining these surfaces.
An Li, Michelle Koutnik, Stephen Brough, Matteo Spagnolo, and Iestyn Barr
EGUsphere, https://doi.org/10.5194/egusphere-2023-2568, https://doi.org/10.5194/egusphere-2023-2568, 2024
Short summary
Short summary
On Earth, glacial cirques are a type of landform eroded by wet-based glaciers, which are glaciers with liquid water at the base of a glacier. While select alcoves have been interpreted as glacial cirques on Mars, we map and assess a large-scale population of ~2000 alcoves as potential cirques in the northern mid-latitudes of Mars. From physical measurements and characteristics, we find 386 cirque-like alcoves. This extends our knowledge of the extent and type of glaciation in the region.
Rebecca J. Sanderson, Kate Winter, S. Louise Callard, Felipe Napoleoni, Neil Ross, Tom A. Jordan, and Robert G. Bingham
The Cryosphere, 17, 4853–4871, https://doi.org/10.5194/tc-17-4853-2023, https://doi.org/10.5194/tc-17-4853-2023, 2023
Short summary
Short summary
Ice-penetrating radar allows us to explore the internal structure of glaciers and ice sheets to constrain past and present ice-flow conditions. In this paper, we examine englacial layers within the Lambert Glacier in East Antarctica using a quantitative layer tracing tool. Analysis reveals that the ice flow here has been relatively stable, but evidence for former fast flow along a tributary suggests that changes have occurred in the past and could change again in the future.
Timo Schmid, Valentina Radić, Andrew Tedstone, James M. Lea, Stephen Brough, and Mauro Hermann
The Cryosphere, 17, 3933–3954, https://doi.org/10.5194/tc-17-3933-2023, https://doi.org/10.5194/tc-17-3933-2023, 2023
Short summary
Short summary
The Greenland Ice Sheet contributes strongly to sea level rise in the warming climate. One process that can affect the ice sheet's mass balance is short-term ice speed-up events. These can be caused by high melting or rainfall as the water flows underneath the glacier and allows for faster sliding. In this study we found three main weather patterns that cause such ice speed-up events on the Russell Glacier in southwest Greenland and analyzed how they induce local melting and ice accelerations.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Beatriz Gill-Olivas, Jon Telling, Mark Skidmore, and Martyn Tranter
Biogeosciences, 20, 929–943, https://doi.org/10.5194/bg-20-929-2023, https://doi.org/10.5194/bg-20-929-2023, 2023
Short summary
Short summary
Microbial ecosystems have been found in all subglacial environments sampled to date. Yet, little is known of the sources of energy and nutrients that sustain these microbial populations. This study shows that crushing of sedimentary rocks, which contain organic carbon, carbonate and sulfide minerals, along with previously weathered silicate minerals, produces a range of compounds and nutrients which can be utilised by the diverse suite of microbes that inhabit glacier beds.
Connor J. Shiggins, James M. Lea, and Stephen Brough
The Cryosphere, 17, 15–32, https://doi.org/10.5194/tc-17-15-2023, https://doi.org/10.5194/tc-17-15-2023, 2023
Short summary
Short summary
Iceberg detection is spatially and temporally limited around the Greenland Ice Sheet. This study presents a new, accessible workflow to automatically detect icebergs from timestamped ArcticDEM strip data. The workflow successfully produces comparable output to manual digitisation, with results revealing new iceberg area-to-volume conversion equations that can be widely applied to datasets where only iceberg outlines can be extracted (e.g. optical and SAR imagery).
Dominic A. Hodgson, Tom A. Jordan, Neil Ross, Teal R. Riley, and Peter T. Fretwell
The Cryosphere, 16, 4797–4809, https://doi.org/10.5194/tc-16-4797-2022, https://doi.org/10.5194/tc-16-4797-2022, 2022
Short summary
Short summary
This paper describes the drainage (and refill) of a subglacial lake on the Antarctic Peninsula resulting in the collapse of the overlying ice into the newly formed subglacial cavity. It provides evidence of an active hydrological network under the region's glaciers and close coupling between surface climate processes and the base of the ice.
Sophie Goliber, Taryn Black, Ginny Catania, James M. Lea, Helene Olsen, Daniel Cheng, Suzanne Bevan, Anders Bjørk, Charlie Bunce, Stephen Brough, J. Rachel Carr, Tom Cowton, Alex Gardner, Dominik Fahrner, Emily Hill, Ian Joughin, Niels J. Korsgaard, Adrian Luckman, Twila Moon, Tavi Murray, Andrew Sole, Michael Wood, and Enze Zhang
The Cryosphere, 16, 3215–3233, https://doi.org/10.5194/tc-16-3215-2022, https://doi.org/10.5194/tc-16-3215-2022, 2022
Short summary
Short summary
Terminus traces have been used to understand how Greenland's glaciers have changed over time; however, manual digitization is time-intensive, and a lack of coordination leads to duplication of efforts. We have compiled a dataset of over 39 000 terminus traces for 278 glaciers for scientific and machine learning applications. We also provide an overview of an updated version of the Google Earth Engine Digitization Tool (GEEDiT), which has been developed specifically for the Greenland Ice Sheet.
Chuanxi Zhao, Wei Yang, Matthew Westoby, Baosheng An, Guangjian Wu, Weicai Wang, Zhongyan Wang, Yongjie Wang, and Stuart Dunning
The Cryosphere, 16, 1333–1340, https://doi.org/10.5194/tc-16-1333-2022, https://doi.org/10.5194/tc-16-1333-2022, 2022
Short summary
Short summary
On 22 March 2021, a ~ 50 Mm 3 ice-rock avalanche occurred from 6500 m a.s.l. in the Sedongpu basin, southeastern Tibet. It caused temporary blockage of the Yarlung Tsangpo river, a major tributary of the Brahmaputra. We utilize field investigations, high-resolution satellite imagery, seismic records, and meteorological data to analyse the evolution of the 2021 event and its impact, discuss potential drivers, and briefly reflect on implications for the sustainable development of the region.
David W. Ashmore, Douglas W. F. Mair, Jonathan E. Higham, Stephen Brough, James M. Lea, and Isabel J. Nias
The Cryosphere, 16, 219–236, https://doi.org/10.5194/tc-16-219-2022, https://doi.org/10.5194/tc-16-219-2022, 2022
Short summary
Short summary
In this paper we explore the use of a transferrable and flexible statistical technique to try and untangle the multiple influences on marine-terminating glacier dynamics, as measured from space. We decompose a satellite-derived ice velocity record into ranked sets of static maps and temporal coefficients. We present evidence that the approach can identify velocity variability mainly driven by changes in terminus position and velocity variation mainly driven by subglacial hydrological processes.
Rachel K. Smedley, David Small, Richard S. Jones, Stephen Brough, Jennifer Bradley, and Geraint T. H. Jenkins
Geochronology, 3, 525–543, https://doi.org/10.5194/gchron-3-525-2021, https://doi.org/10.5194/gchron-3-525-2021, 2021
Short summary
Short summary
We apply new rock luminescence techniques to a well-constrained scenario of the Beinn Alligin rock avalanche, NW Scotland. We measure accurate erosion rates consistent with independently derived rates and reveal a transient state of erosion over the last ~4000 years in the wet, temperate climate of NW Scotland. This study shows that the new luminescence erosion-meter has huge potential for inferring erosion rates on sub-millennial scales, which is currently impossible with existing techniques.
Felipe Napoleoni, Stewart S. R. Jamieson, Neil Ross, Michael J. Bentley, Andrés Rivera, Andrew M. Smith, Martin J. Siegert, Guy J. G. Paxman, Guisella Gacitúa, José A. Uribe, Rodrigo Zamora, Alex M. Brisbourne, and David G. Vaughan
The Cryosphere, 14, 4507–4524, https://doi.org/10.5194/tc-14-4507-2020, https://doi.org/10.5194/tc-14-4507-2020, 2020
Short summary
Short summary
Subglacial water is important for ice sheet dynamics and stability. Despite this, there is a lack of detailed subglacial-water characterisation in West Antarctica (WA). We report 33 new subglacial lakes. Additionally, a new digital elevation model of basal topography was built and used to simulate the subglacial hydrological network in WA. The simulated subglacial hydrological catchments of Pine Island and Thwaites glaciers do not match precisely with their ice surface catchments.
Xiangbin Cui, Hafeez Jeofry, Jamin S. Greenbaum, Jingxue Guo, Lin Li, Laura E. Lindzey, Feras A. Habbal, Wei Wei, Duncan A. Young, Neil Ross, Mathieu Morlighem, Lenneke M. Jong, Jason L. Roberts, Donald D. Blankenship, Sun Bo, and Martin J. Siegert
Earth Syst. Sci. Data, 12, 2765–2774, https://doi.org/10.5194/essd-12-2765-2020, https://doi.org/10.5194/essd-12-2765-2020, 2020
Short summary
Short summary
We present a topographic digital elevation model (DEM) for Princess Elizabeth Land (PEL), East Antarctica. The DEM covers an area of approximately 900 000 km2 and was built from radio-echo sounding data collected in four campaigns since 2015. Previously, to generate the Bedmap2 topographic product, PEL’s bed was characterised from low-resolution satellite gravity data across an otherwise large (>200 km wide) data-free zone.
Cited articles
Akhtar, M., Ahmad, N., and Booij, M. J.: The impact of climate change on the
water resources of Hindukush-Karakorum-Himalaya region under different
glacier coverage scenarios, J. Hydrol., 355, 148–163,
https://doi.org/10.1016/j.jhydrol.2008.03.015, 2008.
Allen, S. K., Gruber, S., and Owens, I. F.: Exploring steep bedrock
permafrost and its relationship with recent slope failures in the southern
alps of New Zealand, Permafr. Periglac. Process., 20, 345–356,
https://doi.org/10.1002/ppp.658, 2009.
Allen, S. K., Cox, S. C., and Owens, I. F.: Rock avalanches and other
landslides in the central Southern Alps of New Zealand: A regional study
considering possible climate change impacts, Landslides, 8, 33–48,
https://doi.org/10.1007/s10346-010-0222-z, 2011.
Anderson, R. S.: A model of ablation-dominated medial moraines and the
generation of debris-mantled glacier snouts, J. Glaciol., 46, 459–469,
https://doi.org/10.3189/172756500781833025, 2000.
Ballantyne, C. K.: A general model of paraglacial landscape response,
Holocene, 12, 371–376, https://doi.org/10.1191/0959683602hl553fa, 2002.
Ballantyne, C. K., Wilson, P., Gheorghiu, D., and Rodés, À.: Enhanced
rock-slope failure following ice-sheet deglaciation: Timing and causes,
Earth Surf. Process. Landforms, 39, 900–913, https://doi.org/10.1002/esp.3495,
2014a.
Ballantyne, C. K., Sandeman, G. F., Stone, J. O., and Wilson, P.: Rock-slope
failure following Late Pleistocene deglaciation on tectonically stable
mountainous terrain, Quaternary Sci. Rev., 86, 144–157,
https://doi.org/10.1016/j.quascirev.2013.12.021, 2014b.
Benn, D. I., Bolch, T., Hands, K., Gulley, J., Luckman, A., Nicholson, L.
I., Quincey, D., Thompson, S., Toumi, R., and Wiseman, S.: Response of
debris-covered glaciers in the Mount Everest region to recent warming, and
implications for outburst flood hazards, Earth-Science Rev., 114,
156–174, https://doi.org/10.1016/j.earscirev.2012.03.008, 2012.
Berthier, E., Schiefer, E., Clarke, G. K. C., Menounos, B., and Rémy, F.:
Contribution of Alaskan glaciers to sea-level rise derived from satellite
imagery, Nat. Geosci., 3, 92–95, https://doi.org/10.1038/ngeo737, 2010.
Bessette-Kirton, E. K. and Coe, J. A.: Inventory of rock avalanches in western
Glacier Bay National Park and Preserve, Alaska, 1984–2016: a baseline data
set for evaluating the impact of climate change on avalanche magnitude,
mobility, and frequency, U.S. Geological Survey data release,
https://doi.org/10.5066/F7C827F8, 2016.
Bessette-Kirton, E. and Coe, J.: A 36-Year Record of Rock Avalanches in the
Saint Elias Mountains of Alaska, With Implications for Future Hazards,
Front. Earth Sci., 8, 293, https://doi.org/10.3389/feart.2020.00293, 2020.
Bhardwaj, A., Joshi, P. K., Snehmani, S., L., Singh, M. K., Singh, S., and
Kumar, R.: Applicability of Landsat 8 data for characterizing glacier facies
and supraglacial debris, Int. J. Appl. Earth Obs. Geoinf., 38, 51–64,
https://doi.org/10.1016/j.jag.2014.12.011, 2015.
Bhutiyani, M. R. and Mahto, R.: Remote-sensing-based study of impact of a
rock avalanche on North Terong Glacier in Karakorum Himalaya, Int. J. Remote
Sens., 39, 8076–8091, https://doi.org/10.1080/01431161.2018.1480073, 2018.
Blöthe, J. H., Korup, O., and Schwanghart, W.: Large landslides lie low:
Excess topography in the Himalaya-Karakoram ranges, Geology, 43,
523–526, https://doi.org/10.1130/G36527.1, 2015.
Burgess, E. W., Forster, R. R., and Larsen, C. F.: Flow velocities of Alaskan
glaciers, Nat. Commun., 4, 2146, https://doi.org/10.1038/ncomms3146, 2013.
Burns, P. and Nolin, A.: Using atmospherically-corrected Landsat imagery to
measure glacier area change in the Cordillera Blanca, Peru from 1987 to
2010, Remote Sens. Environ., 140, 165–178, https://doi.org/10.1016/j.rse.2013.08.026,
2014.
Chander, G., Markham, B. L., and Helder, D. L.: Summary of current
radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1
ALI sensors, Remote Sens. Environ., 113, 893–903,
https://doi.org/10.1016/j.rse.2009.01.007, 2009.
Coe, J. A.: Bellwether sites for evaluating changes in landslide frequency
and magnitude in cryospheric mountainous terrain: a call for systematic,
long-term observations to decipher the impact of climate change, Landslides,
17, 2483–2501, https://doi.org/10.1007/s10346-020-01462-y, 2020.
Coe, J. A., Bessette-Kirton, E. K., and Geertsema, M.: Increasing
rock-avalanche size and mobility in Glacier Bay National Park and Preserve,
Alaska detected from 1984 to 2016 Landsat imagery, Landslides, 15,
393–407, https://doi.org/10.1007/s10346-017-0879-7, 2018.
Deline, P., Hewitt, K., Reznichenko, N., and Shugar, D.: Rock
Avalanches onto Glaciers, in: Landslide Hazards, Risks, and Disasters,
Elsevier, San Diego, CA, 263–319, 2015.
Dufresne, A., Wolken, G. J., Hibert, C., Bessette-Kirton, E. K., Coe, J. A.,
Geertsema, M., and Ekström, G.: The 2016 Lamplugh rock avalanche, Alaska:
deposit structures and emplacement dynamics, Landslides, 16, 1–19,
https://doi.org/10.1007/s10346-019-01225-4, 2019.
Dunning, S. A., Rosser, N. J., McColl, S. T., and Reznichenko, N. V.: Rapid
sequestration of rock avalanche deposits within glaciers, Nat. Commun., 6,
7964, https://doi.org/10.1038/ncomms8964, 2015.
Ekström, G. and Stark, C. P.: Simple scaling of catastrophic landslide
dynamics, Science, 339, 1416–1419,
https://doi.org/10.1126/science.1232887, 2013.
Fyffe, C. L., Brock, B. W., Kirkbride, M. P., Mair, D. W. F., Arnold, N. S.,
Smiraglia, C., Diolaiuti, G., and Diotri, F.: Do debris-covered glaciers
demonstrate distinctive hydrological behaviour compared to clean glaciers?,
J. Hydrol., 570, 584–597, https://doi.org/10.1016/j.jhydrol.2018.12.069, 2019.
Gardner, A. S., Moholdt, G., Scambos, T., Fahnstock, M., Ligtenberg, S., van den Broeke, M., and Nilsson, J.: Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years, The Cryosphere, 12, 521–547, https://doi.org/10.5194/tc-12-521-2018, 2018.
Gardner, A. S., Fahnestock, M. A., and Scambos, T. A.: ITS_LIVE Regional Glacier and Ice Sheet Surface Velocities, National Snow and Ice Data Center, https://doi.org/10.5067/6II6VW8LLWJ7, 2019.
Geertsema, M.: Initial observations of the 11 June 2012 rock/ice
avalanche, Lituya, in: The First Meeting of Cold Region Landslides
Network, Harbin, China, 23–27 July 2012, 1–5, 2012.
Gjermundsen, E. F., Mathieu, R., Kääb, A., Chinn, T., Fitzharris, B.,
and Hagen, J. O.: Assessment of multispectral glacier mapping methods and
derivation of glacier area changes, 1978–2002, in the central Southern Alps,
New Zealand, from ASTER satellite data, field survey and existing inventory
data, J. Glaciol., 57, 667–683, https://doi.org/10.3189/002214311797409749, 2011.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore,
R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone,
Remote Sens. Environ., 202, 18–27, https://doi.org/10.1016/j.rse.2017.06.031, 2017.
Grämiger, L. M., Moore, J. R., Gischig, V. S., Ivy-Ochs, S., and Loew,
S.: Beyond debuttressing: Mechanics of paraglacial rock slope damage during
repeat glacial cycles, J. Geophys. Res.-Earth, 122, 1004–1036,
https://doi.org/10.1002/2016JF003967, 2017.
Hall, D. K., Riggs, G. A., and Salomonson, V. V.: Development of methods for
mapping global snow cover using moderate resolution imaging
spectroradiometer data, Remote Sens. Environ., 54, 127–140,
https://doi.org/10.1016/0034-4257(95)00137-P, 1995.
Herreid, S. and Pellicciotti, F.: The state of rock debris covering Earth's
glaciers, Nat. Geosci., 13, 621–627, https://doi.org/10.1038/s41561-020-0615-0,
2020.
Herreid, S. and Truffer, M.: Automated detection of unstable glacier flow
and a spectrum of speedup behavior in the Alaska Range, J. Geophys. Res.-Earth, 121, 64–81, https://doi.org/10.1002/2015JF003502, 2016.
Hewitt, K.: Quaternary moraines vs catastrophic rock avalanches in the
Karakoram Himalaya, Northern Pakistan, Quat. Res., 51, 220–237,
https://doi.org/10.1006/qres.1999.2033, 1999.
Hewitt, K.: Rock avalanches that travel onto glaciers and related
developments, Karakoram Himalaya, Inner Asia, Geomorphology, 103, 66–79,
https://doi.org/10.1016/j.geomorph.2007.10.017, 2009.
Hossain, M. S., Bujang, J. S., Zakaria, M. H., and Hashim, M.: Assessment of
Landsat 7 Scan Line Corrector-off data gap-filling methods for seagrass
distribution mapping, Int. J. Remote Sens., 36, 1188–1215,
https://doi.org/10.1080/01431161.2015.1007257, 2015.
Housman, I. W., Chastain, R. A., and Finco, M. V.: An evaluation of forest
health insect and disease survey data and satellite-based remote sensing
forest change detection methods: Case studies in the United States, Remote
Sens., 10, 1184, https://doi.org/10.3390/rs10081184, 2018.
Huggel, C., Clague, J. J., and Korup, O.: Is climate change responsible for
changing landslide activity in high mountains?, Earth Surf. Process.
Landforms, 37, 77–91, https://doi.org/10.1002/esp.2223, 2012.
IRIS DMC: Data Services Products: Exotic Seismic Events Catalog,
https://doi.org/10.17611/DP/ESEC.1, 2017.
Jamieson, S. S. R., Ewertowski, M. W., and Evans, D. J. A.: Rapid advance of
two mountain glaciers in response to mine-related debris loading, J.
Geophys. Res.-Earth, 120, 1418–1435, https://doi.org/10.1002/2015JF003504,
2015.
Jarman, D. and Harrison, S.: Rock slope failure in the British mountains,
Geomorphology, 340, 202–233, https://doi.org/10.1016/j.geomorph.2019.03.002, 2019.
Jibson, R. W., Harp, E. L., Schulz, W., and Keefer, D. K.: Large rock
avalanches triggered by the M 7.9 Denali Fault, Alaska, earthquake of 3
November 2002, Eng. Geol., 83, 144–160,
https://doi.org/10.1016/j.enggeo.2005.06.029, 2006.
Keshri, A. K., Shukla, A., and Gupta, R. P.: ASTER ratio indices for
supraglacial terrain mapping, Int. J. Remote Sens., 30, 519–524,
https://doi.org/10.1080/01431160802385459, 2009.
Kirkbride, M. P. and Deline, P.: The formation of supraglacial debris covers
by primary dispersal from transverse englacial debris bands, Earth Surf.
Process. Landforms, 38, 1779–1792, https://doi.org/10.1002/esp.3416, 2013.
Korup, O. and Clague, J. J.: Natural hazards, extreme events, and mountain
topography, Quaternary Sci. Rev., 28, 977–990,
https://doi.org/10.1016/j.quascirev.2009.02.021, 2009.
Kraaijenbrink, P. D. A., Bierkens, M. F. P., Lutz, A. F., and Immerzeel, W.
W.: Impact of a global temperature rise of 1.5 degrees Celsius on Asia's
glaciers, Nature, 549, 257–260, https://doi.org/10.1038/nature23878, 2017.
Krautblatter, M., Funk, D., and Günzel, F. K.: Why permafrost rocks
become unstable: A rock-ice-mechanical model in time and space, Earth Surf.
Process. Landforms, 38, 876–887, https://doi.org/10.1002/esp.3374, 2013.
Lea, J. M.: The Google Earth Engine Digitisation Tool (GEEDiT) and the Margin change Quantification Tool (MaQiT) – simple tools for the rapid mapping and quantification of changing Earth surface margins, Earth Surf. Dynam., 6, 551–561, https://doi.org/10.5194/esurf-6-551-2018, 2018.
Mackay, S. L., Marchant, D. R., Lamp, J. L., and Head, J. W.: Cold-based
debris-covered glaciers: Evaluating their potential as climate archives
through studies of ground-penetrating radar and surface morphology, J.
Geophys. Res.-Earth, 119, 2505–2540, https://doi.org/10.1002/2014JF003178,
2014.
Malamud, B. D., Turcotte, D. L., Guzzetti, F., and Reichenbach, P.: Landslide
inventories and their statistical properties, Earth Surf. Process.
Landforms, 29, 687–711, https://doi.org/10.1002/esp.1064, 2004.
Markham, B. L., Storey, J. C., Williams, D. L., and Irons, J. R.: Landsat
sensor performance: History and current status, IEEE Trans. Geosci. Remote
Sens., 42, 2691–2694, https://doi.org/10.1109/TGRS.2004.840720, 2004.
Mihalcea, C., Mayer, C., Diolaiuti, G., D'Agata, C., Smiraglia, C.,
Lambrecht, A., Vuillermoz, E., and Tartari, G.: Spatial distribution of
debris thickness and melting from remote-sensing and meteorological data, at
debris-covered Baltoro glacier, Karakoram, Pakistan, Ann.
Glaciol., 48, 49–57, 2008a.
Mihalcea, C., Brock, B. W., Diolaiuti, G., D'Agata, C., Citterio, M.,
Kirkbride, M. P., Cutler, M. E. J., and Smiraglia, C.: Using ASTER satellite
and ground-based surface temperature measurements to derive supraglacial
debris cover and thickness patterns on Miage Glacier (Mont Blanc Massif,
Italy), Cold Reg. Sci. Technol., 52, 341–354,
https://doi.org/10.1016/j.coldregions.2007.03.004, 2008b.
Nicholson, L. and Benn, D. I.: Calculating ice melt beneath a debris layer
using meteorological data, J. Glaciol., 52, 463–470,
https://doi.org/10.3189/172756506781828584, 2006.
Østrem, G.: Ice Melting under a Thin Layer of Moraine, and the Existence
of Ice Cores in Moraine Ridges, Geogr. Ann., 41, 228–230, 1959.
Pánek, T., Mentlík, P., Engel, Z., Braucher, R., and Zondervan, A.:
Late Quaternary sackungen in the highest mountains of the Carpathians, Quaternary
Sci. Rev., 159, 47–62, https://doi.org/10.1016/j.quascirev.2017.01.008, 2017.
Pfeffer, W. T., Arendt, A. A., Bliss, A., Bolch, T., Cogley, J. G., Gardner,
A. S., Hagen, J.-O., Hock, R., Kaser, G., Kienholz, C., Miles, E. S.,
Moholdt, G., Mölg, N., Paul, F., Radić, V., Rastner, P., Raup, B.
H., Rich, J., and Sharp, M. J.: The Randolph Glacier Inventory: a globally
complete inventory of glaciers, J. Glaciol., 60, 537–552,
https://doi.org/10.3189/2014jog13j176, 2014.
Porter, P. R., Vatne, G., Ng, F., and Irvine-Fynn, T. D. L.: Ice-marginal
sediment delivery to the surface of a high-arctic glacier: Austre
brøggerbreen, svalbard, Geogr. Ann. Ser. A Phys. Geogr., 92, 437–449,
https://doi.org/10.1111/j.1468-0459.2010.00406.x, 2010.
Racoviteanu, A. E., Arnaud, Y., Williams, M. W., and Ordoñez, J.: Decadal
changes in glacier parameters in the Cordillera Blanca, Peru, derived from
remote sensing, J. Glaciol., 54, 499–510,
https://doi.org/10.3189/002214308785836922, 2008.
Reznichenko, N., Davies, T., Shulmeister, J., and McSaveney, M.: Effects of
debris on ice-surface melting rates: An experimental study, J. Glaciol.,
56, 384–394, https://doi.org/10.3189/002214310792447725, 2010.
Reznichenko, N. V., Davies, T. R. H., and Alexander, D. J.: Effects of rock
avalanches on glacier behaviour and moraine formation, Geomorphology,
132, 327–338, https://doi.org/10.1016/j.geomorph.2011.05.019, 2011.
RGI Consortium: Randolph Glacier Inventory – A Dataset of Global Glacier
Outlines: Version 6.0: Technical Report, Global Land Ice Measurements from
Space, Digital Media, Colorado, USA, https://doi.org/10.7265/N5-RGI-60, 2017.
Sam, L., Bhardwaj, A., Singh, S., and Kumar, R.: Remote sensing flow velocity
of debris-covered glaciers using Landsat 8 data, Prog. Phys. Geogr., 40,
305–321, https://doi.org/10.1177/0309133315593894, 2015.
Sanhueza-Pino, K., Korup, O., Hetzel, R., Munack, H., Weidinger, J. T.,
Dunning, S., Ormukov, C., and Kubik, P. W.: Glacial advances constrained by
10Be exposure dating of bedrock landslides, Kyrgyz Tien Shan, Quat. Res.,
76, 295–304, https://doi.org/10.1016/j.yqres.2011.06.013, 2011.
Scherler, D., Bookhagen, B., and Strecker, M. R.: Hillslope-glacier coupling:
The interplay of topography and glacial dynamics in High Asia, J. Geophys.
Res.-Earth, 116, F02019, https://doi.org/10.1029/2010JF001751, 2011a.
Scherler, D., Bookhagen, B., and Strecker, M. R.: Spatially variable response
of Himalayan glaciers to climate change affected by debris cover, Nat.
Geosci., 4, 156–159, https://doi.org/10.1038/ngeo1068, 2011b.
Scherler, D., Wulf, H., and Gorelick, N.: Global Assessment of Supraglacial
Debris-Cover Extents, Geophys. Res. Lett., 45, 798–805,
https://doi.org/10.1029/2018GL080158, 2018.
Shugar, D. H. and Clague, J. J.: The sedimentology and geomorphology of rock
avalanche deposits on glaciers, Sedimentology, 58, 1762–1783,
https://doi.org/10.1111/j.1365-3091.2011.01238.x, 2011.
Shugar, D. H., Rabus, B. T., Clague, J. J., and Capps, D. M.: The response of
Black Rapids Glacier, Alaska, to the Denali earthquake rock avalanches, J.
Geophys. Res.-Earth, 117, F01006, https://doi.org/10.1029/2011JF002011, 2012.
Shulmeister, J., Davies, T. R., Evans, D. J. A., Hyatt, O. M., and Tovar, D.
S.: Catastrophic landslides, glacier behaviour and moraine formation – A
view from an active plate margin, Quaternary Sci. Rev., 28, 1085–1096,
https://doi.org/10.1016/j.quascirev.2008.11.015, 2009.
Smith, W. D., Dunning, S. A., Brough, S., Ross, N., and Telling, J.: willsmith140/GERALDINE: GERALDINE (Google earth Engine supRaglAciaL Debris INput dEtector) (Version 1.1), Zenodo, https://doi.org/10.5281/zenodo.3524414, 2020.
Sosio, R., Crosta, G. B., Chen, J. H., and Hungr, O.: Modelling rock
avalanche propagation onto glaciers, Quaternary Sci. Rev., 47, 23–40,
https://doi.org/10.1016/j.quascirev.2012.05.010, 2012.
Tielidze, L. G., Bolch, T., Wheate, R. D., Kutuzov, S. S., Lavrentiev, I. I., and Zemp, M.: Supra-glacial debris cover changes in the Greater Caucasus from 1986 to 2014, The Cryosphere, 14, 585–598, https://doi.org/10.5194/tc-14-585-2020, 2020.
Tovar, D. S., Shulmeister, J., and Davies, T. R.: Evidence for a landslide
origin of New Zealand's Waiho Loop moraine, Nat. Geosci., 1, 524–526,
https://doi.org/10.1038/ngeo249, 2008.
Turnbull, J. M. and Davies, T. R. H.: A mass movement origin for cirques,
Earth Surf. Process. Landforms, 31, 1129–1148, https://doi.org/10.1002/esp.1324,
2006.
Uhlmann, M., Korup, O., Huggel, C., Fischer, L., and Kargel, J. S.:
Supra-glacial deposition and flux of catastrophic rock-slope failure debris,
south-central Alaska, Earth Surf. Process. Landforms, 38, 675–682,
https://doi.org/10.1002/esp.3311, 2013.
Vacco, D. A., Alley, R. B., and Pollard, D.: Glacial advance and stagnation
caused by rock avalanches, Earth Planet. Sci. Lett., 294, 123–130,
https://doi.org/10.1016/j.epsl.2010.03.019, 2010.
van Woerkom, T., Steiner, J. F., Kraaijenbrink, P. D. A., Miles, E. S., and Immerzeel, W. W.: Sediment supply from lateral moraines to a debris-covered glacier in the Himalaya, Earth Surf. Dynam., 7, 411–427, https://doi.org/10.5194/esurf-7-411-2019, 2019.
Wirbel, A., Jarosch, A. H., and Nicholson, L.: Modelling debris transport within glaciers by advection in a full-Stokes ice flow model, The Cryosphere, 12, 189–204, https://doi.org/10.5194/tc-12-189-2018, 2018.
Wulder, M. A., Loveland, T. R., Roy, D. P., Crawford, C. J., Masek, J. G.,
Woodcock, C. E., Allen, R. G., Anderson, M. C., Belward, A. S., Cohen, W.
B., Dwyer, J., Erb, A., Gao, F., Griffiths, P., Helder, D., Hermosilla, T.,
Hipple, J. D., Hostert, P., Hughes, M. J., Huntington, J., Johnson, D. M.,
Kennedy, R., Kilic, A., Li, Z., Lymburner, L., McCorkel, J., Pahlevan, N.,
Scambos, T. A., Schaaf, C., Schott, J. R., Sheng, Y., Storey, J., Vermote,
E., Vogelmann, J., White, J. C., Wynne, R. H., and Zhu, Z.: Current status of
Landsat program, science, and applications, Remote Sens. Environ., 225,
127–147, https://doi.org/10.1016/j.rse.2019.02.015, 2019.
Zhang, J., Jia, L., Menenti, M., and Hu, G.: Glacier Facies Mapping Using a
Machine-Learning Algorithm: The Parlung Zangbo Basin Case Study, Remote
Sens., 11, 452, https://doi.org/10.3390/rs11040452, 2019.
Short summary
Glacial landslides are difficult to detect and likely underestimated due to rapid covering or dispersal. Without improved detection rates we cannot constrain their impact on glacial dynamics or their potential climatically driven increases in occurrence. Here we present a new open-access tool (GERALDINE) that helps a user detect 92 % of these events over the past 38 years on a global scale. We demonstrate its ability by identifying two new, large glacial landslides in the Hayes Range, Alaska.
Glacial landslides are difficult to detect and likely underestimated due to rapid covering or...