Articles | Volume 8, issue 2
https://doi.org/10.5194/esurf-8-379-2020
https://doi.org/10.5194/esurf-8-379-2020
Short communication
 | 
26 May 2020
Short communication |  | 26 May 2020

Short communication: Landlab v2.0: a software package for Earth surface dynamics

Katherine R. Barnhart, Eric W. H. Hutton, Gregory E. Tucker, Nicole M. Gasparini, Erkan Istanbulluoglu, Daniel E. J. Hobley, Nathan J. Lyons, Margaux Mouchene, Sai Siddhartha Nudurupati, Jordan M. Adams, and Christina Bandaragoda

Related authors

Steady-state forms of channel profiles shaped by debris flow and fluvial processes
Luke A. McGuire, Scott W. McCoy, Odin Marc, William Struble, and Katherine R. Barnhart
Earth Surf. Dynam., 11, 1117–1143, https://doi.org/10.5194/esurf-11-1117-2023,https://doi.org/10.5194/esurf-11-1117-2023, 2023
Short summary
Evaluating Post-Wildfire Debris Flow Rainfall Thresholds and Volume Models at the 2020 Grizzly Creek Fire in Glenwood Canyon, Colorado, USA
Francis K. Rengers, Samuel Bower, Andrew Knapp, Jason W. Kean, Danielle W. vonLembke, Matthew A. Thomas, Jaime Kostelnik, Katherine R. Barnhart, Matthew Bethel, Joseph E. Gartner, Madeline Hille, Dennis M. Staley, Justin Anderson, Elizabeth K. Roberts, Stephen B. DeLong, Belize Lane, Paxton Ridgway, and Brendan P. Murphy
EGUsphere, https://doi.org/10.5194/egusphere-2023-2063,https://doi.org/10.5194/egusphere-2023-2063, 2023
Short summary
Evaluation of debris-flow building damage forecasts
Katherine R. Barnhart, Christopher R. Miller, Francis K. Rengers, and Jason W. Kean
EGUsphere, https://doi.org/10.5194/egusphere-2023-1892,https://doi.org/10.5194/egusphere-2023-1892, 2023
Short summary
Probabilistic assessment of postfire debris-flow inundation in response to forecast rainfall
Alexander B. Prescott, Luke A. McGuire, Kwang-Sung Jun, Katherine R. Barnhart, and Nina S. Oakley
EGUsphere, https://doi.org/10.5194/egusphere-2023-1931,https://doi.org/10.5194/egusphere-2023-1931, 2023
Short summary
The influence of large woody debris on post-wildfire debris flow sediment storage
Francis K. Rengers, Luke A. McGuire, Katherine R. Barnhart, Ann M. Youberg, Daniel Cadol, Alexander N. Gorr, Olivia J. Hoch, Rebecca Beers, and Jason W. Kean
Nat. Hazards Earth Syst. Sci., 23, 2075–2088, https://doi.org/10.5194/nhess-23-2075-2023,https://doi.org/10.5194/nhess-23-2075-2023, 2023
Short summary

Related subject area

Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Downstream rounding rate of pebbles in the Himalaya
Prakash Pokhrel, Mikael Attal, Hugh D. Sinclair, Simon M. Mudd, and Mark Naylor
Earth Surf. Dynam., 12, 515–536, https://doi.org/10.5194/esurf-12-515-2024,https://doi.org/10.5194/esurf-12-515-2024, 2024
Short summary
A physics-based model for fluvial valley width
Jens Martin Turowski, Aaron Bufe, and Stefanie Tofelde
Earth Surf. Dynam., 12, 493–514, https://doi.org/10.5194/esurf-12-493-2024,https://doi.org/10.5194/esurf-12-493-2024, 2024
Short summary
Implications for the resilience of modern coastal systems derived from mesoscale barrier dynamics at Fire Island, New York
Daniel J. Ciarletta, Jennifer L. Miselis, Julie C. Bernier, and Arnell S. Forde
Earth Surf. Dynam., 12, 449–475, https://doi.org/10.5194/esurf-12-449-2024,https://doi.org/10.5194/esurf-12-449-2024, 2024
Short summary
Quantifying the migration rate of drainage divides from high-resolution topographic data
Chao Zhou, Xibin Tan, Yiduo Liu, and Feng Shi
Earth Surf. Dynam., 12, 433–448, https://doi.org/10.5194/esurf-12-433-2024,https://doi.org/10.5194/esurf-12-433-2024, 2024
Short summary
Long-term monitoring (1953–2019) of geomorphologically active sections of Little Ice Age lateral moraines in the context of changing meteorological conditions
Moritz Altmann, Madlene Pfeiffer, Florian Haas, Jakob Rom, Fabian Fleischer, Tobias Heckmann, Livia Piermattei, Michael Wimmer, Lukas Braun, Manuel Stark, Sarah Betz-Nutz, and Michael Becht
Earth Surf. Dynam., 12, 399–431, https://doi.org/10.5194/esurf-12-399-2024,https://doi.org/10.5194/esurf-12-399-2024, 2024
Short summary

Cited articles

Adams, J. M., Gasparini, N. M., Hobley, D. E. J., Tucker, G. E., Hutton, E. W. H., Nudurupati, S. S., and Istanbulluoglu, E.: The Landlab v1.0 OverlandFlow component: a Python tool for computing shallow-water flow across watersheds, Geosci. Model Dev., 10, 1645–1663, https://doi.org/10.5194/gmd-10-1645-2017, 2017. a
Adorf, C. S., Ramasubramani, V., Anderson, J. A., and Glotzer, S. C.: How to Professionally Develop Reusable Scientific Software – And When Not To, Comput. Sci. Eng., 21, 66–79, https://doi.org/10.1109/mcse.2018.2882355, 2019. a
Ahnert, F.: Brief description of a comprehensive three-dimensional process-response model of landform development, Z. Geomorphol. Suppl. Band, 25, 29–49, 1976. a
Albert, J. S., Schoolmaster Jr., D. R., Tagliacollo, V., and Duke-Sylvester, S. M.: Barrier Displacement on a Neutral Landscape: Toward a Theory of Continental Biogeography, System. Biol., 66, 167–182, https://doi.org/10.1093/sysbio/syw080, 2016. a
Armstrong, A. C.: A three dimensional simulation of slope forms, Z. Geomorphol., 25, 20–28, 1976. a
Download
Short summary
Landlab is a Python package to support the creation of numerical models in Earth surface dynamics. Since the release of the 1.0 version in 2017, Landlab has grown and evolved: it contains 31 new process components, a refactored model grid, and additional utilities. This contribution describes the new elements of Landlab, discusses why certain backward-compatiblity-breaking changes were made, and reflects on the process of community open-source software development.