Articles | Volume 8, issue 3
https://doi.org/10.5194/esurf-8-825-2020
https://doi.org/10.5194/esurf-8-825-2020
Research article
 | 
29 Sep 2020
Research article |  | 29 Sep 2020

A bed load transport equation based on the spatial distribution of shear stress – Oak Creek revisited

Angel Monsalve, Catalina Segura, Nicole Hucke, and Scott Katz

Related authors

RiverBedDynamics v1.0: A Landlab component for computing two-dimensional sediment transport and river bed evolution
Angel D. Monsalve, Samuel R. Anderson, Nicole M. Gasparini, and Elowyn M. Yager
EGUsphere, https://doi.org/10.5194/egusphere-2024-3390,https://doi.org/10.5194/egusphere-2024-3390, 2024
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary

Related subject area

Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Automatic detection of floating instream large wood in videos using deep learning
Janbert Aarnink, Tom Beucler, Marceline Vuaridel, and Virginia Ruiz-Villanueva
Earth Surf. Dynam., 13, 167–189, https://doi.org/10.5194/esurf-13-167-2025,https://doi.org/10.5194/esurf-13-167-2025, 2025
Short summary
Investigating uncertainty and parameter sensitivity in bedform analysis by using a Monte Carlo approach
Julius Reich and Axel Winterscheid
Earth Surf. Dynam., 13, 191–217, https://doi.org/10.5194/esurf-13-191-2025,https://doi.org/10.5194/esurf-13-191-2025, 2025
Short summary
Geomorphic imprint of high-mountain floods: insights from the 2022 hydrological extreme across the upper Indus River catchment in the northwestern Himalayas
Abhishek Kashyap, Kristen L. Cook, and Mukunda Dev Behera
Earth Surf. Dynam., 13, 147–166, https://doi.org/10.5194/esurf-13-147-2025,https://doi.org/10.5194/esurf-13-147-2025, 2025
Short summary
A numerical model for duricrust formation by water table fluctuations
Caroline Fenske, Jean Braun, François Guillocheau, and Cécile Robin
Earth Surf. Dynam., 13, 119–146, https://doi.org/10.5194/esurf-13-119-2025,https://doi.org/10.5194/esurf-13-119-2025, 2025
Short summary
Width evolution of channel belts as a random walk
Jens M. Turowski, Fergus McNab, Aaron Bufe, and Stefanie Tofelde
Earth Surf. Dynam., 13, 97–117, https://doi.org/10.5194/esurf-13-97-2025,https://doi.org/10.5194/esurf-13-97-2025, 2025
Short summary

Cited articles

Barry, J. J., Buffington, J. M., and King, J. G.: A general power equation for predicting bed load transport rates in gravel bed rivers, Water Resour. Res., 40, 1–22, https://doi.org/10.1029/2004WR003190, 2004. 
Barton, G. J., McDonald, R. R., Nelson, J. M., and Dinehart, R. R.: Simulation of flow and sediment mobility using a multidimensional flow model for the white sturgeon critical-habitat reach, Kootenai River near Bonners Ferry, Idaho, US Geological Survey Scientific Investigations Report 2005-5230, US Geological Survey, Reston, Virginia, p. 54, 2005. 
Beschta, R. L.: Increased bag size improves Helley-Smith bed load sampler for use in streams with high sand and organic matter transport, in: Erosion and sediment transport measurement, Proceedings of the Florence symposium IAHS, June 1981, Florence, 17–25, 1981. 
Bevington, P. R. and Robinson, D. K.: Data reduction and error analysis for the physical sciences, 3rd Edition, McGraw-Hill, New York, NY, USA, 2003. 
Bradley, D. N. and Tucker, G. E.: Measuring gravel transport and dispersion in a mountain river using passive radio tracers, Earth Surf. Proc. Land., 37, 1034–1045, https://doi.org/10.1002/esp.3223, 2012. 
Download
Short summary
Part of the inaccuracies when estimating bed load transport in gravel-bed rivers is because we are not considering the wide distributions of shear stress in these systems. We modified a subsurface-based bed load transport equation to include these distributions. By doing so, our approach accurately predicts bed load transport rates when the pavement layer is still present, while the original one predicts zero transport. For high flows, our method had similar performance to the original equation.
Share