Articles | Volume 10, issue 6
https://doi.org/10.5194/esurf-10-1233-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-10-1233-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Combining seismic signal dynamic inversion and numerical modeling improves landslide process reconstruction
Key Laboratory of High-Speed Railway Engineering, MOE/School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
Institute of Geographic Sciences and Natural Resources Research,
Chinese Academy of Sciences, Beijing 100101, China
Yifei Cui
CORRESPONDING AUTHOR
State Key Laboratory of Hydroscience and Engineering, Tsinghua
University, Beijing 100084, China
Xinghui Huang
China Earthquake Networks Center, Beijing 100045, China
Jiaojiao Zhou
Key Laboratory of High-Speed Railway Engineering, MOE/School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
Wengang Zhang
School of Civil Engineering, Chongqing University, Chongqing
400045, China
Shuyao Yin
Key Laboratory of High-Speed Railway Engineering, MOE/School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
State Key Laboratory of Hydroscience and Engineering, Tsinghua
University, Beijing 100084, China
Sheng Hu
College of Urban and Environmental Sciences, Northwest University,
Xi'an 710127, China
Related authors
Yan Yan, Cheng Zeng, Renhe Wang, Yifei Cui, Sheng Hu, Xinglu Wang, and Hui Tang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2977, https://doi.org/10.5194/egusphere-2024-2977, 2024
Preprint archived
Short summary
Short summary
Debris flow monitoring and early warning is one of the most effective means of disaster prevention. We hope to provide a simple, economical and practical monitoring method for debris flow monitoring and analysis by combining seismic signals and infrared images. This method provides a basis for real-time monitoring, analysis, early warning and hazard assessment of debris flows based on seismic signals.
Yan Yan, Cheng Zeng, Yifei Cui, Sheng Hu, Xinglu Wang, and Hui Tang
EGUsphere, https://doi.org/10.5194/egusphere-2023-2015, https://doi.org/10.5194/egusphere-2023-2015, 2023
Preprint archived
Short summary
Short summary
We aim to explore the basic parameters, development process, and magnitude of debris flows based on seismic signal analysis combined with other information recorded in real time during the formation and development of three debris flows in Wenchuan, China. The study provides a theoretical basis and a case study exemplar for the reconstruction of the debris flow process and peak velocity estimation using debris flow seismology.
Longjiang Xie, Yuwei Wu, Ninglian Wang, Anan Chen, Shiqiang Zhang, and Sheng Hu
EGUsphere, https://doi.org/10.5194/egusphere-2025-2940, https://doi.org/10.5194/egusphere-2025-2940, 2025
Short summary
Short summary
Estimating meltwater runoff from mountain glaciers is challenging due to harsh conditions and uncertainties in glacier runoff models. Using high-resolution unmanned aerial vehicle data, we extracted the complete supraglacial stream network on Qiyi Glacier (Tibetan Plateau) and its geometric parameters to build regression models estimating annual meltwater discharge with high accuracy. These methods show potential for large-scale glacier runoff estimation with improving remote sensing resolution.
Yan Yan, Cheng Zeng, Renhe Wang, Yifei Cui, Sheng Hu, Xinglu Wang, and Hui Tang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2977, https://doi.org/10.5194/egusphere-2024-2977, 2024
Preprint archived
Short summary
Short summary
Debris flow monitoring and early warning is one of the most effective means of disaster prevention. We hope to provide a simple, economical and practical monitoring method for debris flow monitoring and analysis by combining seismic signals and infrared images. This method provides a basis for real-time monitoring, analysis, early warning and hazard assessment of debris flows based on seismic signals.
Yan Yan, Cheng Zeng, Yifei Cui, Sheng Hu, Xinglu Wang, and Hui Tang
EGUsphere, https://doi.org/10.5194/egusphere-2023-2015, https://doi.org/10.5194/egusphere-2023-2015, 2023
Preprint archived
Short summary
Short summary
We aim to explore the basic parameters, development process, and magnitude of debris flows based on seismic signal analysis combined with other information recorded in real time during the formation and development of three debris flows in Wenchuan, China. The study provides a theoretical basis and a case study exemplar for the reconstruction of the debris flow process and peak velocity estimation using debris flow seismology.
Cited articles
Allstadt, K.: Extracting source characteristics and dynamics of the August
2010 Mount Meager landslide from broadband seismograms, J. Geophys. Res.-Earth, 118, 1472–1490, https://doi.org/10.1002/jgrf.20110, 2013.
An, H. C., Ouyang, C. J., Zhao, C., and Zhao, W.: Landslide dynamic process
and parameter sensitivity analysis by discrete element method: the case of
Turnoff Creek rock avalanche, J. Mt. Sci., 17, 1581–1595,
https://doi.org/110.1007/s11629-020-5993-7, 2020.
An, H. C., Ouyang, C. J., and Zhou, S.: Dynamic process analysis of the Baige
landslide by the combination of DEM and long-period seismic waves,
Landslides, 18, 1625–1639, https://doi.org/10.1007/s10346-020-01595-0, 2021.
Brodsky, E. E., Gordeev, E., and Kanamori, H.: Landslide basal friction as
measured by seismic waves, Geophys. Res. Lett., 30, 2236,
https://doi.org/10.1029/2003GL018485, 2003.
Chao, W. A., Zhao, L., Chen, S. C., Wu, Y. M., Chen, C. H., and Huang, H.
H.: Seismology-based early identification of dam-formation landquake events,
Sci. Rep., 6, 19259, https://doi.org/10.1038/srep19259, 2016.
Chen, C. H., Chao, W. A., Wu, Y. M., Zhao, L., Chen, Y. G., Ho, W. Y., Lin,
T. L., Kuo, K. H., and Chang, J. M.: A seismological study of landquakes
using a real-time broad-band seismic network, Geophys. J. Int., 194, 885–898, https://doi.org/10.1093/gji/ggt121, 2013.
Cui, Y., Fang, F., Li, Y., and Liu, H.: Assessing effectiveness of a
dual-barrier system for mitigating granular flow hazards through DEM-DNN
framework, Eng. Geol., 306, 106742, https://doi.org/10.1016/j.enggeo.2022.106742, 2022.
Dahlen, F. A.: Single-force representation of shallow landslide sources, B.
Seismol. Soc. Am., 83, 130–143, https://doi.org/10.1785/BSSA0830010130, 1993.
Dammeier, F., Moore, J. R., Hammer, C., Haslinger, F., and Loew, S.: Automatic detection of alpine rockslides in continuous seismic data using
hidden Markov models, J. Geophys. Res.-Earth, 121, 351–371,
https://doi.org/10.1002/2015jf003647, 2016.
Darlington, W. J., Ranjith, P. G., and Choi, S. K.: The Effect of Specimen Size on Strength and Other Properties in Laboratory Testing of Rock and Rock-Like Cementitious Brittle Materials, Rock Mech. Rock Eng., 44, 513–529, https://doi.org/10.1007/s00603-011-0161-6, 2011.
Deng, J. J., Gao, Y. J., Yu, Z. Q., and Xie, H. P.: Analysis on the Formation Mechanism and Process of Baige Landslides Damming the Upper Reach of Jinsha River,China, Adv. Eng. Sci., 51, 9–16, https://doi.org/10.15961/j.jsuese.201801438, 2019.
Ekström, G. and Stark, C. P.: Simple scaling of catastrophic landslide
dynamics, Science, 339, 1416–1419, https://doi.org/10.1126/science.1232887, 2013.
Fan, X., Yang, F., Subramanian, S. S., Xu, Q., Feng, Z., Mavrouli, O., Peng,
M., Ouyang, C., Jansen, D., and Huang, R.: Prediction of a multi-hazard
chain by an integrated numerical simulation approach: the Baige landslide,
Jinsha River, China, Landslides, 17, 147–164, https://doi.org/10.1007/s10346-019-01313-5, 2019a.
Fan, X., Xu, Q., Liu, J., Subramanian, S. S., He, C., Zhu, X., and Zhou, L.:
Successful early warning and emergency response of a disastrous rockslide in
Guizhou province, China, Landslides, 16, 2445–2457,
https://doi.org/10.1007/s10346-019-01269-6, 2019b.
Fang, J., Cui, Y., Li, X., and Nie, J.: A new insight into the dynamic impact
https://doi.org/10.1016/j.compgeo.2022.104790, 2022.
Favreau, P., Mangeney, A., Lucas, A., Crosta, G., and Bouchut, F.: Numerical
modeling of landquakes, Geophys. Res. Lett., 37, L15305, https://doi.org/10.1029/2010gl043512, 2010.
Feng, Z.: The seismic signatures of the 2009 Shiaolin landslide in Taiwan,
Nat. Hazards Earth Syst. Sci., 11, 1559–1569, https://doi.org/10.5194/nhess-11-1559-2011, 2011.
Feng, Z. Y., Lo, C. M., and Lin, Q. F.: The characteristics of the seismic
signals induced by landslides using a coupling of discrete element and
finite difference methods, Landslides, 14, 661–674,
https://doi.org/10.1007/s10346-016-0714-6, 2016.
Froude, M. J. and Petley, D. N.: Global fatal landslide occurrence from 2004 to 2016, Nat. Hazards Earth Syst. Sci., 18, 2161–2181,
https://doi.org/10.5194/nhess-18-2161-2018, 2018.
Fuchs, F., Lenhardt, W., and Bokelmann, G.: Seismic detection of rockslides
at regional scale: examples from the Eastern Alps and feasibility of
kurtosis-based event location, Earth Surf. Dynam., 6, 955–970,
https://doi.org/10.5194/esurf-6-955-2018, 2018.
Fukao, Y.: Single-force representation of earthquakes due to landslides or
the collapse of caverns, Geophys. J. Int., 122, 243–248,
https://doi.org/10.1111/j.1365-246X.1995.tb03551.x, 1995.
Gualtieri, L. and Ekström, G.: Broad-band seismic analysis and modeling
of the 2015 Taan Fjord, Alaska landslide using Instaseis, Geophys. J. Int.,
213, 1912–1923, https://doi.org/10.1093/gji/ggy086, 2018.
Hasegawa, H. S. and Kanamori, H.: Source mechanism of the magnitude 7.2 Grand Banks earthquake of November 1929: Double couple or submarine landslide?, Bull. Seismol. Soc. Am., 77, 1984–2004, 1987.
Helmstetter, A. and Garambois, S.: Seismic monitoring of Séchilienne
rockslide (French Alps): Analysis of seismic signals and their correlation
with rainfall, J. Geophys. Res., 115, F03016, https://doi.org/10.1029/2009jf001532, 2010.
Hibert, C., Ekström, G., and Stark, C. P.: Dynamics of the Bingham Canyon Mine landslides from seismic signal analysis, Geophys. Res. Lett., 41, 4535–4541, https://doi.org/10.1002/2014GL060592, 2014.
Hibert, C., Stark, C. P., and Ekström, G.: Dynamics of the Oso-Steelhead
landslide from broadband seismic analysis, Nat. Hazards Earth Syst. Sci.,
15, 1265–1273, https://doi.org/10.5194/nhess-15-1265-2015, 2015.
Jiang, Y., Wang, G., and Kamai, T.: Fast shear behavior of granular materials in ring-shear tests and implications for rapid landslides, Acta Geotech., 12, 645–655, https://doi.org/10.1007/s11440-016-0508-y, 2016.
Kanamori, H. and Given, J. W.: Analysis of long-period seismic waves excited
by the May 18, 1980, eruption of Mount St. Helens – A terrestrial monopole?,
J. Geophys. Res.-Solid, 87, 5422–5432, https://doi.org/10.1029/JB087iB07p05422, 1982.
Kanamori, H., Given, J. W., and Lay, T.: Analysis of seismic body waves excited by the Mount St. Helens eruption of May 18, 1980, J. Geophys. Res.-Solid, 89, 1856–1866, https://doi.org/10.1029/JB089iB03p01856, 1984.
Kao, H., Kan, C. W., Chen, R. Y., Chang, C. H., Rosenberger, A., Shin, T. C., Leu, P. L., Kuo, K. W., and Liang, W. T.: Locating, monitoring, and characterizing typhoon-induced landslides with real-time seismic signals,
Landslides, 9, 557–563, https://doi.org/10.1007/s10346-012-0322-z, 2012.
Li, C. Y., Wang, X. C., He, C. Z., Wu, X., Kong, Z. Y., and Li, X. L.: China
National Digital Geological Map (Public Version at 1:200 000 Scale) Spatial Database (V1), Development and Research Center of China Geological Survey; China Geological Survey (producer), 1957, National Geological Archives of China (distributor), https://doi.org/10.23650/data.A.2019.NGA120157.K1.1.1.V1, 2019.
Li, W., Chen, Y., Liu, F., Yang, H., Liu, J., and Fu, B.: Chain-style
landslide hazardous process: Constraints from seismic signals analysis of the 2017 Xinmo landslide, SW China, J. Geophys. Res.-Solid, 124, 2025–2037, https://doi.org/10.1029/2018JB016433, 2019.
Li, Z., Huang, X., Xu, Q., Yu, D., Fan, J., and Qiao, X.: Dynamics of the
Wulong landslide revealed by broadband seismic records, Earth Planets Space, 69, 27, https://doi.org/10.1186/s40623-017-0610-x, 2017.
Li, Z., Huang, X., Yu, D., Su, J., and Xu, Q.: Broadband-seismic analysis of
a massive landslide in southwestern China: Dynamics and fragmentation
implications, Geomorphology, 336, 31–39, https://doi.org/10.1016/j.geomorph.2019.03.024, 2019.
Liu, C., Pollard, D. D., and Shi, B.: Analytical solutions and numerical
tests of elastic and failure behaviors of close-packed lattice for brittle
rocks and crystals, J. Geophys. Res.-Solid, 118, 71–82,
https://doi.org/10.1029/2012JB009615, 2013.
Liu, C., Xu, Q., Shi, B., Deng, S., and Zhu, H.: Mechanical properties and
energy conversion of 3D close-packed lattice model for brittle rocks, Comput. Geosci., 103, 12–20, https://doi.org/10.1016/j.cageo.2017.03.003, 2017.
Liu, C., Fan, X., Zhu, C., and Shi, B.: Discrete element modeling and simulation of 3-Dimensional large-scale landslide-Taking Xinmocun landslide as an example, J. Eng. Geol., 27, 1362–1370, https://doi.org/10.13544/j.cnki.jeg.2018-234, 2019.
Liu, D. Z., Cui, Y. F., Wang, H., Jin, W., Wu, C. h., Nazir, AB., Zhang, G.
T., Carling, P., and Chen, H. Y.: Assessment of local outburst flood risk
from successive landslides: Case study of Baige landslide-dammed lake, upper
Jinsha river, eastern Tibet, J. Hydrol., 599, 126294,
https://doi.org/10.1016/j.jhydrol.2021.126294, 2021.
Lo, C. M., Lin, M. L., Tang, C. L., and Hu, J. C.: A kinematic model of the
Hsiaolin landslide calibrated to the morphology of the landslide deposit,
Eng. Geol., 123, 22–39, https://doi.org/10.1016/j.enggeo.2011.07.002, 2011.
McNamara, D. E. and Buland, R. P.: Ambient Noise Levels in the Continental
United States, Bull. Seismol. Soc. Am., 94, 1517–1527, https://doi.org/10.1785/012003001, 2004.
Mergili, M., Fischer, J. T., Krenn, J., and Pudasaini, S. P.: r. avaflow v1,
an advanced open-source computational framework for the propagation and
interaction of two-phase mass flows, Geosci. Model Dev., 10, 553–569,
https://doi.org/10.5194/gmd-10-553-2017, 2017a.
Mergili, M., Emmer, A., Juřicová A., Cochachin, A., Fischer, J. T.,
Huggel, C., and Pudasaini, S. P.: How well can we simulate complex
hydro-geomorphic process chains? The 2012 multi-lake outburst flood in the
Santa Cruz Valley (Cordillera Blanca, Perú), Earth Surf. Proc. Land., 43, 1373–1389, https://doi.org/10.1002/esp.4318, 2017b.
Moore, J. R., Pankow, K. L., Ford, S. R., Koper, K. D., Hale, J. M., Aaron,
J., and Larsen, C. F.: Dynamics of the Bingham Canyon rock avalanches (Utah,
USA) resolved from topographic, seismic, and infrasound data, J. Geophys.
Res.-Earth, 122, 615–640, https://doi.org/10.1002/2016JF004036, 2017.
Moretti, L., Mangeney, A., Capdeville, Y., Stutzmann, E., Huggel, C.,
Schneider, D., and Bouchut, F.: Numerical modeling of the Mount Steller
landslide flow history and of the generated long period seismic waves, Geophys. Res. Lett., 39, L16402, https://doi.org/10.1029/2012GL052511, 2012.
Moretti, L., Allstadt, K., Mangeney, A., Capdeville, Y., Stutzmann, E., and
Bouchut, F.: Numerical modeling of the Mount Meager landslide constrained by
its force history derived from seismic data, J. Geophys. Res.-Solid, 120,
2579–2599, https://doi.org/10.1002/2014JB011426, 2015.
Muceku, Y., Korini, O., and Kuriqi, A.: Geotechnical analysis of hill's slopes areas in heritage town of Berati, Albania, Period. Polytech. Civ. Eng., 60, 61–73, https://doi.org/10.3311/PPci.7752, 2016.
Ouyang, C. J., An, H. C., Zhou, S., Wang, Z. W., Su, P. C., and Wang, D. P.:
Insights from the failure and dynamic characteristics of two sequential
landslides at Baige village along the Jinsha River, China, Landslides, 16,
1397–1414, https://doi.org/10.1007/s10346-019-01177-9, 2019.
Pastor, M., Blanc, T., Haddad, B., Petrone, S., Sanchez, M. M., Drempetic,
V., Issler, D., Crosta, G. B., Cascini, L., Sorbino, G., and Cuomo, S.:
Application of a SPH depthintegrated model to landslide run-out analysis,
Landslides, 11, 793812, https://doi.org/10.1007/s10346-014-0484-y, 2014.
Peterson, J. R.: Observations and modeling of seismic background noise,
US Geological Survey Open-File Report 93-322, US Geological Survey,
https://doi.org/10.3133/ofr93322, 1993.
Pitman, E. B., Nichita, C. C., Patra, A., Bauer, A., Sheridan, M., and Bursik, M.: Computing granular avalanches and landslides, Phys. Fluids, 15,
3638–3646, https://doi.org/10.1063/1.1614253, 2003.
Sakals, M. E., Geertsema, M., Schwab, J. W., and Foord, V. N.: The Todagin
Creek landslide of October 3, 2006, Northwest British Columbia, Canada,
Landslides, 9, 107–115, https://doi.org/10.1007/s10346-011-0273-9, 2011.
Shen, W., Li, T., Li, P., and Lei, Y.: Numerical assessment for the
efficiencies of check dams in debris flow gullies: A case study, Comput. Geotech., 122, 103541, https://doi.org/10.1016/j.compgeo.2020.103541, 2020.
Sheng, M., Chu, R., Wang, Y., and Wang, Q.: Inversion of source mechanisms
for single-force events using broadband waveforms, Seismol. Res. Lett., 91,
1820–1830, https://doi.org/10.1785/0220190349, 2020.
Soga, K., Alonso, E., Yerro, A., Kumar, K., and Bandara, S.: Trends in
large-deformation analysis of landslide mass movements with particular emphasis on the material point method, Géotechnique, 66, 1–26,
https://doi.org/10.1680/jgeot.15.lm.005, 2016.
Toney, L. and Allstadt, K. E.: lsforce: A Python-Based Single-Force Seismic
Inversion Framework for Massive Landslides, Seismol. Res. Lett., 92,
2610–2626, https://doi.org/10.1785/0220210004, 2021.
Walter, M., Arnhardt, C., and Joswig, M.: Seismic monitoring of rockfalls,
slide quakes, and fissure development at the Super-Sauze mudslide, French
Alps, Eng. Geol., 128, 12–22, https://doi.org/10.1016/j.enggeo.2011.11.002, 2012.
Wang, L., Wu, C. Z., Gu, X., Liu, H. L., Mei, G. X., and Zhang, W. G.:
Probabilistic stability analysis of earth dam slope under transient seepage
using multivariate adaptive regression splines, Bull. Eng. Geol. Environ.,
79, 2763–2775, https://doi.org/10.1007/s10064-020-01730-0, 2020.
Wang, R.: A simple orthonormalization method for stable and efficient
computation of Green's functions, Bull. Seismol. Soc. Am., 89, 733–741, 1999.
Wang, W., Yin, Y., Zhu, S., Wang, L., Zhang, N., and Zhao, R.: Investigation
and numerical modeling of the overloading-induced catastrophic rockslide
avalanche in Baige, Tibet, China, Bull. Eng. Geol. Environ., 79, 1765–1779,
https://doi.org/10.1007/s10064-019-01664-2, 2020.
Wang, Y. F., Dong, J. J., Cheng, Q. G.: Velocity-dependent frictional weakening of large rock avalanche basal facies: Implications for rock avalanche hypermobility?, J. Geophys. Res.-Solid, 122, 1648–1676,
https://doi.org/10.1002/2016JB013624, 2017.
Wang, Y. F., Dong, J. J., Cheng, Q. G.: Normal stress-dependent frictional
weakening of large rock avalanche basal facies: Implications for the rock
avalanche volume effect, J. Geophys. Res.-Solid, 123, 3270–3282,
https://doi.org/10.1002/2018JB015602, 2018.
Xu, Q., Zheng, G., Li, W. L., He, C. Y., Dong, X. J., Guo, C., and Feng, W.
K.: Study on Successive Landslide Damming Events of Jinsha River in Baige
Village on October 11 and November 3, 2018, J. Eng. Geo., 26, 1534–1551,
https://doi.org/10.13544/j.cnki.jeg.2018-406, 2018.
Yamada, M., Matsushi, Y., Chigira, M., and Mori, J.: Seismic recordings of
landslides caused by Typhoon Talas (2011), Japan, Geophys. Res. Lett., 39,
L13301, https://doi.org/10.1029/2012gl052174, 2012.
Yamada, M., Kumagai, H., Matsushi, Y., and Matsuzawa, T.: Dynamic landslide
processes revealed by broadband seismic records, Geophys. Res. Lett., 40,
2998–3002, https://doi.org/10.1002/grl.50437, 2013.
Yamada, M., Mangeney, A., Matsushi, Y., and Moretti, L.: Estimation of
dynamic friction of the Akatani landslide from seismic waveform inversion
and numerical simulation, Geophys. J. Int., 206, 1479–1486,
https://doi.org/10.1093/gji/ggw216, 2016.
Yamada, M., Mangeney, A., Matsushi, Y., and Matsuzawa, T.: Estimation of
dynamic friction and movement history of large landslides, Landslides, 15,
1963–1974, https://doi.org/10.1007/s10346-018-1002-4, 2018.
Yan, Y., Cui, Y., Guo, J., Hu, S., Wang, Z., and Yin, S.: Landslide reconstruction using seismic signal characteristics and numerical simulations: Case study of the 2017 “6.24” Xinmo landslide, Eng. Geol., 270, 105582, https://doi.org/10.1016/j.enggeo.2020.105582, 2020a.
Yan, Y., Cui, Y., Tian, X., Hu, S., Guo, J., Wang, Z., Yin, S., and Liao, L.: Seismic signal recognition and interpretation of the 2019 “7.23” Shuicheng landslide by seismogram stations, Landslides, 17, 1191–1206,
https://doi.org/10.1007/s10346-020-01358-x, 2020b.
Yan, Y., Yifei, C., Dingzhu, L, Hui, T., Yongjian, L., Xin, T., Lei, Z., and Sheng, H.: Seismic Signal Characteristics and Interpretation of the 2020 “6.17” Danba Landslide Dam Failure Hazard Chain Process, Landslides, 18, 2175–2192, https://doi.org/10.1007/s10346-021-01657-x, 2021.
Yu, D., Huang, X., and Li, Z.: Variation patterns of landslide basal friction revealed from long-period seismic waveform inversion, Nat. Hazards, 100, 313–327, https://doi.org/10.1007/s11069-019-03813-y, 2020.
Zhang, L., Xiao, T., He, J., and Chen, C.: Erosion-based analysis of breaching of Baige landslide dams on the Jinsha River, China, in 2018,
Landslides, 16, 1965–1979, https://doi.org/10.1007/s10346-019-01247-y, 2019.
Zhang, S. L., Yin, Y. P., Hu, X. W., Wang, W. P., Zhang, N., Zhu, S. N., and
Wang, L. Q.: Dynamics and emplacement mechanisms of the successive Baige
landslides on the Upper Reaches of the Jinsha River, China, Eng. Geol., 278,
105819, https://doi.org/10.1016/j.enggeo.2020.105819, 2020.
Zhang, Z., He, S., Liu, W., Liang, H., Yan, S., Deng, Y., Bai, X., and Chen,
Z.: Source characteristics and dynamics of the October 2018 Baige landslide
revealed by broadband seismograms, Landslides, 16, 777–785,
https://doi.org/10.1007/s10346-019-01145-3, 2019.
Zhang, Z., He, S., and Li, Q.: Analyzing high-frequency seismic signals
generated during a landslide using source discrepancies between two landslides, Eng. Geol., 272, 105640, https://doi.org/10.1016/j.enggeo.2020.105640, 2020.
Zhao, J., Moretti, L., Mangeney, A., Stutzmann, E., Kanamori, H., Capdeville, Y., Calder, E. S., Hibert, C., Smith, P. J., Cole, P., and Lefriant, A.: Model space exploration for determining landslide source history from long-period seismic data, Pure Appl. Geophys., 172, 389–413,
https://doi.org/10.1007/s00024-014-0852-5, 2015.
Zhao, J., Ouyang, C. J., Ni, S. D., Chu, R. S., and Mangeney, A.: Analysis of the 2017 June Maoxian landslide processes with force histories from seismological inversion and terrain features, Geophys. J. Int., 222, 1965–1976, https://doi.org/10.1093/gji/ggaa226, 2020.
Zhou, L., Fan, X., Xu, Q., Yang, F., and Gou, C.: Numerical simulation and
hazard prediction on movement process characteristics of Baige landslide in
Jinsha river, Eng. Geol., 27, 1395–1404, https://doi.org/10.13544/j.cnki.jeg.2019-037, 2019.
Short summary
Landslides present a significant hazard for humans, but continuous landslide monitoring is not yet possible due to their unpredictability. Our study has demonstrated that combing landslide seismic signal analysis, dynamic inversion, and numerical simulation provides a comprehensive and accurate method for studying the landslide process. The approach outlined in this study could be used to support hazard prevention and control in sensitive areas.
Landslides present a significant hazard for humans, but continuous landslide monitoring is not...