Articles | Volume 10, issue 6
https://doi.org/10.5194/esurf-10-1303-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-10-1303-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modeling deadwood for rockfall mitigation assessments in windthrow areas
Adrian Ringenbach
CORRESPONDING AUTHOR
Climate Change, Extremes and Natural Hazards in Alpine Regions Research Center CERC, 7260 Davos Dorf, Switzerland
WSL Institute for Snow and Avalanche Research SLF, 7260 Davos Dorf, Switzerland
Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zurich, Switzerland
Peter Bebi
Climate Change, Extremes and Natural Hazards in Alpine Regions Research Center CERC, 7260 Davos Dorf, Switzerland
WSL Institute for Snow and Avalanche Research SLF, 7260 Davos Dorf, Switzerland
Perry Bartelt
Climate Change, Extremes and Natural Hazards in Alpine Regions Research Center CERC, 7260 Davos Dorf, Switzerland
WSL Institute for Snow and Avalanche Research SLF, 7260 Davos Dorf, Switzerland
Andreas Rigling
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zurich, Switzerland
Marc Christen
Climate Change, Extremes and Natural Hazards in Alpine Regions Research Center CERC, 7260 Davos Dorf, Switzerland
WSL Institute for Snow and Avalanche Research SLF, 7260 Davos Dorf, Switzerland
Yves Bühler
Climate Change, Extremes and Natural Hazards in Alpine Regions Research Center CERC, 7260 Davos Dorf, Switzerland
WSL Institute for Snow and Avalanche Research SLF, 7260 Davos Dorf, Switzerland
Andreas Stoffel
Climate Change, Extremes and Natural Hazards in Alpine Regions Research Center CERC, 7260 Davos Dorf, Switzerland
WSL Institute for Snow and Avalanche Research SLF, 7260 Davos Dorf, Switzerland
Andrin Caviezel
Climate Change, Extremes and Natural Hazards in Alpine Regions Research Center CERC, 7260 Davos Dorf, Switzerland
WSL Institute for Snow and Avalanche Research SLF, 7260 Davos Dorf, Switzerland
Related authors
Adrian Ringenbach, Peter Bebi, Perry Bartelt, Andreas Rigling, Marc Christen, Yves Bühler, Andreas Stoffel, and Andrin Caviezel
Earth Surf. Dynam., 11, 779–801, https://doi.org/10.5194/esurf-11-779-2023, https://doi.org/10.5194/esurf-11-779-2023, 2023
Short summary
Short summary
Swiss researchers carried out repeated rockfall experiments with rocks up to human sizes in a steep mountain forest. This study focuses mainly on the effects of the rock shape and lying deadwood. In forested areas, cubic-shaped rocks showed a longer mean runout distance than platy-shaped rocks. Deadwood especially reduced the runouts of these cubic rocks. The findings enrich standard practices in modern rockfall hazard zoning assessments and strongly urge the incorporation of rock shape effects.
Adrian Ringenbach, Elia Stihl, Yves Bühler, Peter Bebi, Perry Bartelt, Andreas Rigling, Marc Christen, Guang Lu, Andreas Stoffel, Martin Kistler, Sandro Degonda, Kevin Simmler, Daniel Mader, and Andrin Caviezel
Nat. Hazards Earth Syst. Sci., 22, 2433–2443, https://doi.org/10.5194/nhess-22-2433-2022, https://doi.org/10.5194/nhess-22-2433-2022, 2022
Short summary
Short summary
Forests have a recognized braking effect on rockfalls. The impact of lying deadwood, however, is mainly neglected. We conducted 1 : 1-scale rockfall experiments in three different states of a spruce forest to fill this knowledge gap: the original forest, the forest including lying deadwood and the cleared area. The deposition points clearly show that deadwood has a protective effect. We reproduced those experimental results numerically, considering three-dimensional cones to be deadwood.
Jaeyoung Lim, Elisabeth Hafner, Florian Achermann, Rik Girod, David Rohr, Nicholas R. J. Lawrance, Yves Bühler, and Roland Siegwart
EGUsphere, https://doi.org/10.5194/egusphere-2024-2728, https://doi.org/10.5194/egusphere-2024-2728, 2024
Short summary
Short summary
As avalanches occur in remote and potentially dangerous locations, data relevant to avalanche monitoring is difficult to obtain. Uncrewed fixed-wing aerial vehicles are promising platforms for gathering aerial imagery to map avalanche activity over a large area. In this work, we present an unmanned aerial system (UAS) capable of autonomously navigating and mapping avalanches in steep mountainous terrain. We expect our work to enable efficient large-scale autonomous avalanche monitoring.
Jan Magnusson, Yves Bühler, Louis Quéno, Bertrand Cluzet, Giulia Mazzotti, Clare Webster, Rebecca Mott, and Tobias Jonas
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-374, https://doi.org/10.5194/essd-2024-374, 2024
Preprint under review for ESSD
Short summary
Short summary
In this study, we present a dataset for the Dischma catchment in eastern Switzerland, which represents a typical high-alpine watershed in the European Alps. Accurate monitoring and reliable forecasting of snow and water resources in such basins are crucial for a wide range of applications. Our dataset is valuable for improving physics-based snow, land-surface, and hydrological models, with potential applications in similar high-alpine catchments.
Elisabeth D. Hafner, Theodora Kontogianni, Rodrigo Caye Daudt, Lucien Oberson, Jan Dirk Wegner, Konrad Schindler, and Yves Bühler
The Cryosphere, 18, 3807–3823, https://doi.org/10.5194/tc-18-3807-2024, https://doi.org/10.5194/tc-18-3807-2024, 2024
Short summary
Short summary
For many safety-related applications such as road management, well-documented avalanches are important. To enlarge the information, webcams may be used. We propose supporting the mapping of avalanches from webcams with a machine learning model that interactively works together with the human. Relying on that model, there is a 90% saving of time compared to the "traditional" mapping. This gives a better base for safety-critical decisions and planning in avalanche-prone mountain regions.
John Sykes, Pascal Haegeli, Roger Atkins, Patrick Mair, and Yves Bühler
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-147, https://doi.org/10.5194/nhess-2024-147, 2024
Preprint under review for NHESS
Short summary
Short summary
We develop decision support tools to assist professional ski guides in determining safe terrain each day based on current conditions. To understand the decision-making process we collaborate with professional guides and build three unique models to predict their decisions. The models accurately capture the real world decision-making outcomes in 85–93 % of cases. Our conclusions focus on strengths and weaknesses of each model and discuss ramifications for practical applications in ski guiding.
Yu Zhuang, Brian W. McArdell, and Perry Bartelt
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-87, https://doi.org/10.5194/nhess-2024-87, 2024
Revised manuscript under review for NHESS
Short summary
Short summary
This study reformulates the μ(I) rheology into a Voellmy-type relationship to elucidate its physical implications. The μ(I) rheology, incorporating a dimensionless inertial number, mimics granular temperature effects, reflecting shear thinning behavior of mass flows. However, its constant Coulomb friction coefficient limits accuracy in modeling deposition. Comparing μ(I) with Voellmy-type rheologies reveals strengths and limitations, enhancing mass flow modeling and engineering applications.
Andrea Manconi, Yves Bühler, Andreas Stoffel, Johan Gaume, Qiaoping Zhang, and Valentyn Tolpekin
EGUsphere, https://doi.org/10.5194/egusphere-2024-1296, https://doi.org/10.5194/egusphere-2024-1296, 2024
Short summary
Short summary
Our research reveals the power of high-resolution satellite SAR imagery for slope deformation monitoring. Using ICEYE data over the Brienz/Brinzauls instability, we measured surface velocity and mapped the landslide event with unprecedented precision. This underscores SAR's potential for timely hazard assessment in remote regions, aiding disaster mitigation efforts effectively.
Julia Glaus, Katreen Wikstrom Jones, Perry Bartelt, Marc Christen, Lukas Stoffel, Johan Gaume, and Yves Bühler
EGUsphere, https://doi.org/10.5194/egusphere-2024-771, https://doi.org/10.5194/egusphere-2024-771, 2024
Short summary
Short summary
This study assesses RAMMS::EXTENDED's predictive power in estimating avalanche run-out distances critical for mountain road safety. Leveraging meteorological data and sensitivity analysis, it offers meaningful predictions, aiding near real-time hazard assessments and future model refinement for improved decision-making.
Pia Ruttner-Jansen, Annelies Voordendag, Thierry Hartmann, Julia Glaus, Andreas Wieser, and Yves Bühler
EGUsphere, https://doi.org/10.5194/egusphere-2024-744, https://doi.org/10.5194/egusphere-2024-744, 2024
Short summary
Short summary
Snow depth variations caused by wind are an important factor in avalanche danger, but detailed and up-to-date information is rarely available. We propose a monitoring system, using LiDAR and optical sensors, to measure the snow depth distribution at high spatial and temporal resolution. First results show that we can quantify snow depth changes with an accuracy on the low decimeter level or better, and to identify events such as avalanches or displacement of snow during periods of strong winds.
Elisabeth D. Hafner, Frank Techel, Rodrigo Caye Daudt, Jan Dirk Wegner, Konrad Schindler, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 23, 2895–2914, https://doi.org/10.5194/nhess-23-2895-2023, https://doi.org/10.5194/nhess-23-2895-2023, 2023
Short summary
Short summary
Oftentimes when objective measurements are not possible, human estimates are used instead. In our study, we investigate the reproducibility of human judgement for size estimates, the mappings of avalanches from oblique photographs and remotely sensed imagery. The variability that we found in those estimates is worth considering as it may influence results and should be kept in mind for several applications.
Leon J. Bührle, Mauro Marty, Lucie A. Eberhard, Andreas Stoffel, Elisabeth D. Hafner, and Yves Bühler
The Cryosphere, 17, 3383–3408, https://doi.org/10.5194/tc-17-3383-2023, https://doi.org/10.5194/tc-17-3383-2023, 2023
Short summary
Short summary
Information on the snow depth distribution is crucial for numerous applications in high-mountain regions. However, only specific measurements can accurately map the present variability of snow depths within complex terrain. In this study, we show the reliable processing of images from aeroplane to large (> 100 km2) detailed and accurate snow depth maps around Davos (CH). We use these maps to describe the existing snow depth distribution, other special features and potential applications.
Adrian Ringenbach, Peter Bebi, Perry Bartelt, Andreas Rigling, Marc Christen, Yves Bühler, Andreas Stoffel, and Andrin Caviezel
Earth Surf. Dynam., 11, 779–801, https://doi.org/10.5194/esurf-11-779-2023, https://doi.org/10.5194/esurf-11-779-2023, 2023
Short summary
Short summary
Swiss researchers carried out repeated rockfall experiments with rocks up to human sizes in a steep mountain forest. This study focuses mainly on the effects of the rock shape and lying deadwood. In forested areas, cubic-shaped rocks showed a longer mean runout distance than platy-shaped rocks. Deadwood especially reduced the runouts of these cubic rocks. The findings enrich standard practices in modern rockfall hazard zoning assessments and strongly urge the incorporation of rock shape effects.
Gregor Ortner, Michael Bründl, Chahan M. Kropf, Thomas Röösli, Yves Bühler, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 23, 2089–2110, https://doi.org/10.5194/nhess-23-2089-2023, https://doi.org/10.5194/nhess-23-2089-2023, 2023
Short summary
Short summary
This paper presents a new approach to assess avalanche risk on a large scale in mountainous regions. It combines a large-scale avalanche modeling method with a state-of-the-art probabilistic risk tool. Over 40 000 individual avalanches were simulated, and a building dataset with over 13 000 single buildings was investigated. With this new method, risk hotspots can be identified and surveyed. This enables current and future risk analysis to assist decision makers in risk reduction and adaptation.
Yu Zhuang, Aiguo Xing, Perry Bartelt, Muhammad Bilal, and Zhaowei Ding
Nat. Hazards Earth Syst. Sci., 23, 1257–1266, https://doi.org/10.5194/nhess-23-1257-2023, https://doi.org/10.5194/nhess-23-1257-2023, 2023
Short summary
Short summary
Tree destruction is often used to back calculate the air blast impact region and to estimate the air blast power. Here we established a novel model to assess air blast power using tree destruction information. We find that the dynamic magnification effect makes the trees easier to damage by a landslide-induced air blast, but the large tree deformation would weaken the effect. Bending and overturning are two likely failure modes, which depend heavily on the properties of trees.
Mauro Hermann, Matthias Röthlisberger, Arthur Gessler, Andreas Rigling, Cornelius Senf, Thomas Wohlgemuth, and Heini Wernli
Biogeosciences, 20, 1155–1180, https://doi.org/10.5194/bg-20-1155-2023, https://doi.org/10.5194/bg-20-1155-2023, 2023
Short summary
Short summary
This study examines the multi-annual meteorological history of low-forest-greenness events in Europe's temperate and Mediterranean biome in 2002–2022. We systematically identify anomalies in temperature, precipitation, and weather systems as event precursors, with noteworthy differences between the two biomes. We also quantify the impact of the most extensive event in 2022 (37 % coverage), underlining the importance of understanding the forest–meteorology interaction in a changing climate.
François Noël, Michel Jaboyedoff, Andrin Caviezel, Clément Hibert, Franck Bourrier, and Jean-Philippe Malet
Earth Surf. Dynam., 10, 1141–1164, https://doi.org/10.5194/esurf-10-1141-2022, https://doi.org/10.5194/esurf-10-1141-2022, 2022
Short summary
Short summary
Rockfall simulations are often performed to make sure infrastructure is safe. For that purpose, rockfall trajectory data are needed to calibrate the simulation models. In this paper, an affordable, flexible, and efficient trajectory reconstruction method is proposed. The method is tested by reconstructing trajectories from a full-scale rockfall experiment involving 2670 kg rocks and a flexible barrier. The results highlight improvements in precision and accuracy of the proposed method.
John Sykes, Pascal Haegeli, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 22, 3247–3270, https://doi.org/10.5194/nhess-22-3247-2022, https://doi.org/10.5194/nhess-22-3247-2022, 2022
Short summary
Short summary
Automated snow avalanche terrain mapping provides an efficient method for large-scale assessment of avalanche hazards, which informs risk management decisions for transportation and recreation. This research reduces the cost of developing avalanche terrain maps by using satellite imagery and open-source software as well as improving performance in forested terrain. The research relies on local expertise to evaluate accuracy, so the methods are broadly applicable in mountainous regions worldwide.
Elisabeth D. Hafner, Patrick Barton, Rodrigo Caye Daudt, Jan Dirk Wegner, Konrad Schindler, and Yves Bühler
The Cryosphere, 16, 3517–3530, https://doi.org/10.5194/tc-16-3517-2022, https://doi.org/10.5194/tc-16-3517-2022, 2022
Short summary
Short summary
Knowing where avalanches occur is very important information for several disciplines, for example avalanche warning, hazard zonation and risk management. Satellite imagery can provide such data systematically over large regions. In our work we propose a machine learning model to automate the time-consuming manual mapping. Additionally, we investigate expert agreement for manual avalanche mapping, showing that our network is equally as good as the experts in identifying avalanches.
Aubrey Miller, Pascal Sirguey, Simon Morris, Perry Bartelt, Nicolas Cullen, Todd Redpath, Kevin Thompson, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 22, 2673–2701, https://doi.org/10.5194/nhess-22-2673-2022, https://doi.org/10.5194/nhess-22-2673-2022, 2022
Short summary
Short summary
Natural hazard modelers simulate mass movements to better anticipate the risk to people and infrastructure. These simulations require accurate digital elevation models. We test the sensitivity of a well-established snow avalanche model (RAMMS) to the source and spatial resolution of the elevation model. We find key differences in the digital representation of terrain greatly affect the simulated avalanche results, with implications for hazard planning.
Adrian Ringenbach, Elia Stihl, Yves Bühler, Peter Bebi, Perry Bartelt, Andreas Rigling, Marc Christen, Guang Lu, Andreas Stoffel, Martin Kistler, Sandro Degonda, Kevin Simmler, Daniel Mader, and Andrin Caviezel
Nat. Hazards Earth Syst. Sci., 22, 2433–2443, https://doi.org/10.5194/nhess-22-2433-2022, https://doi.org/10.5194/nhess-22-2433-2022, 2022
Short summary
Short summary
Forests have a recognized braking effect on rockfalls. The impact of lying deadwood, however, is mainly neglected. We conducted 1 : 1-scale rockfall experiments in three different states of a spruce forest to fill this knowledge gap: the original forest, the forest including lying deadwood and the cleared area. The deposition points clearly show that deadwood has a protective effect. We reproduced those experimental results numerically, considering three-dimensional cones to be deadwood.
Yves Bühler, Peter Bebi, Marc Christen, Stefan Margreth, Lukas Stoffel, Andreas Stoffel, Christoph Marty, Gregor Schmucki, Andrin Caviezel, Roderick Kühne, Stephan Wohlwend, and Perry Bartelt
Nat. Hazards Earth Syst. Sci., 22, 1825–1843, https://doi.org/10.5194/nhess-22-1825-2022, https://doi.org/10.5194/nhess-22-1825-2022, 2022
Short summary
Short summary
To calculate and visualize the potential avalanche hazard, we develop a method that automatically and efficiently pinpoints avalanche starting zones and simulate their runout for the entire canton of Grisons. The maps produced in this way highlight areas that could be endangered by avalanches and are extremely useful in multiple applications for the cantonal authorities, including the planning of new infrastructure, making alpine regions more safe.
Animesh K. Gain, Yves Bühler, Pascal Haegeli, Daniela Molinari, Mario Parise, David J. Peres, Joaquim G. Pinto, Kai Schröter, Ricardo M. Trigo, María Carmen Llasat, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 22, 985–993, https://doi.org/10.5194/nhess-22-985-2022, https://doi.org/10.5194/nhess-22-985-2022, 2022
Short summary
Short summary
To mark the 20th anniversary of Natural Hazards and Earth System Sciences (NHESS), an interdisciplinary and international journal dedicated to the public discussion and open-access publication of high-quality studies and original research on natural hazards and their consequences, we highlight 11 key publications covering major subject areas of NHESS that stood out within the past 20 years.
Natalie Brožová, Tommaso Baggio, Vincenzo D'Agostino, Yves Bühler, and Peter Bebi
Nat. Hazards Earth Syst. Sci., 21, 3539–3562, https://doi.org/10.5194/nhess-21-3539-2021, https://doi.org/10.5194/nhess-21-3539-2021, 2021
Short summary
Short summary
Surface roughness plays a great role in natural hazard processes but is not always well implemented in natural hazard modelling. The results of our study show how surface roughness can be useful in representing vegetation and ground structures, which are currently underrated. By including surface roughness in natural hazard modelling, we could better illustrate the processes and thus improve hazard mapping, which is crucial for infrastructure and settlement planning in mountainous areas.
Nora Helbig, Michael Schirmer, Jan Magnusson, Flavia Mäder, Alec van Herwijnen, Louis Quéno, Yves Bühler, Jeff S. Deems, and Simon Gascoin
The Cryosphere, 15, 4607–4624, https://doi.org/10.5194/tc-15-4607-2021, https://doi.org/10.5194/tc-15-4607-2021, 2021
Short summary
Short summary
The snow cover spatial variability in mountains changes considerably over the course of a snow season. In applications such as weather, climate and hydrological predictions the fractional snow-covered area is therefore an essential parameter characterizing how much of the ground surface in a grid cell is currently covered by snow. We present a seasonal algorithm and a spatiotemporal evaluation suggesting that the algorithm can be applied in other geographic regions by any snow model application.
Elisabeth D. Hafner, Frank Techel, Silvan Leinss, and Yves Bühler
The Cryosphere, 15, 983–1004, https://doi.org/10.5194/tc-15-983-2021, https://doi.org/10.5194/tc-15-983-2021, 2021
Short summary
Short summary
Satellites prove to be very valuable for documentation of large-scale avalanche periods. To test reliability and completeness, which has not been satisfactorily verified before, we attempt a full validation of avalanches mapped from two optical sensors and one radar sensor. Our results demonstrate the reliability of high-spatial-resolution optical data for avalanche mapping, the suitability of radar for mapping of larger avalanches and the unsuitability of medium-spatial-resolution optical data.
Nora Helbig, Yves Bühler, Lucie Eberhard, César Deschamps-Berger, Simon Gascoin, Marie Dumont, Jesus Revuelto, Jeff S. Deems, and Tobias Jonas
The Cryosphere, 15, 615–632, https://doi.org/10.5194/tc-15-615-2021, https://doi.org/10.5194/tc-15-615-2021, 2021
Short summary
Short summary
The spatial variability in snow depth in mountains is driven by interactions between topography, wind, precipitation and radiation. In applications such as weather, climate and hydrological predictions, this is accounted for by the fractional snow-covered area describing the fraction of the ground surface covered by snow. We developed a new description for model grid cell sizes larger than 200 m. An evaluation suggests that the description performs similarly well in most geographical regions.
Lucie A. Eberhard, Pascal Sirguey, Aubrey Miller, Mauro Marty, Konrad Schindler, Andreas Stoffel, and Yves Bühler
The Cryosphere, 15, 69–94, https://doi.org/10.5194/tc-15-69-2021, https://doi.org/10.5194/tc-15-69-2021, 2021
Short summary
Short summary
In spring 2018 in the alpine Dischma valley (Switzerland), we tested different industrial photogrammetric platforms for snow depth mapping. These platforms were high-resolution satellites, an airplane, unmanned aerial systems and a terrestrial system. Therefore, this study gives a general overview of the accuracy and precision of the different photogrammetric platforms available in space and on earth and their use for snow depth mapping.
Silvan Leinss, Raphael Wicki, Sämi Holenstein, Simone Baffelli, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 20, 1783–1803, https://doi.org/10.5194/nhess-20-1783-2020, https://doi.org/10.5194/nhess-20-1783-2020, 2020
Short summary
Short summary
To assess snow avalanche mapping with radar satellites in Switzerland, we compare 2 m resolution TerraSAR-X images, 10 m resolution Sentinel-1 images, and optical 1.5 m resolution SPOT-6 images. We found that radar satellites provide a valuable option to map at least larger avalanches, though avalanches are mapped only partially. By combining multiple orbits and polarizations from S1, we achieved mapping results of quality almost comparable to single high-resolution TerraSAR-X images.
Benjamin Walter, Hendrik Huwald, Josué Gehring, Yves Bühler, and Michael Lehning
The Cryosphere, 14, 1779–1794, https://doi.org/10.5194/tc-14-1779-2020, https://doi.org/10.5194/tc-14-1779-2020, 2020
Short summary
Short summary
We applied a horizontally mounted low-cost precipitation radar to measure velocities, frequency of occurrence, travel distances and turbulence characteristics of blowing snow off a mountain ridge. Our analysis provides a first insight into the potential of radar measurements for determining blowing snow characteristics, improves our understanding of mountain ridge blowing snow events and serves as a valuable data basis for validating coupled numerical weather and snowpack simulations.
Emanuele Marchetti, Alec van Herwijnen, Marc Christen, Maria Cristina Silengo, and Giulia Barfucci
Earth Surf. Dynam., 8, 399–411, https://doi.org/10.5194/esurf-8-399-2020, https://doi.org/10.5194/esurf-8-399-2020, 2020
Short summary
Short summary
We present infrasonic and seismic array data of a powder snow avalanche, that was released on 5 February 2016, in the Dischma valley nearby Davos, Switzerland. Combining information derived from both arrays, we show how infrasound and seismic energy are radiated from different sources acting along the path. Moreover, infrasound transmits to the ground and affects the recorded seismic signal. Results highlight the benefits of combined seismo-acoustic array analyses for monitoring and research.
Jürg Schweizer, Christoph Mitterer, Frank Techel, Andreas Stoffel, and Benjamin Reuter
The Cryosphere, 14, 737–750, https://doi.org/10.5194/tc-14-737-2020, https://doi.org/10.5194/tc-14-737-2020, 2020
Short summary
Short summary
Snow avalanches represent a major natural hazard in seasonally snow-covered mountain regions around the world. To avoid periods and locations of high hazard, avalanche warnings are issued by public authorities. In these bulletins, the hazard is characterized by a danger level. Since the danger levels are not well defined, we analyzed a large data set of avalanches to improve the description. Our findings show discrepancies in present usage of the danger scale and show ways to improve the scale.
Yves Bühler, Elisabeth D. Hafner, Benjamin Zweifel, Mathias Zesiger, and Holger Heisig
The Cryosphere, 13, 3225–3238, https://doi.org/10.5194/tc-13-3225-2019, https://doi.org/10.5194/tc-13-3225-2019, 2019
Short summary
Short summary
We manually map 18 737 avalanche outlines based on SPOT6 optical satellite imagery acquired in January 2018. This is the most complete and accurate avalanche documentation of a large avalanche period covering a big part of the Swiss Alps. This unique dataset can be applied for the validation of other remote-sensing-based avalanche-mapping procedures and for updating avalanche databases to improve hazard maps.
Andrin Caviezel, Sophia E. Demmel, Adrian Ringenbach, Yves Bühler, Guang Lu, Marc Christen, Claire E. Dinneen, Lucie A. Eberhard, Daniel von Rickenbach, and Perry Bartelt
Earth Surf. Dynam., 7, 199–210, https://doi.org/10.5194/esurf-7-199-2019, https://doi.org/10.5194/esurf-7-199-2019, 2019
Short summary
Short summary
In rockfall hazard assessment, knowledge about the precise flight path of assumed boulders is vital for its accuracy. We present the full reconstruction of artificially induced rockfall events. The extracted information such as exact velocities, jump heights and lengths provide detailed insights into how rotating rocks interact with the ground. The information serves as future calibration of rockfall modelling tools with the goal of even more realistic modelling predictions.
Yves Bühler, Daniel von Rickenbach, Andreas Stoffel, Stefan Margreth, Lukas Stoffel, and Marc Christen
Nat. Hazards Earth Syst. Sci., 18, 3235–3251, https://doi.org/10.5194/nhess-18-3235-2018, https://doi.org/10.5194/nhess-18-3235-2018, 2018
Short summary
Short summary
Coping with avalanche hazard has a long tradition in alpine countries. Hazard mapping has proven to be one of the most effective methods. In this paper we develop a new approach to automatically delineate avalanche release areas and connect them to state-of-the-art numerical avalanche simulations. This enables computer-based hazard indication mapping over large areas such as entire countries. This is of particular interest where hazard maps do not yet exist, such as in developing countries.
Andrin Caviezel and Werner Gerber
Nat. Hazards Earth Syst. Sci., 18, 3145–3151, https://doi.org/10.5194/nhess-18-3145-2018, https://doi.org/10.5194/nhess-18-3145-2018, 2018
Short summary
Short summary
Anticipating the flight path of a bouncing object holds fascination for playing children and scientists alike. While the path of a ball can be judged easily, the erratic rebound behavior of complexly shaped forms are intriguing. Here, we focus on the timescales and rotation changes during real rock–ground impacts while traveling down a slope. Specialized sensors inside the rock track those changes and reveal contact times in the millisecond range defining the overall flight path behavior.
Perry Bartelt, Andrin Caviezel, Sandro Degonda, and Othmar Buser
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-154, https://doi.org/10.5194/nhess-2018-154, 2018
Revised manuscript not accepted
Short summary
Short summary
A longstanding problem in avalanche science is to understand why slow moving avalanches exert large pressures on buildings. To understand this phenomenon we propose that avalanche interaction with a rigid structure must be divided into two separate regimes: a
flowregime and a
pile-upregime. In the flow regime, snow does not accumulate behind the obstacle. We show why the accumulation of avalanche snow behind a structure can lead to immense forces that must be considered in mitigation.
C. Mulsow, R. Kenner, Y. Bühler, A. Stoffel, and H.-G. Maas
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2, 739–744, https://doi.org/10.5194/isprs-archives-XLII-2-739-2018, https://doi.org/10.5194/isprs-archives-XLII-2-739-2018, 2018
Alejandro Casteller, Thomas Häfelfinger, Erika Cortés Donoso, Karen Podvin, Dominik Kulakowski, and Peter Bebi
Nat. Hazards Earth Syst. Sci., 18, 1173–1186, https://doi.org/10.5194/nhess-18-1173-2018, https://doi.org/10.5194/nhess-18-1173-2018, 2018
Short summary
Short summary
Natural hazards such as snow avalanches, debris flows and volcanic activity represent a risk to mountain communities. This is particularly the case where documentary records about these processes are rare. As a result, decisions on risk management and land-use planning are based on other sources such tree-ring data and process models. Our study was conducted at Valle Las Trancas in Chile, where we evaluated the dynamics of avalanches and other natural hazards which threaten its population.
Cesar Vera Valero, Nander Wever, Marc Christen, and Perry Bartelt
Nat. Hazards Earth Syst. Sci., 18, 869–887, https://doi.org/10.5194/nhess-18-869-2018, https://doi.org/10.5194/nhess-18-869-2018, 2018
Short summary
Short summary
Snow avalanche motion is strongly dependent on the temperature and water content of the snow cover. In this paper we use a snow cover model, driven by measured meteorological data, to set the initial and boundary conditions for wet-snow avalanche calculations. The snow cover model provides estimates of snow depth, density, temperature and liquid water content. These initial conditions are used to drive an avalanche dynamics model. The runout results are compared using a contigency analysis.
Perry Bartelt, Peter Bebi, Thomas Feistl, Othmar Buser, and Andrin Caviezel
Nat. Hazards Earth Syst. Sci., 18, 759–764, https://doi.org/10.5194/nhess-18-759-2018, https://doi.org/10.5194/nhess-18-759-2018, 2018
Short summary
Short summary
We study how short duration powder avalanche blasts break and overturn tall trees. Tree blow-down is often used to back-calculate avalanche pressure and therefore constrain avalanche flow velocity and motion. We find that tall trees are susceptible to avalanche air blasts because the duration of the air blast is near to the period of vibration of tall trees. Dynamic magnification factors should therefore be considered when back-calculating powder avalanche impact pressures.
Karolina Korzeniowska, Yves Bühler, Mauro Marty, and Oliver Korup
Nat. Hazards Earth Syst. Sci., 17, 1823–1836, https://doi.org/10.5194/nhess-17-1823-2017, https://doi.org/10.5194/nhess-17-1823-2017, 2017
Short summary
Short summary
In this study, we have focused on automatically detecting avalanches and classifying them into release zones, tracks, and run-out zones based on aerial imagery using an object-based image analysis (OBIA) approach. We compared the results with manually mapped avalanche polygons, and obtained a user’s accuracy of > 0.9 and a Cohen’s kappa of 0.79–0.85. Testing the method for a larger area of 226.3 km2, we estimated producer’s and user’s accuracies of 0.61 and 0.78, respectively.
Florian Frank, Brian W. McArdell, Nicole Oggier, Patrick Baer, Marc Christen, and Andreas Vieli
Nat. Hazards Earth Syst. Sci., 17, 801–815, https://doi.org/10.5194/nhess-17-801-2017, https://doi.org/10.5194/nhess-17-801-2017, 2017
Short summary
Short summary
This study describes a sensitivity analysis of the RAMMS debris-flow entrainment model, which is intended to help solve problems related to predicting the runout of debris flows. The results indicate that the entrainment model predicts plausible erosion volumes in comparison with field data. These eroded volumes are sensitive to the initial landslide volume, suggesting that this tool may be useful for both reconstruction of historical events and modeling of debris flow scenarios.
Cesar Vera Valero, Nander Wever, Yves Bühler, Lukas Stoffel, Stefan Margreth, and Perry Bartelt
Nat. Hazards Earth Syst. Sci., 16, 2303–2323, https://doi.org/10.5194/nhess-16-2303-2016, https://doi.org/10.5194/nhess-16-2303-2016, 2016
Short summary
Short summary
Simulating medium–small avalanches operationally on a mine service road allows avalanche hazard to be assessed on the mine transportation route. Using accurate data from the snow cover and the avalanche paths, the avalanche dynamic model developed can calculate the avalanche runout distances and snow volumes of the deposits. The model does not predict whether the avalanche is coming or not, but if it comes, the model will predict runout distances and mass of the deposits.
Yves Bühler, Marc S. Adams, Ruedi Bösch, and Andreas Stoffel
The Cryosphere, 10, 1075–1088, https://doi.org/10.5194/tc-10-1075-2016, https://doi.org/10.5194/tc-10-1075-2016, 2016
Short summary
Short summary
We map the distribution of snow depth at two alpine test sites with unmanned aerial system (UAS) data by applying structure-from-motion photogrammetry. In comparison with manual snow depth measurements, we find high accuracies of 7 to 15 cm for the snow depth values. We can prove that photogrammetric measurements on snow-covered terrain are possible. Underlaying vegetation such as bushes and grass leads to an underestimation of snow depth in the range of 10 to 50 cm.
T. Feistl, P. Bebi, M. Christen, S. Margreth, L. Diefenbach, and P. Bartelt
Nat. Hazards Earth Syst. Sci., 15, 1275–1288, https://doi.org/10.5194/nhess-15-1275-2015, https://doi.org/10.5194/nhess-15-1275-2015, 2015
Short summary
Short summary
Snow avalanches break, uproot and overturn trees, causing damage to forests. In this paper, we define avalanche loading cases representing four different avalanche flow regimes: powder, intermittent, dry and wet. Using a numerical model that simulates both powder and wet snow avalanches, we study documented events with forest damage. We find that powder clouds with velocities over 20m/s break tree stems and that quasi-static pressures of wet snow avalanches are much higher than dynamic pressure.
C. Vera Valero, Y. Bühler, and P. Bartelt
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-3-2883-2015, https://doi.org/10.5194/nhessd-3-2883-2015, 2015
Manuscript not accepted for further review
Short summary
Short summary
Wet snow avalanches can initiate from large fracture slabs or small point releases. Point
release wet snow avalanches can reach dangerous proportions when they initiate on steep and long avalanche paths and entrain warm moist snow. In this paper we investigate the dynamics of point release wet snow avalanches by applying a numerical model to simulate documented case studies on high altitude slopes in the Chilean Andes. The model simulated correctly flow height, velocity and avalanche run out.
Y. Bühler, M. Marty, L. Egli, J. Veitinger, T. Jonas, P. Thee, and C. Ginzler
The Cryosphere, 9, 229–243, https://doi.org/10.5194/tc-9-229-2015, https://doi.org/10.5194/tc-9-229-2015, 2015
Short summary
Short summary
We are able to map snow depth over large areas ( > 100km2) using airborne digital photogrammetry. Digital photogrammetry is more economical than airborne Laser Scanning but slightly less accurate. Comparisons to independent snow depth measurements reveal an accuracy of about 30cm. Spatial continuous mapping of snow depth is a major step forward compared to point measurements usually applied today. Limitations are steep slopes (> 50°) and areas covered by trees and scrubs.
T. Grünewald, Y. Bühler, and M. Lehning
The Cryosphere, 8, 2381–2394, https://doi.org/10.5194/tc-8-2381-2014, https://doi.org/10.5194/tc-8-2381-2014, 2014
Short summary
Short summary
Elevation dependencies of snow depth are analysed based on snow depth maps obtained from airborne remote sensing. Elevation gradients are characterised by a specific shape: an increase of snow depth with elevation is followed by a distinct peak at a certain level and a decrease in the highest elevations. We attribute this shape to an increase of precipitation with altitude, which is modified by topographical-induced redistribution processes of the snow on the ground (wind, gravitation).
M. Teich, J.-T. Fischer, T. Feistl, P. Bebi, M. Christen, and A. Grêt-Regamey
Nat. Hazards Earth Syst. Sci., 14, 2233–2248, https://doi.org/10.5194/nhess-14-2233-2014, https://doi.org/10.5194/nhess-14-2233-2014, 2014
A. Aydin, Y. Bühler, M. Christen, and I. Gürer
Nat. Hazards Earth Syst. Sci., 14, 1145–1154, https://doi.org/10.5194/nhess-14-1145-2014, https://doi.org/10.5194/nhess-14-1145-2014, 2014
Y. Bühler, S. Kumar, J. Veitinger, M. Christen, A. Stoffel, and Snehmani
Nat. Hazards Earth Syst. Sci., 13, 1321–1335, https://doi.org/10.5194/nhess-13-1321-2013, https://doi.org/10.5194/nhess-13-1321-2013, 2013
Related subject area
Cross-cutting themes: Impacts of climate change on Earth surface dynamics
Storm frequency, magnitude, and cumulative storm beach impact along the US east coast
Spatially coherent variability in modern orographic precipitation produces asymmetric paleo-glacier extents in flowline models: Olympic Mountains, USA
A 4000-year debris flow record based on amphibious investigations of fan delta activity in Plansee (Austria, Eastern Alps)
Biophysical controls of marsh soil shear strength along an estuarine salinity gradient
Current glacier recession causes significant rockfall increase: the immediate paraglacial response of deglaciating cirque walls
Temperature effects on the spatial structure of heavy rainfall modify catchment hydro-morphological response
Detection and explanation of spatiotemporal patterns in Late Cenozoic palaeoclimate change relevant to Earth surface processes
Estimates of late Cenozoic climate change relevant to Earth surface processes in tectonically active orogens
Reconstruction of North American drainage basins and river discharge since the Last Glacial Maximum
Vertical movements of frost mounds in subarctic permafrost regions analyzed using geodetic survey and satellite interferometry
Erosional response of an actively uplifting mountain belt to cyclic rainfall variations
Coastal vulnerability of a pinned, soft-cliff coastline – Part I: Assessing the natural sensitivity to wave climate
Rachele Dominguez, Michael S. Fenster, and John W. McManus
Earth Surf. Dynam., 12, 1145–1163, https://doi.org/10.5194/esurf-12-1145-2024, https://doi.org/10.5194/esurf-12-1145-2024, 2024
Short summary
Short summary
Climate change is a hot topic and changes in storminess can be indicative of climate change impacts. Also, coastal storms can impact ecosystems and the people who live, work, and recreate along our world's coasts. Our findings show that the number of the US east coast storms has not increased since the early 20th century, but storm strength has increased moderately. Finally, beaches can take up to 10 years to recover depending on the number, timing, and strength of previous storms.
Andrew A. Margason, Alison M. Anders, Robert J. C. Conrick, and Gerard H. Roe
Earth Surf. Dynam., 11, 849–863, https://doi.org/10.5194/esurf-11-849-2023, https://doi.org/10.5194/esurf-11-849-2023, 2023
Short summary
Short summary
We examine differences in glacier extent in the Olympic Mountains, USA, where modern precipitation in east-facing valleys is only 50 % of that in west-facing valleys. During the Last Glacial Period, there were very small glaciers in the east and very large glaciers in the west. We use climate data and glacier models to show that the modern spatial pattern of precipitation is likely to have been similar during the past glaciation and may be sufficient to explain the asymmetry of glacier extent.
Carolin Kiefer, Patrick Oswald, Jasper Moernaut, Stefano Claudio Fabbri, Christoph Mayr, Michael Strasser, and Michael Krautblatter
Earth Surf. Dynam., 9, 1481–1503, https://doi.org/10.5194/esurf-9-1481-2021, https://doi.org/10.5194/esurf-9-1481-2021, 2021
Short summary
Short summary
This study provides amphibious investigations of debris flow fans (DFFs). We characterize active DFFs, combining laser scan and sonar surveys at Plansee. We discover a 4000-year debris flow record in sediment cores, providing evidence for a 7-fold debris flow frequency increase in the 20th and 21st centuries, coincident with 2-fold enhanced rainstorm activity in the northern European Alps. Our results indicate climate change as being the main factor controlling debris flow activity.
Megan N. Gillen, Tyler C. Messerschmidt, and Matthew L. Kirwan
Earth Surf. Dynam., 9, 413–421, https://doi.org/10.5194/esurf-9-413-2021, https://doi.org/10.5194/esurf-9-413-2021, 2021
Short summary
Short summary
We measured the shear strength of marsh soils along an estuarine salinity gradient to determine salinity's influence on marsh erodibility. Our work is one of the first studies to directly examine the relationship between salinity and marsh erodibility. We find that an increase in salinity correlates with higher soil shear strength values, indicating that salt marshes may be more resistant to erosion. We also show that both belowground biomass and soil properties drive shear strength differences.
Ingo Hartmeyer, Robert Delleske, Markus Keuschnig, Michael Krautblatter, Andreas Lang, Lothar Schrott, and Jan-Christoph Otto
Earth Surf. Dynam., 8, 729–751, https://doi.org/10.5194/esurf-8-729-2020, https://doi.org/10.5194/esurf-8-729-2020, 2020
Short summary
Short summary
Climate warming is causing significant ice surface lowering even in the uppermost parts of alpine glaciers. Using terrestrial lidar, we quantify rockfall in freshly exposed cirque walls. During 6-year monitoring (2011–2017), an extensive dataset was established and over 600 rockfall events identified. Drastically increased rockfall activity following ice retreat can clearly be observed as 60 % of the rockfall volume detached from less than 10 m above the glacier surface.
Nadav Peleg, Chris Skinner, Simone Fatichi, and Peter Molnar
Earth Surf. Dynam., 8, 17–36, https://doi.org/10.5194/esurf-8-17-2020, https://doi.org/10.5194/esurf-8-17-2020, 2020
Short summary
Short summary
Extreme rainfall is expected to intensify with increasing temperatures, which will likely affect rainfall spatial structure. The spatial variability of rainfall can affect streamflow and sediment transport volumes and peaks. The sensitivity of the hydro-morphological response to changes in the structure of heavy rainfall was investigated. It was found that the morphological components are more sensitive to changes in rainfall spatial structure in comparison to the hydrological components.
Sebastian G. Mutz and Todd A. Ehlers
Earth Surf. Dynam., 7, 663–679, https://doi.org/10.5194/esurf-7-663-2019, https://doi.org/10.5194/esurf-7-663-2019, 2019
Short summary
Short summary
We apply machine learning techniques to quantify and explain differences between recent palaeoclimates with regards to factors that are important in shaping the Earth's surface. We find that changes in ice cover, near-surface air temperature and rainfall duration create the most distinct differences. We also identify regions particularly prone to changes in rainfall and temperature-controlled erosion, which will help with the interpretation of erosion rates and geological archives.
Sebastian G. Mutz, Todd A. Ehlers, Martin Werner, Gerrit Lohmann, Christian Stepanek, and Jingmin Li
Earth Surf. Dynam., 6, 271–301, https://doi.org/10.5194/esurf-6-271-2018, https://doi.org/10.5194/esurf-6-271-2018, 2018
Short summary
Short summary
We use a climate model and statistics to provide an overview of regional climates from different times in the late Cenozoic. We focus on tectonically active mountain ranges in particular. Our results highlight significant changes in climates throughout the late Cenozoic, which should be taken into consideration when interpreting erosion rates. We also document the differences between model- and proxy-based estimates for late Cenozoic climate change in South America and Tibet.
Andrew D. Wickert
Earth Surf. Dynam., 4, 831–869, https://doi.org/10.5194/esurf-4-831-2016, https://doi.org/10.5194/esurf-4-831-2016, 2016
Short summary
Short summary
The ice sheets that once spread across northern North America dramatically changed the drainage basin areas and discharges of rivers across the continent. As these ice sheets retreated, starting around 19 500 years ago, they sent meltwater to the oceans, influencing climate and building a geologic record of deglaciation. This record can be used to evaluate ice-sheet reconstructions and build an improved history and understanding of past ice-sheet collapse across North America.
I. Beck, R. Ludwig, M. Bernier, T. Strozzi, and J. Boike
Earth Surf. Dynam., 3, 409–421, https://doi.org/10.5194/esurf-3-409-2015, https://doi.org/10.5194/esurf-3-409-2015, 2015
J. Braun, C. Voisin, A. T. Gourlan, and C. Chauvel
Earth Surf. Dynam., 3, 1–14, https://doi.org/10.5194/esurf-3-1-2015, https://doi.org/10.5194/esurf-3-1-2015, 2015
Short summary
Short summary
We have derived a simple solution to the stream power law equation governing the erosion of rapidly uplifting tectonic areas assuming that rainfall varies as a periodic function of time. We show that the erosional response of this forcing is characterized by an amplification of the resulting erosional flux variations as well as a time lag. We show how this time lag can be important in interpreting several geological observations.
A. Barkwith, C. W. Thomas, P. W. Limber, M. A. Ellis, and A. B. Murray
Earth Surf. Dynam., 2, 295–308, https://doi.org/10.5194/esurf-2-295-2014, https://doi.org/10.5194/esurf-2-295-2014, 2014
Cited articles
Bače, R., Svoboda, M., Pouska, V., Janda, P., and Červenka, J.:
Natural regeneration in Central-European subalpine spruce forests: Which logs
are suitable for seedling recruitment?, Forest Ecol. Manage., 266, 254–262,
https://doi.org/10.1016/j.foreco.2011.11.025, 2012. a
Bourrier, F., Dorren, L. K. A., and Berger, F.: Full Scale Field Tests On Rockfall Impacting Trees Felled Transverse To The Slope, in: Conference
proceedings/12th Congress Interpraevent, edited by: Koboltschnig, G. and
Huebl, J., International Research Society INTERPRAEVENT, Klagenfurt, 643–650, http://www.interpraevent.at/palm-cms/upload_files/Publikationen/Tagungsbeitraege/2012_2_643.pdf (last access: 14 December 2022), 2012. a
Brožová, N., Baggio, T., D'Agostino, V., Bühler, Y., and Bebi,
P.: Multiscale analysis of surface roughness for the improvement of natural
hazard modelling, Nat. Hazards Earth Syst. Sci., 21, 3539–3562,
https://doi.org/10.5194/nhess-21-3539-2021, 2021. a, b, c
Bühler, Y., Adams, M. S., Bösch, R., and Stoffel, A.: Mapping snow
depth in alpine terrain with unmanned aerial systems (UASs): potential and
limitations, The Cryosphere, 10, 1075–1088, https://doi.org/10.5194/tc-10-1075-2016, 2016. a
Bühler, Y., von Rickenbach, D., Stoffel, A., Margreth, S., Stoffel, L., and Christen, M.: Automated snow avalanche release area delineation – validation of existing algorithms and proposition of a new object-based approach for large-scale hazard indication mapping, Nat. Hazards Earth Syst. Sci., 18, 3235–3251, https://doi.org/10.5194/nhess-18-3235-2018, 2018. a
Bühler, Y., Bebi, P., Christen, M., Margreth, S., Stoffel, L., Stoffel, A., Marty, C., Schmucki, G., Caviezel, A., Kühne, R., Wohlwend, S., and Bartelt, P.: Automated avalanche hazard indication mapping on a statewide scale, Nat. Hazards Earth Syst. Sci., 22, 1825–1843, https://doi.org/10.5194/nhess-22-1825-2022, 2022. a
Caduff, M. E., Brožová, N., Kupferschmid, A. D., Krumm, F., and Bebi,
P.: How large-scale bark beetle infestations influence the protective effects
of forest stands against avalanches: A case study in the Swiss Alps, Foerst Ecol. Manage., 514, 120201, https://doi.org/10.1016/j.foreco.2022.120201, 2022. a, b, c, d
Catto, J. L., Ackerley, D., Booth, J. F., Champion, A. J., Colle, B. A., Pfahl, S., Pinto, J. G., Quinting, J. F., and Seiler, C.: The Future of Midlatitude Cyclones, Curr. Clim. Change Rep., 5, 407–420,
https://doi.org/10.1007/s40641-019-00149-4, 2019. a
Caviezel, A., Lu, G., Demmel, S. E., Ringenbach, A., Bühler, Y., Christen, M., and Bartelt, P.: RAMMS::ROCKFALL – a modern 3-dimensional simulation tool calibrated on real world data, in: vol. 19-223, 53rd US rock mechanics/geomechanics symposium, American Rock Mechanics Association,
https://www.dora.lib4ri.ch/wsl/islandora/object/wsl:22147 (last access: 14 December 2022), 2019a. a
Caviezel, A., Demmel, S. E., Ringenbach, A., Bühler, Y., Lu, G., Christen, M., Dinneen, C. E., Eberhard, L. A., von Rickenbach, D., and Bartelt, P.: Reconstruction of four-dimensional rockfall trajectories using remote sensing and rock-based accelerometers and gyroscopes, Earth Surf. Dynam., 7, 199–210, https://doi.org/10.5194/esurf-7-199-2019, 2019b. a
Caviezel, A., Ringenbach, A., Demmel, S. E., Dinneen, C. E., Krebs, N., Bühler, Y., Christen, M., Meyrat, G., Stoffel, A., Hafner, E., Eberhard, L. A., von Rickenbach, D., Simmler, K., Mayer, P., Niklaus, P. S., Birchler, T., Aebi, T., Cavigelli, L., Schaffner, M., Rickli, S., Schnetzler, C., Magno, M., Benini, L., and Bartelt, P.: The relevance of rock shape over mass–implications for rockfall hazard assessments, Nat. Commun., 12, 15, https://doi.org/10.1038/s41467-021-25794-y, 2021. a
Costa, M., Marchi, N., Bettella, F., Bolzon, P., Berger, F., and Lingua, E.:
Biological Legacies and Rockfall: The Protective Effect of a Windthrown
Forest, Forests, 12, 1141, https://doi.org/10.3390/f12091141, 2021. a
Dorren, L. K. A.: Rockyfor3D: Description of the complete 3D rockfall model, https://www.ecorisq.org/docs/Rockyfor3D_v5_2_EN.pdf (last access: 14 December 2022), 2016. a
Dorren, L. K. A. and Berger, F.: Stem breakage of trees and energy dissipation during rockfall impacts, Tree Physiol., 26, 63–71,
https://doi.org/10.1093/treephys/26.1.63, 2005. a, b, c, d
Dorren, L. K. A., Berger, F., Le Hir, C., Mermin, E., and Tardif, P.:
Mechanisms, effects and management implications of rockfall in forests,
Forest Ecol. Manage., 215, 183–195, https://doi.org/10.1016/j.foreco.2005.05.012, 2005. a
Dupire, S., Bourrier, F., Monnet, J.-M., Bigot, S., Borgniet, L., Berger, F.,
and Curt, T.: Novel quantitative indicators to characterize the protective
effect of mountain forests against rockfall, Ecol. Indic., 67, 98–107,
https://doi.org/10.1016/j.ecolind.2016.02.023, 2016. a
Dupire, S., Toe, D., Barré, J.-B., Bourrier, F., and Berger, F.: Harmonized mapping of forests with a protection function against rockfalls over European Alpine countries, Appl. Geogr., 120, 102221,
https://doi.org/10.1016/j.apgeog.2020.102221, 2020. a
ETAG 027: Guidline for European Technical Approval of Falling Rock
Protection Kits, https://www.eota.eu/en-GB/content/etags-used-as-ead/26/ (last access: 27 February 2018), 2013.
Feser, F., Barcikowska, M., Krueger, O., Schenk, F., Weisse, R., and Xia, L.:
Storminess over the North Atlantic and northwestern Europe – A review, Q. J. Roy. Meteorol. Soc., 141, 350–382, https://doi.org/10.1002/qj.2364, 2015. a
Frey, W. and Thee, P.: Avalanche protection of windthrow areas: A ten year
comparison of cleared and uncleared starting zones, For. Snow Landsc. Res., 77, 89–107, 2002. a
Fuhr, M., Bourrier, F., and Cordonnier, T.: Protection against rockfall along a maturity gradient in mountain forests, Forest Ecol. Manage., 354, 224–231,
https://doi.org/10.1016/j.foreco.2015.06.012, 2015. a
Gottschalk, S., Lin, M. C., and Manocha, D.: OBBTree: A Hierarchical Structure for Rapid Interference Detection, in: Proceedings of 23rd International Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'96), New Orleans, 171–180,
https://dl.acm.org/doi/pdf/10.1145/237170.237244 (last access: 14 December 2022), 1996. a
Hararuk, O., Kurz, W. A., and Didion, M.: Dynamics of dead wood decay in Swiss forests, Forest Ecosyst., 7, 770, https://doi.org/10.1186/s40663-020-00248-x, 2020. a
Harsch, M. A., Hulme, P. E., McGlone, M. S., and Duncan, R. P.: Are treelines
advancing? A global meta-analysis of treeline response to climate warming,
Ecol. Lett., 12, 1040–1049, https://doi.org/10.1111/j.1461-0248.2009.01355.x, 2009. a
IMIS: IMIS-Windstation “Schwander Grat”,
https://stationdocu.slf.ch/pdf/IMIS_GLA1_DE.pdf, last access: 26 February 2022. a
Jahn, J.: Entwaldung und Steinschlag, in: Schutz des Lebensraumes vor Hochwasser, Muren und Lawinen, Hochwasserbekämpfung Kärnten, Kärnten, 185–198, http://www.interpraevent.at/palm-cms/upload_files/Publikationen/Tagungsbeitraege/1988_1_185.pdf (last access: 20 December 2022), 1988. a
Jain, P., Tye, M. R., Paimazumder, D., and Flannigan, M.: Downscaling fire
weather extremes from historical and projected climate models, Climatic
Change, 163, 189–216, https://doi.org/10.1007/s10584-020-02865-5, 2020. a
Jönsson, A. M., Appelberg, G., Harding, S., and Bärring, L.:
Spatio-temporal impact of climate change on the activity and voltinism of the
spruce bark beetle, Ips typographus, Global Change Biol., 15, 486–499,
https://doi.org/10.1111/j.1365-2486.2008.01742.x, 2009. a
Kalberer, M., Ammann, M., and Jonsson, M.: Mechanische Eigenschaften der
Fichte: Experimente zur Analyse von Naturgefahren | Mechanical properties of Norway spruce: Experiments for the analysis of natural hazards, Schweiz. Z. Forstwesen, 158, 166–175, https://doi.org/10.3188/szf.2007.0166, 2007. a
Kulakowski, D., Seidl, R., Holeksa, J., Kuuluvainen, T., Nagel, T. A.,
Panayotov, M., Svoboda, M., Thorn, S., Vacchiano, G., Whitlock, C., Wohlgemuth, T., and Bebi, P.: A walk on the wild side: Disturbance dynamics
and the conservation and management of European mountain forest ecosystems,
Forest Ecol. Manage., 388, 120–131, https://doi.org/10.1016/j.foreco.2016.07.037, 2017. a
Kupferschmid Albisetti, A. D., Brang, P., Schönenberger, W., and Bugmann,
H.: Decay of Picea abies snag stands on steep mountain slopes, Forest Chron.,
79, 247–252, https://doi.org/10.5558/tfc79247-2, 2003. a, b, c
Lachat, T., Bouget, C., Bütler, R., and Müller, J.: Deadwood:
quantitative and qualitative requirements for the conservation of saproxylic
biodiversity, in: Integrative approaches as an opportunity for the conservation of forest biodiversity, edited by: Kraus, D. and Krumm, F.,
92–103, ISBN 978-952-5980-06-6, 2013. a, b
Lanfranconi, C., Sala, G., Frattini, P., Crosta, G. B., and Valagussa, A.:
Assessing the rockfall protection efficiency of forests at the regional scale, Landslides, 17, 2703–2721, https://doi.org/10.1007/s10346-020-01458-8, 2020. a
Leine, R. I., Schweizer, A., Christen, M., Glover, J., Bartelt, P., and Gerber, W.: Simulation of rockfall trajectories with consideration of rock shape, Multibody Syst. Dynam., 32, 241–271, https://doi.org/10.1007/s11044-013-9393-4, 2014. a, b, c, d
Leine, R. I., Capobianco, G., Bartelt, P., Christen, M., and Caviezel, A.:
Stability of rigid body motion through an extended intermediate axis theorem:
application to rockfall simulation, Multibody Syst. Dynam., 79, 444,
https://doi.org/10.1007/s11044-021-09792-y, 2021. a
Liu, G. and Li, J.: Research on the Effect of Tree Barriers on Rockfall Using a Three-Dimensional Discontinuous Deformation Analysis Method, Int. J. Comput. Meth., 28, 1950046, https://doi.org/10.1142/S0219876219500464, 2019. a
Loye, A., Jaboyedoff, M., and Pedrazzini, A.: Identification of potential
rockfall source areas at a regional scale using a DEM-based geomorphometric
analysis, Nat. Hazards Earth Syst. Sci., 9, 1643–1653,
https://doi.org/10.5194/nhess-9-1643-2009, 2009. a
Lu, G., Caviezel, A., Christen, M., Demmel, S. E., Ringenbach, A., Bühler, Y., Dinneen, C. E., Gerber, W., and Bartelt, P.: Modelling rockfall impact with scarring in compactable soils, Landslides, 64, 2353–2367, https://doi.org/10.1007/s10346-019-01238-z, 2019. a, b, c
Lu, G., Ringenbach, A., Caviezel, A., Sanchez, M., Christen, M., and Bartelt,
P.: Mitigation effects of trees on rockfall hazards: does rock shape matter?,
Landslides, 50, 1689, https://doi.org/10.1007/s10346-020-01418-2, 2020. a, b, c, d
Lundström, T., Jonsson, M. J., Volkwein, A., and Stoffel, M.: Reactions and energy absorption of trees subject to rockfall: a detailed assessment using a new experimental method, Tree Physiol., 29, 345–359,
https://doi.org/10.1093/treephys/tpn030, 2009. a
Maringer, J., Ascoli, D., Dorren, L., Bebi, P., and Conedera, M.: Temporal
trends in the protective capacity of burnt beech forests (Fagus sylvatica L.)
against rockfall, Eur. J. Forest Res., 135, 657–673, https://doi.org/10.1007/s10342-016-0962-y, 2016. a, b
Marty, M.: Lawinenschutz und Waldentwicklung auf der Windwurffläche
Disentis 29 Jahre nach Vivian, bachelor-thesis, ZHAW, Wädenswil,
https://doi.org/10.21256/zhaw-19274, 2019. a
Moemken, J., Reyers, M., Feldmann, H., and Pinto, J. G.: Future Changes of Wind Speed and Wind Energy Potentials in EURO-CORDEX Ensemble Simulations, J.
Geophys. Res.-Atmos., 123, 6373–6389, https://doi.org/10.1029/2018JD028473, 2018. a
Monnet, J.-M., Bourrier, F., Dupire, S., and Berger, F.: Suitability of
airborne laser scanning for the assessment of forest protection effect
against rockfall, Landslides, 14, 299–310, https://doi.org/10.1007/s10346-016-0687-5,
2017. a
Moos, C., Thomas, M., Pauli, B., Bergkamp, G., Stoffel, M., and Dorren, L.:
Economic valuation of ecosystem-based rockfall risk reduction considering
disturbances and comparison to structural measures, Sci. Total Environ., 697,
134077, https://doi.org/10.1016/j.scitotenv.2019.134077, 2019. a
Moos, C., Khelidj, N., Guisan, A., Lischke, H., and Randin, C. F.: A
quantitative assessment of rockfall influence on forest structure in the
Swiss Alps, Eur. J. Forest Res., 10, 578, https://doi.org/10.1007/s10342-020-01317-0, 2020. a
Mozny, M., Trnka, M., and Brázdil, R.: Climate change driven changes of
vegetation fires in the Czech Republic, Theor. Appl. Climatol., 143, 691–699, https://doi.org/10.1007/s00704-020-03443-6, 2021. a
Noël, F., Cloutier, C., Jaboyedoff, M., and Locat, J.: Impact-Detection
Algorithm That Uses Point Clouds as Topographic Inputs for 3D Rockfall
Simulations, Geosci. J., 11, 188, https://doi.org/10.3390/geosciences11050188, 2021. a
Olmedo, I., Bourrier, F., Bertrand, D., Berger, F., and Limam, A.: Discrete
element model of the dynamic response of fresh wood stems to impact, Eng. Struct., 120, 13–22, https://doi.org/10.1016/j.engstruct.2016.03.025, 2016. a
Olmedo, I., Bourrier, F., Bertrand, D., Berger, F., and Limam, A.: Dynamic
analysis of wooden rockfall protection structures subjected to impact loading
using a discrete element model, Eur. J. Environ. Civ. Eng., 24, 1430–1449,
https://doi.org/10.1080/19648189.2018.1472042, 2020. a
Pereira, D.: Wind Rose: Graph and table for Direction-Intensity data,
https://ch.mathworks.com/matlabcentral/fileexchange/47248-wind-rose, last access: 27 February 2022. a
Ringenbach, A., Bühler, Y., Stoffel, A., Kronenberg, M., Bebi, P., and
Caviezel, A.: Deadwood Generator, EnviDat [data set], https://doi.org/10.16904/envidat.357, 2022a. a
Ringenbach, A., Stihl, E., Bühler, Y., Bebi, P., Bartelt, P., Rigling, A., Christen, M., Lu, G., Stoffel, A., Kistler, M., Degonda, S., Simmler, K.,
Mader, D., and Caviezel, A.: Full-scale experiments to examine the role of
deadwood in rockfall dynamics in forests, Nat. Hazards Earth Syst. Sci., 22, 2433–2443, https://doi.org/10.5194/nhess-22-2433-2022, 2022b. a, b, c, d
Robbins, B. A., Wibowo, J. L., Holden, K. S., and Corcoran, M. K.: Development of Envelope Curves for Predicting Void Dimensions from Overturned Trees,
https://erdc-library.erdc.dren.mil/jspui/bitstream/11681/10381/1/ERDC-GSL-TR-14-27.pdf
(last access: 14 December 2022), 2014. a
Sandström, J., Bernes, C., Junninen, K., Lõhmus, A., Macdonald, E.,
Müller, J., and Jonsson, B. G.: Impacts of dead wood manipulation on the
biodiversity of temperate and boreal forests. A systematic review, J. Appl.
Ecol., 56, 1770–1781, https://doi.org/10.1111/1365-2664.13395, 2019. a
Sappington, J. M., Longshore, K. M., and Thomson, D. B.: Quantifying Landscape Ruggedness for Animal Habitat Analysis: A Case Study Using Bighorn Sheep in the Mojave Desert, J. Wildlife Manage., 71, 1419–1426, https://doi.org/10.2193/2005-723, 2007.
a
Scheidl, C., Heiser, M., Vospernik, S., Lauss, E., Perzl, F., Kofler, A.,
Kleemayr, K., Bettella, F., Lingua, E., Garbarino, M., Skudnik, M., Trappmann, D., and Berger, F.: Assessing the protective role of alpine
forests against rockfall at regional scale, Eur. J. Forest Res., 11, 969–980, https://doi.org/10.1007/s10342-020-01299-z, 2020. a
Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano,
G., Wild, J., Ascoli, D., Petr, M., Honkaniemi, J., Lexer, M. J., Trotsiuk,
V., Mairota, P., Svoboda, M., Fabrika, M., Nagel, T. A., and Reyer, C. P. O.:
Forest disturbances under climate change, Nat. Clim. Change, 7, 395–402,
https://doi.org/10.1038/nclimate3303, 2017. a, b, c, d
Shorohova, E. and Kapitsa, E.: Stand and landscape scale variability in the
amount and diversity of coarse woody debris in primeval European boreal
forests, Forest Ecol. Manage., 356, 273–284, https://doi.org/10.1016/j.foreco.2015.07.005, 2015. a
Sneed, E. D. and Folk, R. L.: Pebbles in the lower Colorado River, Texas, study in particle morfogenesis, J. Geol., 66, 114–150, 1958. a
Stadelmann, G., Bugmann, H., Wermelinger, B., and Bigler, C.: Spatial
interactions between storm damage and subsequent infestations by the European
spruce bark beetle, Forest Ecol. Manage., 318, 167–174,
https://doi.org/10.1016/j.foreco.2014.01.022, 2014. a
Stoffel, M., Wehrli, A., Kühne, R., Dorren, L. K. A., Perret, S., and
Kienholz, H.: Assessing the protective effect of mountain forests against
rockfall using a 3D simulation model, Forest Ecol. Manage., 225, 113–122,
https://doi.org/10.1016/j.foreco.2005.12.030, 2006. a
Stritih, A., Senf, C., Seidl, R., Grêt-Regamey, A., and Bebi, P.: The
impact of land-use legacies and recent management on natural disturbance
susceptibility in mountain forests, Forest Ecol. Manage., 484, 118950,
https://doi.org/10.1016/j.foreco.2021.118950, 2021. a, b
swisstopo: swissALTI3D: Das hoch aufgelöste Terrainmodell der Schweiz,
https://www.swisstopo.admin.ch/content/swisstopo-internet/de/geodata/height/alti3d/_jcr_content/contentPar/tabs_copy/items/dokumente/tabPar/downloadlist/downloadItems/846_1464690554132.download/swissALTI3D_detaillierte Produktinfo_201802_DE.pdf (last access: 11 August 2021), 2018. a, b
Wohlgemuth, T., Schwitter, R., Bebi, P., Sutter, F., and Brang, P.:
Post-windthrow management in protection forests of the Swiss Alps, Eur. J. Forest Res., 136, 1029–1040, https://doi.org/10.1007/s10342-017-1031-x, 2017. a
Short summary
The presented automatic deadwood generator (ADG) allows us to consider deadwood in rockfall simulations in unprecedented detail. Besides three-dimensional fresh deadwood cones, we include old woody debris in rockfall simulations based on a higher compaction rate and lower energy absorption thresholds. Simulations including different deadwood states indicate that a 10-year-old deadwood pile has a higher protective capacity than a pre-storm forest stand.
The presented automatic deadwood generator (ADG) allows us to consider deadwood in rockfall...