Articles | Volume 10, issue 2
https://doi.org/10.5194/esurf-10-279-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-10-279-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Signal response of the Swiss plate geophone monitoring system impacted by bedload particles with different transport modes
Zheng Chen
CORRESPONDING AUTHOR
Institute of Mountain Hazards and Environment, Chinese Academy of
Sciences, Chengdu, 610041, China
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
University of Chinese Academy of Sciences, Beijing, 100049, China
Siming He
Institute of Mountain Hazards and Environment, Chinese Academy of
Sciences, Chengdu, 610041, China
Tobias Nicollier
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
Lorenz Ammann
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
Alexandre Badoux
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
Dieter Rickenmann
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
Related authors
Zheng Chen, Siming He, Alexandre Badoux, and Dieter Rickenmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2525, https://doi.org/10.5194/egusphere-2024-2525, 2024
Short summary
Short summary
We developed a novel bedload monitoring system, which integrates phased microphone arrays and an accelerometer for enhanced performance. This monitoring system can be used to identify bedload particle impact locations on the system plate with precision using beamforming techniques applied to the generated microphone signals. Optimal use of multiple types of signals recorded by the monitoring system improves the accuracy of bedload size prediction.
Dieter Rickenmann, Lorenz Ammann, Tobias Nicollier, Stefan Boss, Bruno Fritschi, Gilles Antoniazza, Nicolas Steeb, Zheng Chen, Carlos Wyss, and Alexandre Badoux
Earth Surf. Dynam., 10, 1165–1183, https://doi.org/10.5194/esurf-10-1165-2022, https://doi.org/10.5194/esurf-10-1165-2022, 2022
Short summary
Short summary
The Swiss plate geophone system has been installed and tested in more than 20 steep gravel-bed streams. It is an indirect bedload transport measuring system. We compare the performance of this system with three alternative surrogate measuring systems, using calibration measurements with direct bedload samples from three field sites and an outdoor flume facility. Three of the four systems resulted in robust calibration relations between signal impulse counts and transported bedload mass.
Xiong Tang, Wei Liu, Siming He, Lei Zhu, Michel Jaboyedoff, Huanhuan Zhang, Yuqing Sun, and Zenan Huo
Geosci. Model Dev., 18, 4743–4758, https://doi.org/10.5194/gmd-18-4743-2025, https://doi.org/10.5194/gmd-18-4743-2025, 2025
Short summary
Short summary
The paper presents an explicit stabilized two-phase material point method (MPM) based on the one-point two-phase MPM scheme. The novelty of the work lies in the employment of stabilized techniques, including the strain smoothing method and the multi-field variational principle. With its effective and easy-to-implement stabilized techniques, the proposed model offers an effective and reliable approach for simulating both static and dynamic processes in solid–fluid porous media.
Claire C. Masteller, Joel P. L. Johnson, Dieter Rickenmann, and Jens M. Turowski
Earth Surf. Dynam., 13, 593–605, https://doi.org/10.5194/esurf-13-593-2025, https://doi.org/10.5194/esurf-13-593-2025, 2025
Short summary
Short summary
This paper presents a novel model that predicts how gravel riverbeds may evolve in response to differences in the frequency and severity of flood events. We test our model using a 23-year-long record of river flow and gravel transport from the Swiss Prealps. We find that our model reliably captures yearly patterns in gravel transport in this setting. Our new model is a major advance towards better predictions of river erosion that account for the flood history of a gravel-bed river.
Zheng Chen, Siming He, Alexandre Badoux, and Dieter Rickenmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2525, https://doi.org/10.5194/egusphere-2024-2525, 2024
Short summary
Short summary
We developed a novel bedload monitoring system, which integrates phased microphone arrays and an accelerometer for enhanced performance. This monitoring system can be used to identify bedload particle impact locations on the system plate with precision using beamforming techniques applied to the generated microphone signals. Optimal use of multiple types of signals recorded by the monitoring system improves the accuracy of bedload size prediction.
Dieter Rickenmann
Earth Surf. Dynam., 12, 11–34, https://doi.org/10.5194/esurf-12-11-2024, https://doi.org/10.5194/esurf-12-11-2024, 2024
Short summary
Short summary
Field measurements of the bedload flux with a high temporal resolution in a steep mountain stream were used to analyse the transport fluctuations as a function of the flow conditions. The disequilibrium ratio, a proxy for the solid particle concentration in the flow, was found to influence the sediment transport behaviour, and above-average disequilibrium conditions – associated with a larger sediment availability on the streambed – substantially affect subsequent transport conditions.
Nicolas Steeb, Virginia Ruiz-Villanueva, Alexandre Badoux, Christian Rickli, Andrea Mini, Markus Stoffel, and Dieter Rickenmann
Earth Surf. Dynam., 11, 487–509, https://doi.org/10.5194/esurf-11-487-2023, https://doi.org/10.5194/esurf-11-487-2023, 2023
Short summary
Short summary
Various models have been used in science and practice to estimate how much large wood (LW) can be supplied to rivers. This contribution reviews the existing models proposed in the last 35 years and compares two of the most recent spatially explicit models by applying them to 40 catchments in Switzerland. Differences in modelling results are discussed, and results are compared to available observations coming from a unique database.
Dieter Rickenmann, Lorenz Ammann, Tobias Nicollier, Stefan Boss, Bruno Fritschi, Gilles Antoniazza, Nicolas Steeb, Zheng Chen, Carlos Wyss, and Alexandre Badoux
Earth Surf. Dynam., 10, 1165–1183, https://doi.org/10.5194/esurf-10-1165-2022, https://doi.org/10.5194/esurf-10-1165-2022, 2022
Short summary
Short summary
The Swiss plate geophone system has been installed and tested in more than 20 steep gravel-bed streams. It is an indirect bedload transport measuring system. We compare the performance of this system with three alternative surrogate measuring systems, using calibration measurements with direct bedload samples from three field sites and an outdoor flume facility. Three of the four systems resulted in robust calibration relations between signal impulse counts and transported bedload mass.
Tobias Nicollier, Gilles Antoniazza, Lorenz Ammann, Dieter Rickenmann, and James W. Kirchner
Earth Surf. Dynam., 10, 929–951, https://doi.org/10.5194/esurf-10-929-2022, https://doi.org/10.5194/esurf-10-929-2022, 2022
Short summary
Short summary
Monitoring sediment transport is relevant for flood safety and river restoration. However, the spatial and temporal variability of sediment transport processes makes their prediction challenging. We investigate the feasibility of a general calibration relationship between sediment transport rates and the impact signals recorded by metal plates installed in the channel bed. We present a new calibration method based on flume experiments and apply it to an extensive dataset of field measurements.
Jacob Hirschberg, Alexandre Badoux, Brian W. McArdell, Elena Leonarduzzi, and Peter Molnar
Nat. Hazards Earth Syst. Sci., 21, 2773–2789, https://doi.org/10.5194/nhess-21-2773-2021, https://doi.org/10.5194/nhess-21-2773-2021, 2021
Short summary
Short summary
Debris-flow prediction is often based on rainfall thresholds, but uncertainty assessments are rare. We established rainfall thresholds using two approaches and find that 25 debris flows are needed for uncertainties to converge in an Alpine basin and that the suitable method differs for regional compared to local thresholds. Finally, we demonstrate the potential of a statistical learning algorithm to improve threshold performance. These findings are helpful for early warning system development.
Georgios Maniatis, Trevor Hoey, Rebecca Hodge, Dieter Rickenmann, and Alexandre Badoux
Earth Surf. Dynam., 8, 1067–1099, https://doi.org/10.5194/esurf-8-1067-2020, https://doi.org/10.5194/esurf-8-1067-2020, 2020
Short summary
Short summary
One of the most interesting problems in geomorphology concerns the conditions that mobilise sediments grains in rivers. Newly developed
smartpebbles allow for the measurement of those conditions directly if a suitable framework for analysis is followed. This paper connects such a framework with the physics used to described sediment motion and presents a series of laboratory and field smart-pebble deployments. Those quantify how grain shape affects the motion of coarse sediments in rivers.
Cited articles
Abbott, J. E. and Francis, J. R. D.: Saltation and suspension trajectories of solid grains in a water stream, Philos. T. Roy. Soc. A, 284, 225–254, https://doi.org/10.1098/rsta.1977.0009, 1977.
Ancey, C., Davison, A. C., Böhm, T., Jodeau, M., and Frey, P.: Entrainment and motion of coarse particles in a shallow water stream down a
steep slope, J. Fluid Mech., 595, 83–114, https://doi.org/10.1017/S0022112007008774, 2008.
Antoniazza, G., Nicollier, T., Wyss, C. R., Boss, S., and Rickenmann, D.:
Bedload transport monitoring in Alpine rivers: variability in Swiss plate
geophone response, Sensors, 20, 4089, https://doi.org/10.3390/s20154089, 2020.
Auel, C., Albayrak, I., Sumi, T., and Boes, R. M.: Sediment transport in
high-speed flows over a fixed bed: 1. Particle dynamics, Earth. Surf. Proc. Land., 42, 1365–1383, https://doi.org/10.1002/esp.4128, 2017a.
Auel, C., Albayrak, I., Sumi, T., and Boes, R. M.: Sediment transport in
high-speed flows over a fixed bed: 2. Particle impacts and abrasion prediction, Earth. Surf. Proc. Land., 42, 1384–1396, https://doi.org/10.1002/esp.4132, 2017b.
Bakker, M., Gimbert, F., Geay, T., Misset, C., Zanker, S., and Recking, A.:
Field application and validation of a seismic bedload transport model, J.
Geophys. Res.-Earth, 125, e2019JF005416, https://doi.org/10.1029/2019JF005416, 2020.
Barrière, J., Krein, A., Oth, A., and Schenkluhn, R.: An advanced signal
processing technique for deriving grain size information of bedload transport from impact plate vibration measurements, Earth. Surf. Proc. Land., 40, 913–924, https://doi.org/10.1002/esp.3693, 2015.
Barton, J. S., Slingerland, R. L., Pittman, S., and Gabrielson, T. B.: Passive acoustic monitoring of coarse bedload transport on the Trinity River, in: Eighth Federal Interagency Sedimentation Conference, 2–6 April 2006,
627–634, https://pubs.usgs.govVisc/FISC_1947-2006/pdf/1st-7thFISCs-CD/8thFISC/Session 9C-3_BartonEtAl.pdf (last access: 23 March 2022), 2006.
Barton, J. S., Slingerland, R. L., Pittman, S., and Gabrielson, T. B.: Monitoring coarse bedload transport with passive acoustic instrumentation: A
field study, US Geol. Surv. Sci. Investig. Rep. 5091, US Geological Surve, 14 pp., https://pubs.usgs.gov/sir/2010/5091/papers/Barton.pdf (last access: 23 March 2022), 2010.
Beylich, A. A. and Laute, K.: Combining impact sensor field and laboratory flume measurements with other techniques for studying fluvial bedload transport in steep mountain streams, Geomorphology, 218, 72–87,
https://doi.org/10.1016/j.geomorph.2013.09.004, 2014.
Bogen, J. and Møen, K.: Bed load measurements with a new passive acoustic sensor, in: Erosion and Sediment Transport Measurement in Rivers: Trends and Explanation, IAHS Publications, 283, 181–182,
https://iahs.info/uploads/dms/iahs_283_181.pdf (last access: 23 March 2022), 2003.
Bunte, K., Abt, S. R., Potyondy, J. P., and Ryan, S. E.: Measurement of coarse gravel and cobble transport using portable bedload traps, J. Hydraul.
Eng., 130, 879–893, https://doi.org/10.1061/(ASCE)0733-9429(2004)130:9(879), 2004.
Burtin, A., Bollinger, L., Vergne, J., Cattin, R., and Nábělek, J. L.: Spectral analysis of seismic noise induced by rivers: A new tool to
monitor spatiotemporal changes in stream hydrodynamics, J. Geophys. Res.-Solid, 113, B05301, https://doi.org/10.1029/2007JB005034, 2008.
Burtin, A., Vergne, J., Rivera, L., and Dubernet, P.: Location of river-induced seismic signal from noise correlation functions, Geophys. J.
Int., 182, 1161–1173, https://doi.org/10.1111/j.1365-246X.2010.04701.x, 2010.
Burtin, A., Cattin, R., Bollinger, L., Vergne, J., Steer, P., Robert, A.,
Findling, N., and Tiberi, C.: Towards the hydrologic and bed load monitoring
from high–frequency seismic noise in a braided river: The “torrent de St Pierre”, French Alps, J. Hydrol., 408, 43–53, https://doi.org/10.1016/j.jhydrol.2011.07.014, 2011.
Camenen, B., Jaballah, M., Geay, T., Belleudy, P., Laronne, J. B., and Laskowski, J. P.: Tentative measurements of bedload transport in an energetic alpine gravel bed river, in: River flow, September 2012, 379–386,
https://hal.inrae.fr/hal--02597879 (last access: 23 March 2022), 2012.
Cassel, M., Lavé, J., Recking, A., Malavoi, J. R., and Piégay, H.:
Bedload transport in rivers, size matters but so does shape, Sci. Rep., 11,
1–11, https://doi.org/10.1038/s41598-020-79930-7, 2021.
Chatanantavet, P.: Physically-based models of bedrock incision processes in
mountain streams, PhD thesis, University of Minnesota, Minneapolis, USA,
210 pp., https://ui.adsabs.harvard.edu/abs/2007PhDT.......214C/abstract, last access: 23 March 2022, ISBN 9780549308034, 2007.
Chatanantavet, P., Whipple, K. X., Adams, M. A., and Lamb, M. P.: Experimental study on coarse grain saltation dynamics in bedrock channels, J. Geophys. Res.-Earth, 118, 1161–1176, https://doi.org/10.1002/jgrf.20053, 2013.
Chen, Z., He, S., Nicollier, T., Ammann, L., Badoux, A., and Rickenmann, D.:
Controlled experiments and finite element simulations with the Swiss plate
geophone bedload monitoring system: particle size identification and transport mode, in: EGU General Assembly 2021, online, 19–30 April 2021,
EGU21-2078, https://doi.org/10.5194/egusphere-egu21-2078, 2021.
Chen, Z., He, S., Nicollier, T., Ammann, L., Badoux, A., and Rickenmann, D.:
Finite element modelling of the Swiss plate geophone bedload monitoring system, J. Hydraul. Res., accepted, 2022.
Childers, D.: Field comparisons of six pressure–difference bedload samplers
in high–energy flow, US Department of the Interior, US Geological Survey,
71 pp., http://vulcan.wr.usgs.gov/Volcanoes/ (last access: 23 March 2022), 1999.
Conevski, S., Ruther, N., Guerrero, M., and Rennie, C.: Laboratory monitoring of bedload transport rates using hydro-acoustic techniques (ADCP), in:
Proceedings of the 38th IAHR World Congress, September 2019, Panama city, Panama, 1–6, https://doi.org/10.3850/38WC092019-1594, 2019.
Emmett, W. W.: A field calibration of the sediment–trapping characteristics
of the Helley–Smith bedload sampler, US Government Printing Office, 54 pp., https://doi.org/10.3133/pp1139, 1980.
Farin, M., Tsai, V. C., Lamb, M. P., and Allstadt, K. E.: A physical model of the high-frequency seismic signal generated by debris flows, Earth. Surf. Proc. Land., 44, 2529–2543, https://doi.org/10.1002/esp.4677, 2019.
Fernandez Luque, R. and Van Beek, R.: Erosion and transport of bed-load
sediment, J. Hydraul. Res., 14, 127-144, https://doi.org/10.1080/00221687609499677, 1976.
Gaillard, A.: Laboratory experiments to develop a testing device for the
geophone bedload transport measuring system, Bachelor thesis, University of
Neuchâtel, Neuchâtel, Switzerland, 19 pp., 2018.
Geay, T., Belleudy, P., Gervaise, C., Habersack, H., Aigner, J., Kreisler, A., Seiz, H., and Laronne, J. B.: Passive acoustic monitoring of bed load
discharge in a large gravel bed river, J. Geophys. Res.-Solid, 122, 528–545, https://doi.org/10.1002/2016JF004112, 2017.
Geay, T., Zanker, S., Misset, C., and Recking, A.: Passive Acoustic Measurement of Bedload Transport: Toward a Global Calibration Curve?, J. Geophys. Res.-Earth, 125, e2019JF005242, https://doi.org/10.1029/2019JF005242, 2020.
Gimbert, F., Fuller, B. M., Lamb, M. P., Tsai, V. C., and Johnson, J. P.: Particle transport mechanics and induced seismic noise in steep flume
experiments with accelerometer-embedded tracers, Earth. Surf. Proc. Land., 44, 219–241, https://doi.org/10.1002/esp.4495, 2019.
Govi, M., Maraga, F., and Moia, F.: Seismic detectors for continuous bed
load monitoring in a gravel stream, Hydrolog. Sci. J., 38, 123–132,
https://doi.org/10.1080/02626669309492650, 1993.
Gray, J. R., Laronne, J. B., and Marr, J. D.: Bedload–surrogate monitoring
technologies, US Department of the Interior, US Geological Survey, 37 pp., https://pubs.usgs.gov/sir/2010/5091/ (last access: 23 March 2022), 2010.
Habersack, H. M. and Laronne, J. B.: Evaluation and improvement of bed load
discharge formulas based on Helley–Smith sampling in an alpine gravel bed
river, J. Hydraul. Eng., 128, 484-499, https://doi.org/10.1061/(ASCE)0733-9429(2002)128:5(484), 2002.
Hayward, J. A.: Hydrology and stream sediments in a mountain catchment,
Lincoln College, Tussock Grasslands and Mountain Lands Institute,
http://researcharchive.lincoln.ac.nz/handle/10182/5664 (last access: 23 March 2022), 1980.
Helley, E. J., and Smith, W.: Development and calibration of a pressure–difference bedload sampler, US Department of the Interior,
Geological Survey, Water Resources Division, 38 pp., https://xs.dailyheadlines.cc/books?hl=zh-CN&lr=&id=c6JTAAAAYAAJ&oi=fnd&pg=PA1&ots=_6LwGxeZr3&sig=TWoJa5WLyQJZxVOH0cN9VmJVz1w (last access: 23 March 2022), 1971.
Hsu, L., Finnegan, N. J., and Brodsky, E. E.: A seismic signature of river
bedload transport during storm events, Geophys. Res. Lett., 38, L13407, https://doi.org/10.1029/2011GL047759, 2011.
Hu, C., and Hui, Y.: Bed-load transport. I: Mechanical characteristics, J.
Hydraul. Eng., 122, 245–254, https://doi.org/10.1061/(ASCE)0733-9429(1996)122:5(245), 1996.
Ishibashi, T. and Isobe, A.: Hydraulic study on the protection of erosion of sand flush channel, CRIEPI – Central Research Institute of Electric Power Industry, Rep. 67104, 1968.
Johnson, K. L.: Contact mechanics, Cambridge University Press, UK, ISBN 0521255767, 1985.
Julien, P. Y. and Bounvilay, B.: Velocity of rolling bed load particles, J.
Hydraul. Eng., 139, 177–186, https://doi.org/10.1061/(ASCE)HY.1943-7900.0000657, 2013.
Krein, A., Klinck, H., Eiden, M., Symader, W., Bierl, R., Hoffmann, L., and
Pfister, L.: Investigating the transport dynamics and the properties of bedload material with a hydro-acoustic measuring system, Earth. Surf. Proc. Land., 33, 152–163, https://doi.org/10.1002/esp.1576, 2008.
Lajeunesse, E., Malverti, L., and Charru, F.: Bed load transport in turbulent flow at the grain scale: experiments and modelling, J. Geophys. Res.-Earth,
115, F04001, https://doi.org/10.1061/(ASCE)HY.1943-7900.0000657, 2010.
Lee, H. Y. and Hsu, I. S.: Investigation of saltating particle motions, J.
Hydraul. Eng., 120, 831–845, https://doi.org/10.1061/(ASCE)0733-9429(1994)120:7(831), 1994.
LSTC: LS–DYNA keyword user's manual, Livermore Software Technology Corporation, Livermore, California, http://www.lstc.com/ (last access: 18 January 2020), 2014.
Mizuyama, T., Oda, A., Laronne, J. B., Nonaka, M., and Matsuoka, M.: Laboratory tests of a Japanese pipe geophone for continuous acoustic monitoring of coarse bedload, US Geological Survey Scientific Investigations
Report 5091, US Geological Survey, 17 pp., https://www.researchgate.net/publication/266071395 (last access: 23 March 2022), 2010.
Møen, K. M., Bogen, J., Zuta, J. F., Ade, P. K., and Esbensen, K.:
Bedload measurement in rivers using passive acoustic sensors, US Geological
Survey Scientific Investigations Report 5091, US Geological Survey, 17 pp., https://www.researchgate.net/publication/267238644 (last access: 23 March 2022), 2010.
Nicollier, T., Rickenmann, D., and Hartlieb, A.: Calibration of the Swiss
plate geophone system at the Albula field site with direct bedload samples
and comparison with controlled flume experiments, in: SEDHYD 2019 Conference,
Federal Interagency Sedimentation and Hydrologic, Modeling Conference, 24–28 June 2019, Reno, USA, 345 pp., https://mediatum.ub.tum.de/1539763 (last access: 23 March 2022), 2019.
Nicollier, T., Rickenmann, D., Boss, S., Travaglini, E., and Hartlieb, A.:
Calibration of the Swiss plate geophone system at the Zinal field site with
direct bedload samples and results from controlled flume experiments, River
Flow 2020, in: Proceedings of the 10th Conference on Fluvial Hydraulics, 7–10 July 2020, Delft, the Netherlands, 1–8, https://doi.org/10.1201/b22619-127, 2020.
Nicollier, T., Rickenmann, D., and Hartlieb, A.: Field and flume measurements with the impact plate: Effect of bedload grain-size distribution on signal response, Earth. Surf. Proc. Land., 46, 1504–1520, https://doi.org/10.1002/esp.5117, 2021a.
Nicollier, T., Antoniazza, G., Rickenmann, D., and Hartlieb, A., Kirchner, J. W.: Improving the calibration of impact plate bedload monitoring systems
by filtering out acoustic signals from extraneous particle impacts, ESSOAr
(preprint), 13 August 2021, https://doi.org/10.1002/essoar.10507726.2, 2021b.
Rennie, C. D., Vericat, D., Williams, R. D., Brasington, J., and Hicks, M.:
Calibration of acoustic doppler current profiler apparent bedload velocity
to bedload transport rate, in: Gravel-Bed Rivers: Processes and Disasters,
edited by: Tsutsumi, D. and Laronne, J. B., Wiley, Blackwell, Oxford, UK,
209–233, https://doi.org/10.1002/9781118971437.ch8, 2017.
Rickenmann, D.: Methods for the quantitative assessment of channel processes
in torrents (steep streams), CRC Press, ISBN 978-1-138-02961-3,
ISBN 978-1-4987-7662-2, 2016.
Rickenmann, D.: Bed–load transport measurements with geophones and other
passive acoustic methods, J. Hydraul. Eng., 143, 03117004,
https://doi.org/10.1061/(ASCE)HY.1943-7900.0001300, 2017.
Rickenmann, D.: Effect of sediment supply on cyclic fluctuations of the
disequilibrium ratio and threshold transport discharge, inferred from
bedload transport measurements over 27 years at the Swiss Erlenbach stream,
Water Resour. Res., 56, e2020WR027741, https://doi.org/10.1029/2020WR027741, 2020.
Rickenmann, D. and Fritschi, B.: Bedload transport measurements with impact
plate geophones in two Austrian mountain streams (Fischbach and Ruetz): system calibration, grain size estimation, and environmental signal pick-up, Earth Surf. Dynam., 5, 669–687, https://doi.org/10.5194/esurf-5-669-2017, 2017.
Rickenmann, D. and McArdell, B. W.: Continuous measurement of sediment transport in the Erlenbach stream using piezoelectric bedload impact sensors, Earth. Surf. Proc. Land., 32, 1362–1378, https://doi.org/10.1002/esp.1478, 2007.
Rickenmann, D., Turowski, J. M., Fritschi, B., Klaiber, A., and Ludwig, A.:
Bedload transport measurements at the Erlenbach stream with geophones and
automated basket samplers, Earth. Surf. Proc. Land., 37, 1000–1011,
https://doi.org/10.1002/esp.3225, 2012.
Rickenmann, D., Turowski, J. M., Fritschi, B., Wyss, C., Laronne, J., Barzilai, R., Reid, I., Kreisler, A., Aigner, J., Seitz, H., and Habersack, H.: Bedload transport measurements with impact plate geophones: comparison of sensor calibration in different gravel-bed streams, Earth. Surf. Proc. Land., 39, 928–942, https://doi.org/10.1002/esp.3499, 2014.
Rigby, J. R., Kuhnle, R. A., Goodwiller, B. T., Nichols, M. H., Carpenter, W. O., Wren, D. G., and Chambers, J. P.: Sediment–generated noise (SGN): Comparison with physical bed load measurements in a small semi-arid
watershed, in: SEDHYD Conference, April 2015, 19–23, https://www.ars.usda.gov/research/publications/publication/?seqNo115=313726
(last access: 22 March 2022), 2015.
Rigby, J. R., Wren, D. G., and Kuhnle, R. A.: Passive acoustic monitoring of
bed load for fluvial applications, J. Hydraul. Eng., 142, 02516003,
https://doi.org/10.1061/(ASCE)HY.1943-7900.0001122, 2016.
Roth, D. L., Finnegan, N. J., Brodsky, E. E., Rickenmann, D., Turowski, J. M., Badoux, A., and Gimbert, F.: Bed load transport and boundary roughness
changes as competing causes of hysteresis in the relationship between river
discharge and seismic amplitude recorded near a steep mountain stream, J.
Geophys. Res.-Earth, 122, 1182–1200, https://doi.org/10.1002/2016JF004062, 2017.
Ryan, S. E., Porth, L. S., and Troendle, C. A.: Coarse sediment transport in
mountain streams in Colorado and Wyoming, USA, Earth. Surf. Proc. Land., 30, 269–288, https://doi.org/10.1002/esp.1128, 2005.
Schneider, J. M., Rickenmann, D., Turowski, J. M., Bunte, K., and Kirchner, J. W.: Applicability of bed load transport models for mixed-size sediments in steep streams considering macro-roughness, Water Resour. Res., 51, 5260–5283, https://doi.org/10.1002/2014WR016417, 2015.
Sekine, M. and Kikkawa, H.: Mechanics of saltating grains II, J. Hydraul. Eng., 118, 536–558, https://doi.org/10.1061/(ASCE)0733-9429(1992)118:4(536), 1992.
Shahmohammadi, R., Afzalimehr, H., and Sui, J.: Assessment of Critical Shear
Stress and Threshold Velocity in Shallow Flow with Sand Particles, Water, 13, 994, https://doi.org/10.3390/w13070994, 2021.
Thorne, P. D.: The measurement of acoustic noise generated by moving artificial sediments, J. Acoust. Soc. Am., 78, 1013–1023, https://doi.org/10.1121/1.393018, 1985.
Thorne, P. D.: Laboratory and marine measurements on the acoustic detection of sediment transport, J. Acoust. Soc., 80, 899–910, https://doi.org/10.1121/1.393913, 1986.
Thorne, P. D.: An overview of underwater sound generated by interparticle collisions and its application to the measurements of coarse sediment bedload transport, Earth Surf. Dynam., 2, 531–543, https://doi.org/10.5194/esurf-2-531-2014, 2014.
Tsai, V. C., Minchew, B., Lamb, M. P., and Ampuero, J. P.: A physical model
for seismic noise generation from sediment transport in rivers, Geophys. Res. Lett., 39, 1–6, https://doi.org/10.1029/2011GL050255, 2012.
Tsakiris, A. G., Papanicolaou, A. T. N., and Lauth, T. J.: Signature of bedload particle transport mode in the acoustic signal of a geophone, J. Hydraul. Res., 52, 185–204, https://doi.org/10.1080/00221686.2013.876454, 2014.
Turowski, J. M. and Rickenmann, D.: Tools and cover effects in bedload
transport observations in the Pitzbach, Austria, Earth. Surf. Proc. Land., 34, 26–37, https://doi.org/10.1002/esp.1686, 2009.
Turowski, J. M., Böckli, M., Rickenmann, D., and Beer, A. R.: Field
measurements of the energy delivered to the channel bed by moving bed load
and links to bedrock erosion, J. Geophys. Res.-Earth, 118, 2438–2450, https://doi.org/10.1002/2013JF002765, 2013.
Turowski, J. M., Wyss, C. R., and Beer, A. R.: Grain size effects on energy
delivery to the streambed and links to bedrock erosion, Geophys. Res. Lett.,
42, 1775–1780, https://doi.org/10.1002/2015GL063159, 2015.
Vasile, G.: Vibration data processing for bedload monitoring in underwater
environments, Remote Sens., 12, 2797, https://doi.org/10.3390/rs12172797, 2020.
Wyss, C. R., Rickenmann, D., Fritschi, B., Turowski, J. M., Weitbrecht, V.,
and Boes, R. M.: Bedload grain size estimation from the indirect monitoring
of bedload transport with Swiss plate geophones at the Erlenbach stream,
in: River Flow 2014, 1907–1912, https://www.researchgate.net/publication/265515326 (last access: 23 March 2022), 2014.
Wyss, C. R., Rickenmann, D., Fritschi, B., Turowski, J. M., Weitbrecht, V.,
and Boes, R. M.: Laboratory flume experiments with the Swiss plate geophone
bed load monitoring system: 1. Impulse counts and particle size identification, Water Resour. Res., 52, 7744–7759, https://doi.org/10.1002/2015WR018555, 2016a.
Wyss, C. R., Rickenmann, D., Fritschi, B., Turowski, J. M., Weitbrecht, V.,
Travaglini, E., Bardou, E., and Boes, R. M.: Laboratory flume experiments
with the Swiss plate geophone bed load monitoring system: 2. Application to
field sites with direct bed load samples, Water Resour. Res., 52, 7760–7778, https://doi.org/10.1002/2016WR019283, 2016b.
Wyss, C. R., Rickenmann, D., Fritschi, B., Turowski, J. M., Weitbrecht, V., and Boes, R. M.: Measuring bed load transport rates by grain–size fraction
using the Swiss plate geophone signal at the Erlenbach, J. Hydraul. Eng., 142, 04016003, https://doi.org/10.1061/(ASCE)HY.1943-7900.0001090, 2016c.
Short summary
Bedload flux quantification remains challenging in river dynamics due to variable transport modes. We used a passive monitoring device to record the acoustic signals generated by the impacts of bedload particles with different transport modes, and established the relationship between the triggered signals and bedload characteristics. The findings of this study could improve our understanding of the monitoring system and bedload transport process, and contribute to bedload size classification.
Bedload flux quantification remains challenging in river dynamics due to variable transport...