Articles | Volume 10, issue 3
https://doi.org/10.5194/esurf-10-493-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-10-493-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spatio-temporal variability and controlling factors for postglacial denudation rates in the Dora Baltea catchment (western Italian Alps)
Institute of Geological Sciences, University of Bern, Bern, 3012,
Switzerland
Oeschger Centre for Climate Change Research, University of Bern, Bern,
3012, Switzerland
Invited contribution by Elena Serra, recipient of the EGU Geomorphology Outstanding Student Poster and PICO Award 2019.
Pierre G. Valla
University Grenoble Alps, University Savoie Mont Blanc, CNRS, IRD,
IFSTTAR, ISTerre, Grenoble, 38000, France
Institute of Geological Sciences, University of Bern, Bern, 3012,
Switzerland
Oeschger Centre for Climate Change Research, University of Bern, Bern,
3012, Switzerland
Romain Delunel
Université Lumière Lyon 2, CNRS, UMR 5600 EVS, Lyon, 69635, France
Natacha Gribenski
Institute of Geological Sciences, University of Bern, Bern, 3012,
Switzerland
Oeschger Centre for Climate Change Research, University of Bern, Bern,
3012, Switzerland
Marcus Christl
Laboratory of Ion Beam Physics, Swiss Federal Institute of Technology
Zurich (ETHZ), Zurich, 8093, Switzerland
Naki Akçar
Institute of Geological Sciences, University of Bern, Bern, 3012,
Switzerland
Related authors
No articles found.
Niklas Kappelt, Eric Wolff, Marcus Christl, Christof Vockenhuber, Philip Gautschi, and Raimund Muscheler
Clim. Past, 21, 1585–1594, https://doi.org/10.5194/cp-21-1585-2025, https://doi.org/10.5194/cp-21-1585-2025, 2025
Short summary
Short summary
By measuring the radioactive decay of atmospherically produced 36Cl and 10Be in an ice core drilled in West Antarctica, we were able to determine the age of the deepest sample close to bedrock to be about 550 thousand years old. This means that the ice in this location, known as Skytrain Ice Rise, has survived several warm periods in the past, at least since marine isotope stage 11.
Chantal Schmidt, David Mair, Naki Akçar, Marcus Christl, Negar Haghipour, Christof Vockenhuber, Philip Gautschi, Brian McArdell, and Fritz Schlunegger
EGUsphere, https://doi.org/10.5194/egusphere-2025-3055, https://doi.org/10.5194/egusphere-2025-3055, 2025
This preprint is open for discussion and under review for Earth Surface Dynamics (ESurf).
Short summary
Short summary
Our study examines erosion in a small, pre-Alpine basin by using cosmogenic nuclides in river sediments. Based on a dense measuring network we were able to distinguish two main zones: an upper zone with slow erosion of surface material, and a steeper, lower zone where faster erosion is driven by landslides. The data suggests that sediment has been constantly produced over thousands of years, indicating a stable, long-term balance between contrasting erosion processes.
Janet C. Richardson, Veerle Vanacker, David M. Hodgson, Marcus Christl, and Andreas Lang
Earth Surf. Dynam., 13, 315–339, https://doi.org/10.5194/esurf-13-315-2025, https://doi.org/10.5194/esurf-13-315-2025, 2025
Short summary
Short summary
Pediments are long flat surfaces that extend outwards from the foot of mountains; within South Africa they are regarded as ancient landforms that can give key insights into landscape and mantle dynamics. Cosmogenic nuclide dating has been incorporated with geological (soil formation) and geomorphological (river incision) evidence, which shows that the pediments are long-lived features beyond the ages reported by cosmogenic nuclide dating.
Anne-Marie Wefing, Annabel Payne, Marcel Scheiwiller, Christof Vockenhuber, Marcus Christl, Toste Tanhua, and Núria Casacuberta
EGUsphere, https://doi.org/10.5194/egusphere-2025-1322, https://doi.org/10.5194/egusphere-2025-1322, 2025
Short summary
Short summary
Here we used the anthropogenic radionuclides I-129 and U-236 as tracers for Atlantic Water circulation in the Arctic Ocean. New data collected in 2021 allowed to assess the distribution of Atlantic Water and mixing with Pacific-origin water in the surface layer in that year. By using historical tracer data from 2011 to 2021, we looked into temporal changes of the circulation and found slightly older waters in the central Arctic Ocean in 2021 compared to 2015.
Chiara I. Paleari, Florian Mekhaldi, Tobias Erhardt, Minjie Zheng, Marcus Christl, Florian Adolphi, Maria Hörhold, and Raimund Muscheler
Clim. Past, 19, 2409–2422, https://doi.org/10.5194/cp-19-2409-2023, https://doi.org/10.5194/cp-19-2409-2023, 2023
Short summary
Short summary
In this study, we test the use of excess meltwater from continuous flow analysis from a firn core from Greenland for the measurement of 10Be for solar activity reconstructions. We show that the quality of results is similar to the measurements on clean firn, which opens the possibility to obtain continuous 10Be records without requiring large amounts of clean ice. Furthermore, we investigate the possibility of identifying solar storm signals in 10Be records from Greenland and Antarctica.
Catharina Dieleman, Philip Deline, Susan Ivy Ochs, Patricia Hug, Jordan Aaron, Marcus Christl, and Naki Akçar
EGUsphere, https://doi.org/10.5194/egusphere-2023-1873, https://doi.org/10.5194/egusphere-2023-1873, 2023
Preprint withdrawn
Short summary
Short summary
Valleys in the Alps are shaped by glaciers, rivers, mass movements, and slope processes. An understanding of such processes is of great importance in hazard mitigation. We focused on the evolution of the Frébouge cone, which is composed of glacial, debris flow, rock avalanche, and snow avalanche deposits. Debris flows started to form the cone prior to ca. 2 ka ago. In addition, the cone was overrun by a 10 Mm3 large rock avalanche at 1.3 ± 0.1 ka and by the Frébouge glacier at 300 ± 40 a.
Giulia Sinnl, Florian Adolphi, Marcus Christl, Kees C. Welten, Thomas Woodruff, Marc Caffee, Anders Svensson, Raimund Muscheler, and Sune Olander Rasmussen
Clim. Past, 19, 1153–1175, https://doi.org/10.5194/cp-19-1153-2023, https://doi.org/10.5194/cp-19-1153-2023, 2023
Short summary
Short summary
The record of past climate is preserved by several archives from different regions, such as ice cores from Greenland or Antarctica or speleothems from caves such as the Hulu Cave in China. In this study, these archives are aligned by taking advantage of the globally synchronous production of cosmogenic radionuclides. This produces a new perspective on the global climate in the period between 20 000 and 25 000 years ago.
Robert Mulvaney, Eric W. Wolff, Mackenzie M. Grieman, Helene H. Hoffmann, Jack D. Humby, Christoph Nehrbass-Ahles, Rachael H. Rhodes, Isobel F. Rowell, Frédéric Parrenin, Loïc Schmidely, Hubertus Fischer, Thomas F. Stocker, Marcus Christl, Raimund Muscheler, Amaelle Landais, and Frédéric Prié
Clim. Past, 19, 851–864, https://doi.org/10.5194/cp-19-851-2023, https://doi.org/10.5194/cp-19-851-2023, 2023
Short summary
Short summary
We present an age scale for a new ice core drilled at Skytrain Ice Rise, an ice rise facing the Ronne Ice Shelf in Antarctica. Various measurements in the ice and air phases are used to match the ice core to other Antarctic cores that have already been dated, and a new age scale is constructed. The 651 m ice core includes ice that is confidently dated to 117 000–126 000 years ago, in the last interglacial. Older ice is found deeper down, but there are flow disturbances in the deeper ice.
Nathan Vandermaelen, Koen Beerten, François Clapuyt, Marcus Christl, and Veerle Vanacker
Geochronology, 4, 713–730, https://doi.org/10.5194/gchron-4-713-2022, https://doi.org/10.5194/gchron-4-713-2022, 2022
Short summary
Short summary
We constrained deposition phases of fluvial sediments (NE Belgium) over the last 1 Myr with analysis and modelling of rare isotopes accumulation within sediments, occurring as a function of time and inverse function of depth. They allowed the determination of three superposed deposition phases and intercalated non-deposition periods of ~ 40 kyr each. These phases correspond to 20 % of the sediment age, which highlights the importance of considering deposition phase when dating fluvial sediments.
Natacha Gribenski, Marissa M. Tremblay, Pierre G. Valla, Greg Balco, Benny Guralnik, and David L. Shuster
Geochronology, 4, 641–663, https://doi.org/10.5194/gchron-4-641-2022, https://doi.org/10.5194/gchron-4-641-2022, 2022
Short summary
Short summary
We apply quartz 3He paleothermometry along two deglaciation profiles in the European Alps to reconstruct temperature evolution since the Last Glacial Maximum. We observe a 3He thermal signal clearly colder than today in all bedrock surface samples exposed prior the Holocene. Current uncertainties in 3He diffusion kinetics do not permit distinguishing if this signal results from Late Pleistocene ambient temperature changes or from recent ground temperature variation due to permafrost degradation.
Joanne Elkadi, Benjamin Lehmann, Georgina E. King, Olivia Steinemann, Susan Ivy-Ochs, Marcus Christl, and Frédéric Herman
Earth Surf. Dynam., 10, 909–928, https://doi.org/10.5194/esurf-10-909-2022, https://doi.org/10.5194/esurf-10-909-2022, 2022
Short summary
Short summary
Glacial and non-glacial processes have left a strong imprint on the landscape of the European Alps, but further research is needed to better understand their long-term effects. We apply a new technique combining two methods for bedrock surface dating to calculate post-glacier erosion rates next to a Swiss glacier. Interestingly, the results suggest non-glacial erosion rates are higher than previously thought, but glacial erosion remains the most influential on landscape evolution.
Alexander R. Groos, Janik Niederhauser, Bruk Lemma, Mekbib Fekadu, Wolfgang Zech, Falk Hänsel, Luise Wraase, Naki Akçar, and Heinz Veit
Earth Syst. Sci. Data, 14, 1043–1062, https://doi.org/10.5194/essd-14-1043-2022, https://doi.org/10.5194/essd-14-1043-2022, 2022
Short summary
Short summary
Continuous observations and measurements from high elevations are necessary to monitor recent climate and environmental changes in the tropical mountains of eastern Africa, but meteorological and ground temperature data from above 3000 m are very rare. Here we present a comprehensive ground temperature monitoring network that has been established between 3493 and 4377 m in the Bale Mountains (Ethiopian Highlands) to monitor and study the afro-alpine climate and ecosystem in this region.
Michael A. Schwenk, Patrick Schläfli, Dimitri Bandou, Natacha Gribenski, Guilhem A. Douillet, and Fritz Schlunegger
Sci. Dril., 30, 17–42, https://doi.org/10.5194/sd-30-17-2022, https://doi.org/10.5194/sd-30-17-2022, 2022
Short summary
Short summary
A scientific drilling was conducted into a bedrock trough (overdeepening) in Bern-Bümpliz (Switzerland) in an effort to advance the knowledge of the Quaternary prior to 150 000 years ago. We encountered a 208.5 m-thick succession of loose sediments (gravel, sand and mud) in the retrieved core and identified two major sedimentary sequences (A: lower, B: upper). The sedimentary suite records two glacial advances and the subsequent filling of a lake sometime between 300 000 and 200 000 years ago.
Irene Schimmelpfennig, Joerg M. Schaefer, Jennifer Lamp, Vincent Godard, Roseanne Schwartz, Edouard Bard, Thibaut Tuna, Naki Akçar, Christian Schlüchter, Susan Zimmerman, and ASTER Team
Clim. Past, 18, 23–44, https://doi.org/10.5194/cp-18-23-2022, https://doi.org/10.5194/cp-18-23-2022, 2022
Short summary
Short summary
Small mountain glaciers advance and recede as a response to summer temperature changes. Dating of glacial landforms with cosmogenic nuclides allowed us to reconstruct the advance and retreat history of an Alpine glacier throughout the past ~ 11 000 years, the Holocene. The results contribute knowledge to the debate of Holocene climate evolution, indicating that during most of this warm period, summer temperatures were similar to or warmer than in modern times.
Alexander R. Groos, Janik Niederhauser, Luise Wraase, Falk Hänsel, Thomas Nauss, Naki Akçar, and Heinz Veit
Earth Surf. Dynam., 9, 145–166, https://doi.org/10.5194/esurf-9-145-2021, https://doi.org/10.5194/esurf-9-145-2021, 2021
Short summary
Short summary
Large sorted stone stripes have been discovered on the 4000 m high central Sanetti Plateau of the tropical Bale Mountains in Ethiopia. The stripes are a mystery as similar landforms have so far only been reported in the temperate zone and polar regions. Our investigations suggest that the stripes formed in the vicinity of a former ice cap on the plateau during a much colder climatic period. The distinct pattern is the result of a process related to cyclic freezing and thawing of the ground.
Anne-Marie Wefing, Núria Casacuberta, Marcus Christl, Nicolas Gruber, and John N. Smith
Ocean Sci., 17, 111–129, https://doi.org/10.5194/os-17-111-2021, https://doi.org/10.5194/os-17-111-2021, 2021
Short summary
Short summary
Atlantic Water that carries heat and anthropogenic carbon into the Arctic Ocean plays an important role in the Arctic sea-ice cover decline, but its pathways and travel times remain unclear. Here we used two radionuclides of anthropogenic origin (129I and 236U) to track Atlantic-derived waters along their way through the Arctic Ocean, estimating their travel times and mixing properties. Results help to understand how future changes in Atlantic Water properties will spread through the Arctic.
Leonie Peti, Kathryn E. Fitzsimmons, Jenni L. Hopkins, Andreas Nilsson, Toshiyuki Fujioka, David Fink, Charles Mifsud, Marcus Christl, Raimund Muscheler, and Paul C. Augustinus
Geochronology, 2, 367–410, https://doi.org/10.5194/gchron-2-367-2020, https://doi.org/10.5194/gchron-2-367-2020, 2020
Short summary
Short summary
Orakei Basin – a former maar lake in Auckland, New Zealand – provides an outstanding sediment record over the last ca. 130 000 years, but an age model is required to allow the reconstruction of climate change and volcanic eruptions contained in the sequence. To construct a relationship between depth in the sediment core and age of deposition, we combined tephrochronology, radiocarbon dating, luminescence dating, and the relative intensity of the paleomagnetic field in a Bayesian age–depth model.
Marius L. Huber, Maarten Lupker, Sean F. Gallen, Marcus Christl, and Ananta P. Gajurel
Earth Surf. Dynam., 8, 769–787, https://doi.org/10.5194/esurf-8-769-2020, https://doi.org/10.5194/esurf-8-769-2020, 2020
Short summary
Short summary
Large boulders found in two Himalayan valleys show signs of long fluvial transport (>10 km). Paleo-discharges required to mobilize these boulders exceed typical monsoon discharges. Exposure dating shows that a cluster of these boulders was emplaced ca. 5 kyr ago. This period is coeval with a weakening of the Indian monsoon and glacier retreat in the area. We, therefore, suggest that glacier lake outburst floods are likely mechanisms that can explain these exceptional transport processes.
Cited articles
Akçar, N., Deline, P., Ivy-Ochs, S., Alfimov, V., Hajdas, I., Kubik, P.
W., Christl, M., and Schlüchter, C.: The AD 1717 rock avalanche deposits
in the upper Ferret Valley (Italy): A dating approach with cosmogenic
10Be, J. Quat. Sci., 27, 383–392, https://doi.org/10.1002/jqs.1558, 2012.
Akçar N., Ivy-Ochs S., Alfimov V., Schlunegger F., Claude A., Reber R.,
Christl M., Vockenhuber C., Dehnert A., Meinert R., and Schlüchter C.:
Isochron-burial dating of glaciofluvial deposits: primary results from the
Alps, Earth Surf. Proc. Land., 42, 2414–2425,
https://doi.org/10.1002/esp.4201, 2017.
Baroni, C., Gennaro, S., Cristina, M., Ivy-ochs, S., Christl, M., Cerrato,
R., and Orombelli, G.: Last Lateglacial glacier advance in the Gran Paradiso
Group reveals relatively drier climatic conditions established in the
Western Alps since at least the Younger Dryas, Quat. Sci. Rev., 255, 106815,
https://doi.org/10.1016/j.quascirev.2021.106815, 2021.
Bartolini, C. and Fontanelli, K.: Present versus long term sediment yield to
the Adriatic Sea and the reliability of gauging stations data,
B. Soc. Geol. Ital., 128, 655–667,
https://doi.org/10.3301/IJG.2009.128.3.655, 2009.
Bartolini, C., Caputo, R., and Pieri, M.: Pliocene-Quaternary sedimentation
in the Northern Apennine foredeep and related denudation, Geol. Mag.,
133, 255–273, https://doi.org/10.1017/s0016756800009006, 1996.
Bierman, P. and Steig, E. J.: Estimating rates of denudation using cosmogenic
isotope abundances in sediment, Earth Surf. Proc. Land., 21,
125–139, https://doi.org/10.1002/(SICI)1096-9837(199602)21:2<125::AID-ESP511>3.0.CO;2-8, 1996.
Binnie, S. A., Phillips, W. M., Summerfield, M. A., and Fifield, L. K.: Tectonic
uplift, threshold hillslopes, and denudation rates in a developing mountain
range, Geology, 35, 743–746, https://doi.org/10.1130/G23641A.1, 2007.
Bookhagen, B. and Strecker, M. R.: Spatiotemporal trends in erosion rates
across a pronounced rainfall gradient: Examples from the southern Central
Andes, Earth Planet. Sci. Lett., 327–328, 97–110,
https://doi.org/10.1016/j.epsl.2012.02.005, 2012.
Braucher, R., Merchel, S., Borgomano, J., and Bourlès, D. L.: Production of cosmogenic radionuclides at great depth: a multi element approach, Earth Planet. Sci. Lett., 309, 1–9, https://doi.org/10.1016/j.epsl.2011.06.036, 2011.
Brocklehurst, S. H. and Whipple, K. X.: Hypsometry of glaciated landscapes,
Earth Surf. Proc. Land., 29, 907–926, https://doi.org/10.1002/esp.1083, 2004.
Brown, E. T., Stallard, R. F., Larsen, M. C., Raisbeck, G. M., and Yiou, F.:
Denudation rates determined from the accumulation of in situ-produced
10Be in the Luquillo Experimental Forest, Puerto Rico, Earth Planet.
Sci. Lett., 129, 193–202, https://doi.org/10.1016/0012-821X(94)00249-X, 1995.
Burbank, D. W., Leland, J., Fielding, E., Anderson, R. S., Brozovic, N., Reid,
M. R., and Duncan, C.: Bedrock incision, rock uplift and threshold hillslopes in
the northwestern Himalayas, Nature, 379, 505–510, https://doi.org/10.1038/379505a0,
1996.
Carretier, S., Regard, V., Vassallo, R., Martinod, J., Christophoul, F.,
Gayer, E., Audin, L., and Lagane, C.: A note on 10Be-derived mean
erosion rates in catchments with heterogeneous lithology: Examples from the
western Central Andes, Earth Surf. Proc. Land., 40, 1719–1729,
https://doi.org/10.1002/esp.3748, 2015.
Champagnac, J. D., Schlunegger, F., Norton, K., von Blanckenburg, F.,
Abbühl, L. M., and Schwab, M.: Erosion-driven uplift of the modern
Central Alps, Tectonophysics, 474, 236–249,
https://doi.org/10.1016/j.tecto.2009.02.024, 2009.
Champagnac, J. D., Valla, P. G., and Herman, F.: Late-Cenozoic relief
evolution under evolving climate: A review, Tectonophysics, 614, 44–65,
https://doi.org/10.1016/j.tecto.2013.11.037, 2014.
Charreau, J., Blard, P. H., Zumaque, J., Martin, L. C. P., Delobel, T., and
Szafran, L.: Basinga: A cell-by-cell GIS toolbox for computing basin average
scaling factors, cosmogenic production rates and denudation rates, Earth Surf. Proc. Land., 44, 2349–2365, https://doi.org/10.1002/esp.4649, 2019.
Chittenden, H., Delunel, R., Schlunegger, F., Akçar, N., and Kubik, P.:
The influence of bedrock orientation on the landscape evolution, surface
morphology and denudation (10Be) at the Niesen, Switzerland, Earth Surf. Proc. Land., 39, 1153–1166, https://doi.org/10.1002/esp.3511, 2014.
Christl, M., Vockenhuber, C., Kubik, P. W., Wacker, L., Lachner, J.,
Alfimov, V., and Synal, H. A.: The ETH Zurich AMS facilities: Performance
parameters and reference materials, Nucl. Instruments Methods Phys. Res.
Sect. B Beam Interact. with Mater. Atoms, 294, 29–38,
https://doi.org/10.1016/j.nimb.2012.03.004, 2013.
Clark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J., Wohlfarth,
B., Mitrovica, J. X., Hostetler, S. W., and McCabe, A. M.: The Last Glacial
Maximum, Science 325, 710–714, https://doi.org/10.1126/science.1172873, 2009.
Codilean, A. T.: Calculation of the cosmogenic nuclide production topographic
shielding scaling factor for large areas using DEMs, Earth Surf. Proc.
Land., 31, 785–794, https://doi.org/10.1002/esp.1336, 2006.
Codilean, A. T., Munack, H., Cohen, T. J., Saktura, W. M., Gray, A., and Mudd, S. M.: OCTOPUS: an open cosmogenic isotope and luminescence database, Earth Syst. Sci. Data, 10, 2123–2139, https://https://doi.org/10.5194/essd-10-2123-2018, 2018.
Cruz Nunes, F., Delunel, R., Schlunegger, F., Akçar, N., and Kubik, P. W.: Bedrock bedding, landsliding and erosional budgets in the Central European Alps, Terra Nova, 27, 370–378, https://doi.org/10.1111/ter.12169, 2015.
Dal Piaz, G. V., Gianotti, F., Monopoli, B., Pennacchioni, G., Tartarotti,
P., and Schiavo, A.: Carta Geologica d'Italia – Foglio 091, Chatillon, Regione Autonoma Valle d'Aosta, 1–152, 2008.
Deline, P., Gardent, M., Magnin, F., and Ravanel, L.: The morphodynamics of the Mont Blanc massif in a changing cryosphere: a comprehensive review, Geogr. Ann. A., 94, 265–283, https://doi.org/10.1111/j.1468-0459.2012.00467.x, 2012.
Deline, P., Akçar, N., Ivy-Ochs, S., and Kubik, P. W.: Repeated Holocene rock
avalanches onto the Brenva Glacier, Mont Blanc massif, Italy: A chronology,
Quat. Sci. Rev., 126, 186–200,
https://doi.org/10.1016/j.quascirev.2015.09.004, 2015.
Delunel, R., van der Beek, P. A., Carcaillet, J., Bourlès, D. L., and
Valla, P. G.: Frost-cracking control on catchment denudation rates: Insights
from in situ produced 10Be concentrations in stream sediments
(Ecrins-Pelvoux massif, French Western Alps), Earth Planet. Sci. Lett.,
293, 72–83, https://doi.org/10.1016/j.epsl.2010.02.020, 2010.
Delunel, R., Van der Beek, P. A., Bourlès, D. L., Carcaillet, J., and
Schlunegger, F.: Transient sediment supply in a high-altitude Alpine
environment evidenced through a 10Be budget of the Etages catchment
(French Western Alps), Earth Surf. Proc. Land., 39,
890–899, https://doi.org/10.1002/esp.3494, 2014.
Delunel, R., Schlunegger, F., Valla, P. G., Dixon, J., Glotzbach, C., Hippe,
K., Kober, F., Molliex, S., Norton, K. P., Salcher, B., Wittmann, H.,
Akçar, N., and Christl, M.: Late-Pleistocene catchment-wide denudation
patterns across the European Alps, Earth-Sci. Rev., 211, 103407, https://doi.org/10.1016/j.earscirev.2020.103407, 2020.
DiBiase, R. A.: Short communication: Increasing vertical attenuation length of cosmogenic nuclide production on steep slopes negates topographic shielding corrections for catchment erosion rates, Earth Surf. Dynam., 6, 923–931, https://doi.org/10.5194/esurf-6-923-2018, 2018.
DiBiase, R. A., Heimsath, A. M., and Whipple, K. X.: Hillslope response to
tectonic forcing in threshold landscapes, Earth Surf. Proc. Land.,
37, 855–865, https://doi.org/10.1002/esp.3205, 2012.
Diolaiuti, G. A., Bocchiola, D., Vagliasindi, M., D'Agata, C., and Smiraglia,
C.: The 1975–2005 glacier changes in Aosta Valley (Italy) and the relations
with climate evolution, Prog. Phys. Geogr., 36, 764–785,
https://doi.org/10.1177/0309133312456413, 2012.
Dixon, J. L., von Blanckenburg, F., Stüwe, K., and Christl, M.: Glaciation's topographic control on Holocene erosion at the eastern edge of the Alps, Earth Surf. Dynam., 4, 895–909, https://https://doi.org/10.5194/esurf-4-895-2016, 2016.
Dunne, J., Elmore, D., and Muzikar, P.: Scaling factors for the rates of
production of cosmogenic nuclides for geometric shielding and attenuation at
depth on sloped surfaces, Geomorphology, 27, 3–11,
https://doi.org/10.1016/S0169-555X(98)00086-5, 1999.
Gavrilovic, S.: Bujicni tokovi i erozija (Torrents and erosion), Beograd, Serbia, Gradevinski Kalendar, 1976.
Glotzbach, C., Van Der Beek, P., Carcaillet, J., and Delunel, R.: Deciphering
the driving forces of erosion rates on millennial to million-year timescales
in glacially impacted landscapes: An example from the Western Alps, J.
Geophys. Res.-Earth, 118, 1491–1515, https://doi.org/10.1002/jgrf.20107, 2013.
Glotzbach, C., Röttjer, M., Hampel, A., Hetzel, R., and Kubik, P.W.: Quantifying the impact of former glaciation on catchment‐wide denudation rates derived from cosmogenic 10Be, Terra Nova, 26, 186–194, https://doi.org/10.1111/ter.12085, 2014.
Godard, V., Bourlès, D. L., Spinabella, F., Burbank, D. W., Bookhagen, B., Fisher, G. B., Moulin, A., and Léanni, L.: Dominance of tectonics over climate in Himalayan denudation, Geology, 42, 243–246, https://doi.org/10.1130/G35342.1, 2014.
Granger, D. E., Kirchner, J. W., and Finkel, R.: Spatially averaged long-term
erosion rates measured from in situ-produced cosmogenic nuclides in alluvial
sediment, J. Geol., 104, 249–257, https://doi.org/10.1086/629823,
1996.
Granger, D. E. and Schaller, M.: Cosmogenic nuclides and erosion at the watershed scale, Elements, 10, 369–373, https://doi.org/10.2113/gselements.10.5.369, 2014.
Guillon, H., Mugnier, J. L., Buoncristiani, J. F., Carcaillet, J., Godon, C., Prud'Homme, C., Van der Beek, P., and Vassallo, R.: Improved discrimination of subglacial and periglacial erosion using 10Be concentration measurements in subglacial and supraglacial sediment load of the Bossons glacier (Mont Blanc massif, France), Earth Surf. Process. Landf., 40, 1202–1215, https://doi.org/10.1002/esp.3713, 2015.
Herman, F., Seward, D., Valla, P. G., Carter, A., Kohn, B., Willett, S. D., and Ehlers, T. A.: Worldwide acceleration of mountain erosion under a cooling climate, Nature, 504, 423–426, https://doi.org/10.1038/nature12877, 2013.
Hinderer, M., Kastowski, M., Kamelger, A., Bartolini, C., and Schlunegger,
F.: River loads and modern denudation of the Alps – A review, Earth Sci.
Rev., 118, 11–44, https://doi.org/10.1016/j.earscirev.2013.01.001, 2013.
Isotta, F. A., Frei, C., Weilguni, V., Perčec Tadić, M.,
Lassègues, P., Rudolf, B., Pavan, V., Cacciamani, C., Antolini, G.,
Ratto, S. M., Munari, M., Micheletti, S., Bonati, V., Lussana, C., Ronchi,
C., Panettieri, E., Marigo, G., and Vertačnik, G.: The climate of daily
precipitation in the Alps: Development and analysis of a high-resolution
grid dataset from pan-Alpine rain-gauge data, Int. J. Climatol., 34,
1657–1675, https://doi.org/10.1002/joc.3794, 2014.
Kirchner, J. W., Finkel, R. C., Riebe, C. S., Granger, D. E., Clayton, J.
L., King, J. G., and Megahan, W. F.: Mountain erosion over 10 yr, 10 k.y.,
and 10 m.y. time scales, Geology, 29, 591–594,
https://doi.org/10.1130/0091-7613(2001)029<0591:MEOYKY>2.0.CO;2,
2001.
Korup, O. and Schlunegger, F.: Bedrock landsliding, river incision, and
transience of geomorphic hillslope-channel coupling: Evidence from inner
gorges in the Swiss Alps. J. Geophys. Res.-Earth,
112, F0302, https://doi.org/10.1029/2006JF000710, 2007.
Kühni, A. and Pfiffner, O. A.: The relief of the Swiss Alps and adjacent
areas and its relation to lithology and structure: Topographic analysis from
a 250 m DEM, Geomorphology, 41, 285–307,
https://doi.org/10.1016/S0169-555X(01)00060-5, 2001.
Lal, D.: Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models, Earth Planet. Sci. Lett., 104, 424–43, https://doi.org/10.1016/0012-821X(91)90220-C, 1991.
Lupker, M., Blard, P. H., Lavé, J., France-Lanord, C., Leanni, L.,
Puchol, N., Charreau, J., and Bourlès, D.: 10Be-derived Himalayan
denudation rates and sediment budgets in the Ganga basin, Earth Planet. Sci.
Lett., 333–334, 146–156, https://doi.org/10.1016/j.epsl.2012.04.020, 2012.
Malusà, M. G., Polino, R., Zattin, M., Bigazzi, G., Martin, S., and
Piana, F.: Miocene to Present differential exhumation in the Western Alps:
Insights from fission track thermochronology, Tectonics, 24, 1–23,
https://doi.org/10.1029/2004TC001782, 2005.
Martin, L. C. P., Blard, P.-H., Balco, G., Lavé, J., Delunel, R.,
Lifton, N., and Laurent, V.: The CREp program and the ICE-D production rate
calibration database: A fully parameterizable and updated online tool to
compute cosmic-ray exposure ages, Quat. Geochronol., 38, 25–49,
https://doi.org/10.1016/J.QUAGEO.2016.11.006, 2017.
Maxeiner, S., Synal, H. A., Christl, M., Suter, M., Müller, A., and
Vockenhuber, C.: Proof-of-principle of a compact 300 kV multi-isotope AMS
facility, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with
Mater. Atoms, 439, 84–89, https://doi.org/10.1016/j.nimb.2018.11.028,
2019.
Molnar, P., Anderson, R. S., and Anderson, S. P.: Tectonics, fracturing of rock, and erosion, J. Geophys. Res., 112, https://doi.org/10.1029/2005JF000433, 2007.
Montgomery, D. R. and Brandon, M. T.: Topographic controls on erosion rates
in tectonically active mountain ranges, Earth Planet. Sci. Lett., 201, 481–489, https://doi.org/10.1016/S0012-821X(02)00725-2, 2002.
Moon, S., Page Chamberlain, C., Blisniuk, K., Levine, N., Rood, D. H., and
Hilley, G. E.: Climatic control of denudation in the deglaciated landscape
of the Washington Cascades, Nat. Geosci., 4, 469–473,
https://doi.org/10.1038/ngeo1159, 2011.
Muscheler, R., Beer, J., Kubik, P. W., and Synal, H. A.: Geomagnetic field
intensity during the last 60,000 years based on 10Be and 36Cl from
the Summit ice cores and 14C, Quat. Sci. Rev., 24, 1849–1860,
https://doi.org/10.1016/j.quascirev.2005.01.012, 2005.
Mudd, S. M., Harel, M.-A., Hurst, M. D., Grieve, S. W. D., and Marrero, S. M.: The CAIRN method: automated, reproducible calculation of catchment-averaged denudation rates from cosmogenic nuclide concentrations, Earth Surf. Dynam., 4, 655–674, https://doi.org/10.5194/esurf-4-655-2016, 2016.
Norton, K. P., Abbühl, L. M., and Schlunegger, F.: Glacial conditioning
as an erosional driving force in the Central Alps, Geology, 38, 655–658,
https://doi.org/10.1130/G31102.1, 2010.
Norton, K. P., von Blanckenburg, F., DiBiase, R., Schlunegger, F., and Kubik,
P. W.: Cosmogenic 10Be-derived denudation rates of the Eastern and
Southern European Alps, Int. J. Earth Sci., 100, 1163–1179,
https://doi.org/10.1007/s00531-010-0626-y, 2011.
Pedersen, V. K. and Egholm, D. L.: Glaciations in response to climate
variations preconditioned by evolving topography, Nature, 493,
206–210, https://doi.org/10.1038/nature11786, 2013.
Peizhen, Z., Molnar, P., and Downs, W. R.: Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates, Nature, 410, 891–897, https://doi.org/10.1038/35073504, 2001.
Perello, P., Gianotti, F., and Monopoli, B.: Carta Geologica d'Italia –
Foglio 089, Courmayeur, Regione Autonoma Valle d'Aosta, 2008.
Polino, R., Malusà, M. G., Martin, S., Carraro, F., Gianotti, F., and
Bonetto, F.: Carta Geologica d'Italia – Foglio 090, Aosta, 3, Regione Autonoma Valle d'Aosta, 2008.
Pitlick, J., Recking, A., Liebault, F., Misset, C., Piton, G., and
Vazquez-Tarrio, D.: Sediment production in French Alpine rivers, Water
Resour. Res., 57, e2021WR030470. https://doi.org/10.1029/2021WR030470, 2021.
Portenga, E. W. and Bierman, P. R.: Understanding earth's eroding surface
with 10Be, GSA Today, 21, 4–10, https://doi.org/10.1130/G111A.1, 2011.
Ravanel, L., Allignol, F., Deline, P., Gruber, S., and Ravello, M.: Rock
falls in the Mont Blanc Massif in 2007 and 2008, Landslides, 7, 493–501,
https://doi.org/10.1007/s10346-010-0206-z, 2010.
Resentini, A. and Malusà, M. G.: Sediment budgets by detrital apatite fi
ssion-Track dating (Rivers Dora Baltea and Arc, Western Alps), Spec. Pap.
Geol. Soc. Am., 487, 125–140, https://doi.org/10.1130/2012.2487(08), 2012.
Salcher, B. C., Kober, F., Kissling, E., and Willett, S. D.: Glacial impact on short- wavelength topography and long-lasting effects on the denudation of a deglaciated mountain range, Glob. Planet. Chang., 115, 59–70, https://doi.org/10.1016/j.gloplacha.2014.01.002, 2014.
Savi, S., Norton, K., Picotti, V., Brardinoni, F., Akçar, N., Kubik, P.
W., Delunel, R., and Schlunegger, F.: Effects of sediment mixing on 10Be
concentrations in the Zielbach catchment, central-eastern Italian Alps,
Quat. Geochronol., 19, 148–162, https://doi.org/10.1016/j.quageo.2013.01.006, 2014.
Schaller, M., Von Blanckenburg, F., Hovius, N., and Kubik, P. W.: Large-scale
erosion rates from in situ-produced cosmogenic nuclides in European river
sediments, Earth Planet. Sci. Lett., 188, 441–458,
https://doi.org/10.1016/S0012-821X(01)00320-X, 2001.
Scharf, T. E., Codilean, A. T., De Wit, M., Jansen, J. D., and Kubik, P. W.: Strong rocks sustain ancient postorogenic topography in southern Africa. Geology, 41, 331-334, https://doi.org/10.1130/G33806.1, 2013.
Schlunegger, F. and Hinderer, M.: Pleistocene/Holocene climate change,
reestablishment of fluvial drainage network and increase in relief in the
Swiss Alps, Terra Nova, 15, 88–95, https://doi.org/10.1046/j.1365-3121.2003.00469.x,
2003.
Schmid, S. M., Fügenschuh, B., Kissling, E., and Schuster, R.: Tectonic map
and overall architecture of the Alpine orogen, Eclogae Geol. Helv.,
97, 93–117, https://doi.org/10.1007/s00015-004-1113-x, 2004.
Schwanghart, W. and Scherler, D.: Short Communication: TopoToolbox 2 – MATLAB-based software for topographic analysis and modeling in Earth surface sciences, Earth Surf. Dynam., 2, 1–7, https://doi.org/10.5194/esurf-2-1-2014, 2014.
Serra, E., Valla, P. G., Gribenski, N., Carcaillet, and Deline, P.: Post-LGM
glacial and geomorphic evolution of the Dora Baltea valley (western Italian
Alps), Quat. Sci. Rev., 282, 107446, https://doi.org/10.1016/j.quascirev.2022.107446,
2022.
Small, E. E. and Anderson, R. S.: Pleistocene relief production in Laramide
mountain ranges, western United States, Geology, 26, 123–126,
https://doi.org/10.1130/0091-7613(1998)026<1150:PRPILM>2.3.CO;2,
1998.
Sternai, P., Sue, C., Husson, L., Serpelloni, E., Becker, T. W., Willett, S.
D., Faccenna, C., Di Giulio, A., Spada, G., Jolivet, L., Valla, P., Petit,
C., Nocquet, J. M., Walpersdorf, A., and Castelltort, S.: Present-day uplift
of the European Alps: Evaluating mechanisms and models of their relative
contributions, Earth Sci. Rev., 190, 589–604,
https://doi.org/10.1016/j.earscirev.2019.01.005, 2019.
Stone, J. O.: Air pressure and cosmogenic isotope production, J. Geophys. Res.-Sol. Ea., 105, 23753–23759, https://doi.org/10.1029/2000JB900181, 2000.
Stutenbecker, L., Costa, A., and Schlunegger, F.: Lithological control on the landscape form of the upper Rhône Basin, Central Swiss Alps, Earth Surf. Dynam., 4, 253–272, https://doi.org/10.5194/esurf-4-253-2016, 2016.
Stutenbecker, L., Delunel, R., Schlunegger, F., Silva, T. A.,
Šegvić, B., Girardclos, S., Bakker, M., Costa, A., Lane, S. N.,
Loizeau, J. L., Molnar, P., Akçar, N., and Christl, M.: Reduced sediment
supply in a fast eroding landscape? A multi-proxy sediment budget of the
upper Rhône basin, Central Alps, Sediment. Geol., 375, 105–119,
https://doi.org/10.1016/j.sedgeo.2017.12.013, 2018.
Uppala, S. M., Kållberg, P. W., Simmons, A. J., Andrae, U., da Costa
Bechtold, V., Fiorino, M., Gibson, J. K., Haseler, J., Hernandez, A., Kelly,
G. A., Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R. P., Andersson,
E., Arpe, K., Balmaseda, M. A., Beljaars, A. C. M., van de Berg, L., Bidlot,
J., Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M.,
Fisher, M., Fuentes, M., Hagemann, S., Hólm, E., Hoskins, B. J.,
Isaksen, L., Janssen, P. A. E. M., Jenne, R., McNally, A. P., Mahfouf, J.
F., Morcrette, J. J., Rayner, N. A., Saunders, R. W., Simon, P., Sterl, A.,
Trenberth, K. E., Untch, A., Vasiljevic, D., Viterbo, P., and Woollen, J.:
The ERA-40 re-analysis, Q. J. Roy. Meteor. Soc., 131, 2961–3012,
https://doi.org/10.1256/qj.04.176, 2005.
Valla, P. G., van der Beek, P. A., and Carcaillet, J.: Dating bedrock gorge
incision in the French Western Alps (Ecrins-Pelvoux massif) using cosmogenic
10Be, Terra Nov., 22, 18–25, https://doi.org/10.1111/j.1365-3121.2009.00911.x,
2010.
Valla, P. G., Shuster, D. L., and Van Der Beek, P. A.: Significant increase
in relief of the European Alps during mid-Pleistocene glaciations, Nat.
Geosci., 4, 688–692, https://doi.org/10.1038/ngeo1242, 2011.
Valla, P. G., Sternai, P., and Fox, M.: How Climate, Uplift and Erosion Shaped the Alpine Topography, Elements, 17, 41–46, https://doi.org/10.2138/gselements.17.1.41, 2021.
Vezzoli, G.: Erosion in the Western Alps (Dora Baltea Basin): 2. Quantifying
sediment yield, Sediment. Geol., 171, 247–259,
https://doi.org/10.1016/j.sedgeo.2004.05.018, 2004.
Vezzoli, G., Garzanti, E., and Monguzzi, S. Erosion in the western Alps (Dora
Baltea basin): 1. Quantifying sediment provenance, Sediment. Geol.,
171, 227–246, https://doi.org/10.1016/j.sedgeo.2004.05.017, 2004.
von Blanckenburg, F.: The control mechanisms of erosion and weathering at
basin scale from cosmogenic nuclides in river sediment, Earth Planet. Sci.
Lett., 237, 462–479, https://doi.org/10.1016/j.epsl.2005.06.030, 2005.
Willenbring, J. K., Codilean, A. T., and Mcelroy, B.: Earth is (mostly) flat: apportionment of the flux of
continental sediment over millennial time scales, Geology, 41, 343–346, https://doi.org/10.1130/G33918.1, 2013.
Wittmann, H., von Blanckenburg, F., Kruesmann, T., Norton, K. P., and Kubik,
P. W.: Relation between rock uplift and denudation from cosmogenic nuclides
in river sediment in the Central Alps of Switzerland, J. Geophys. Res.-Earth, 112, 1–20, https://doi.org/10.1029/2006JF000729, 2007.
Wittmann, H., Malusà, M. G., Resentini, A., Garzanti, E., and Niedermann,
S.: The cosmogenic record of mountain erosion transmitted across a foreland
basin: Source-to-sink analysis of in situ 10Be, 26Al and 21Ne
in sediment of the Po river catchment, Earth Planet. Sci. Lett., 452,
258–271, https://doi.org/10.1016/j.epsl.2016.07.017, 2016.
Short summary
Alpine landscapes are transformed by several erosion processes. 10Be concentrations measured in river sediments at the outlet of a basin represent a powerful tool to quantify how fast the catchment erodes. We measured erosion rates within the Dora Baltea catchments (western Italian Alps). Our results show that erosion is governed by topography, bedrock resistance and glacial imprint. The Mont Blanc massif has the highest erosion and therefore dominates the sediment flux of the Dora Baltea river.
Alpine landscapes are transformed by several erosion processes. 10Be concentrations measured in...