Articles | Volume 10, issue 3
https://doi.org/10.5194/esurf-10-605-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-10-605-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Alpine rock glacier activity over Holocene to modern timescales (western French Alps)
CNRS, EDYTEM, Université Savoie Mont Blanc, 73000, Chambéry, France
INSTAAR and Department of Geological Sciences, University of Colorado Boulder, Boulder, CO 80309, USA
Robert S. Anderson
INSTAAR and Department of Geological Sciences, University of Colorado Boulder, Boulder, CO 80309, USA
Xavier Bodin
CNRS, EDYTEM, Université Savoie Mont Blanc, 73000, Chambéry, France
Diego Cusicanqui
CNRS, EDYTEM, Université Savoie Mont Blanc, 73000, Chambéry, France
CNRS, IRD, IGE, Université Grenoble Alpes, CS 40700
38 058 Grenoble CEDEX 9, France
Pierre G. Valla
CNRS, IRD, IFSTTAR, ISTerre, Université Grenoble Alpes, Université Savoie Mont Blanc, 38000, Grenoble, France
Julien Carcaillet
CNRS, IRD, IFSTTAR, ISTerre, Université Grenoble Alpes, Université Savoie Mont Blanc, 38000, Grenoble, France
Related authors
Matthew C. Morriss, Benjamin Lehmann, Benjamin Campforts, George Brencher, Brianna Rick, Leif S. Anderson, Alexander L. Handwerger, Irina Overeem, and Jeffrey Moore
Earth Surf. Dynam., 11, 1251–1274, https://doi.org/10.5194/esurf-11-1251-2023, https://doi.org/10.5194/esurf-11-1251-2023, 2023
Short summary
Short summary
In this paper, we investigate the 28 June 2022 collapse of the Chaos Canyon landslide in Rocky Mountain National Park, Colorado, USA. We find that the landslide was moving prior to its collapse and took place at peak spring snowmelt; temperature modeling indicates the potential presence of permafrost. We hypothesize that this landslide could be part of the broader landscape evolution changes to alpine terrain caused by a warming climate, leading to thawing alpine permafrost.
Joanne Elkadi, Benjamin Lehmann, Georgina E. King, Olivia Steinemann, Susan Ivy-Ochs, Marcus Christl, and Frédéric Herman
Earth Surf. Dynam., 10, 909–928, https://doi.org/10.5194/esurf-10-909-2022, https://doi.org/10.5194/esurf-10-909-2022, 2022
Short summary
Short summary
Glacial and non-glacial processes have left a strong imprint on the landscape of the European Alps, but further research is needed to better understand their long-term effects. We apply a new technique combining two methods for bedrock surface dating to calculate post-glacier erosion rates next to a Swiss glacier. Interestingly, the results suggest non-glacial erosion rates are higher than previously thought, but glacial erosion remains the most influential on landscape evolution.
Dominik Brill, Simon Matthias May, Nadia Mhammdi, Georgina King, Benjamin Lehmann, Christoph Burow, Dennis Wolf, Anja Zander, and Helmut Brückner
Earth Surf. Dynam., 9, 205–234, https://doi.org/10.5194/esurf-9-205-2021, https://doi.org/10.5194/esurf-9-205-2021, 2021
Short summary
Short summary
Wave-transported boulders are important records for storm and tsunami impact over geological timescales. Their use for hazard assessment requires chronological information. We investigated the potential of a new dating technique, luminescence rock surface exposure dating, for estimating transport ages of wave-emplaced boulders. Our results indicate that the new approach may provide chronological information on decadal to millennial timescales for boulders not datable by any other method so far.
Rabiul H. Biswas, Frédéric Herman, Georgina E. King, Benjamin Lehmann, and Ashok K. Singhvi
Clim. Past, 16, 2075–2093, https://doi.org/10.5194/cp-16-2075-2020, https://doi.org/10.5194/cp-16-2075-2020, 2020
Short summary
Short summary
A new approach to reconstruct the temporal variation of rock surface temperature using the thermoluminescence (TL) of feldspar is introduced. Multiple TL signals or thermometers in the range of 210 to 250 °C are sensitive to typical surface temperature fluctuations and can be used to constrain thermal histories of rocks over ~50 kyr. We show that it is possible to recover thermal histories of rocks using inverse modeling and with δ18O anomalies as a priori information.
Line Rouyet, Tobias Bolch, Francesco Brardinoni, Rafael Caduff, Diego Cusicanqui, Margaret Darrow, Reynald Delaloye, Thomas Echelard, Christophe Lambiel, Cécile Pellet, Lucas Ruiz, Lea Schmid, Flavius Sirbu, and Tazio Strozzi
Earth Syst. Sci. Data, 17, 4125–4157, https://doi.org/10.5194/essd-17-4125-2025, https://doi.org/10.5194/essd-17-4125-2025, 2025
Short summary
Short summary
Rock glaciers are landforms generated by the creep of frozen ground (permafrost) in cold-climate mountains. Mapping rock glaciers contributes to documenting the distribution and the dynamics of mountain permafrost. We compiled inventories documenting the location, the characteristics, and the extent of rock glaciers in 12 mountain regions around the world. In each region, a team of operators performed the work following common rules and agreed on final solutions when discrepancies were identified.
Katy Medina, Hairo León, Edwin Badillo-Rivera, Edwin Loarte, Xavier Bodín, and José Úbeda
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-390, https://doi.org/10.5194/essd-2025-390, 2025
Preprint under review for ESSD
Short summary
Short summary
We created the first comprehensive inventory of Peru's rock glaciers: 2338 landforms in the Andes and filling the information gap in this mountainous region. Using satellite imagery, we mapped their distribution, finding most of them in southern Peru, above 4800 m a.s.l. and conditioned mainly by low temperature and precipitation. This dataset helps scientists to follow the evolution of permafrost and local planners to manage water resources and risks in the mountains.
Diego Cusicanqui, Pascal Lacroix, Xavier Bodin, Benjamin Aubrey Robson, Andreas Kääb, and Shelley MacDonell
The Cryosphere, 19, 2559–2581, https://doi.org/10.5194/tc-19-2559-2025, https://doi.org/10.5194/tc-19-2559-2025, 2025
Short summary
Short summary
This study presents a robust methodological approach to detect and analyse rock glacier kinematics using Landsat 7/Landsat 8 imagery. In the semiarid Andes, 382 landforms were monitored, showing an average velocity of 0.37 ± 0.07 m yr⁻¹ over 24 years, with rock glaciers moving 23 % faster. Results demonstrate the feasibility of using medium-resolution optical imagery, combined with radar interferometry, to monitor rock glacier kinematics with widely available satellite datasets.
Coline Ariagno, Philippe Steer, Pierre Valla, and Benjamin Campforts
EGUsphere, https://doi.org/10.5194/egusphere-2025-2088, https://doi.org/10.5194/egusphere-2025-2088, 2025
Short summary
Short summary
This study explored the impact of landslides on their topography using a landscape evolution model called ‘Hyland’, which enables long-term topographical analysis. Our finding reveal that landslides are concentrated at two specific elevations over time and predominantly affect the highest and steepest slopes, particularly along ridges and crests. This study is part of the large question about the origin of the erosion acceleration during the Quaternary.
Hélène Tissoux, Magali Rizza, Claire Aupart, Gilles Rixhon, Pierre G. Valla, Manon Boulay, Philippe Lach, and Pierre Voinchet
EGUsphere, https://doi.org/10.5194/egusphere-2025-182, https://doi.org/10.5194/egusphere-2025-182, 2025
Short summary
Short summary
This study, using ESR, OSL, and LA-ICPMS trace element analyses, reveals significant relationships between quartz OSL/ESR sensitivities and bedrock characteristics. Trace element compositions appear to influence the OSL and ESR-Ti sensitivities, the last being weak in quartz extracted from metamorphic or deformed rocks. Pressure may take a part in OSL/ESR-Ti sensitivities variability while ESR Al intensities could be linked to initial fluid composition and crystallization conditions
Naomi E. Ochwat, Ted A. Scambos, Alison F. Banwell, Robert S. Anderson, Michelle L. Maclennan, Ghislain Picard, Julia A. Shates, Sebastian Marinsek, Liliana Margonari, Martin Truffer, and Erin C. Pettit
The Cryosphere, 18, 1709–1731, https://doi.org/10.5194/tc-18-1709-2024, https://doi.org/10.5194/tc-18-1709-2024, 2024
Short summary
Short summary
On the Antarctic Peninsula, there is a small bay that had sea ice fastened to the shoreline (
fast ice) for over a decade. The fast ice stabilized the glaciers that fed into the ocean. In January 2022, the fast ice broke away. Using satellite data we found that this was because of low sea ice concentrations and a high long-period ocean wave swell. We find that the glaciers have responded to this event by thinning, speeding up, and retreating by breaking off lots of icebergs at remarkable rates.
Matthew C. Morriss, Benjamin Lehmann, Benjamin Campforts, George Brencher, Brianna Rick, Leif S. Anderson, Alexander L. Handwerger, Irina Overeem, and Jeffrey Moore
Earth Surf. Dynam., 11, 1251–1274, https://doi.org/10.5194/esurf-11-1251-2023, https://doi.org/10.5194/esurf-11-1251-2023, 2023
Short summary
Short summary
In this paper, we investigate the 28 June 2022 collapse of the Chaos Canyon landslide in Rocky Mountain National Park, Colorado, USA. We find that the landslide was moving prior to its collapse and took place at peak spring snowmelt; temperature modeling indicates the potential presence of permafrost. We hypothesize that this landslide could be part of the broader landscape evolution changes to alpine terrain caused by a warming climate, leading to thawing alpine permafrost.
Natacha Gribenski, Marissa M. Tremblay, Pierre G. Valla, Greg Balco, Benny Guralnik, and David L. Shuster
Geochronology, 4, 641–663, https://doi.org/10.5194/gchron-4-641-2022, https://doi.org/10.5194/gchron-4-641-2022, 2022
Short summary
Short summary
We apply quartz 3He paleothermometry along two deglaciation profiles in the European Alps to reconstruct temperature evolution since the Last Glacial Maximum. We observe a 3He thermal signal clearly colder than today in all bedrock surface samples exposed prior the Holocene. Current uncertainties in 3He diffusion kinetics do not permit distinguishing if this signal results from Late Pleistocene ambient temperature changes or from recent ground temperature variation due to permafrost degradation.
Suvrat Kaushik, Ludovic Ravanel, Florence Magnin, Yajing Yan, Emmanuel Trouve, and Diego Cusicanqui
The Cryosphere, 16, 4251–4271, https://doi.org/10.5194/tc-16-4251-2022, https://doi.org/10.5194/tc-16-4251-2022, 2022
Short summary
Short summary
Climate change impacts all parts of the cryosphere but most importantly the smaller ice bodies like ice aprons (IAs). This study is the first attempt on a regional scale to assess the impacts of the changing climate on these small but very important ice bodies. Our study shows that IAs have consistently lost mass over the past decades. The effects of climate variables, particularly temperature and precipitation and topographic factors, were analysed on the loss of IA area.
Joanne Elkadi, Benjamin Lehmann, Georgina E. King, Olivia Steinemann, Susan Ivy-Ochs, Marcus Christl, and Frédéric Herman
Earth Surf. Dynam., 10, 909–928, https://doi.org/10.5194/esurf-10-909-2022, https://doi.org/10.5194/esurf-10-909-2022, 2022
Short summary
Short summary
Glacial and non-glacial processes have left a strong imprint on the landscape of the European Alps, but further research is needed to better understand their long-term effects. We apply a new technique combining two methods for bedrock surface dating to calculate post-glacier erosion rates next to a Swiss glacier. Interestingly, the results suggest non-glacial erosion rates are higher than previously thought, but glacial erosion remains the most influential on landscape evolution.
Aldo Bertone, Chloé Barboux, Xavier Bodin, Tobias Bolch, Francesco Brardinoni, Rafael Caduff, Hanne H. Christiansen, Margaret M. Darrow, Reynald Delaloye, Bernd Etzelmüller, Ole Humlum, Christophe Lambiel, Karianne S. Lilleøren, Volkmar Mair, Gabriel Pellegrinon, Line Rouyet, Lucas Ruiz, and Tazio Strozzi
The Cryosphere, 16, 2769–2792, https://doi.org/10.5194/tc-16-2769-2022, https://doi.org/10.5194/tc-16-2769-2022, 2022
Short summary
Short summary
We present the guidelines developed by the IPA Action Group and within the ESA Permafrost CCI project to include InSAR-based kinematic information in rock glacier inventories. Nine operators applied these guidelines to 11 regions worldwide; more than 3600 rock glaciers are classified according to their kinematics. We test and demonstrate the feasibility of applying common rules to produce homogeneous kinematic inventories at global scale, useful for hydrological and climate change purposes.
Pierre G. Valla
E&G Quaternary Sci. J., 70, 209–212, https://doi.org/10.5194/egqsj-70-209-2021, https://doi.org/10.5194/egqsj-70-209-2021, 2021
Kelly Kochanski, Gregory Tucker, and Robert Anderson
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-205, https://doi.org/10.5194/tc-2021-205, 2021
Manuscript not accepted for further review
Short summary
Short summary
Falling snow does not life flat. When blown by the wind, it forms elaborate structures, like dunes. Where these dunes form, they change the way heat flows through the snow. This can accelerate sea ice melt and climate change. Here, we use both field observations obtained during blizzards in Colorado and simulations performed with a state-of-the-art model, to quantify the impact of snow dunes on Arctic heat flows.
S. Kaushik, L. Ravanel, F. Magnin, Y. Yan, E. Trouve, and D. Cusicanqui
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 469–475, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-469-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-469-2021, 2021
Dominik Brill, Simon Matthias May, Nadia Mhammdi, Georgina King, Benjamin Lehmann, Christoph Burow, Dennis Wolf, Anja Zander, and Helmut Brückner
Earth Surf. Dynam., 9, 205–234, https://doi.org/10.5194/esurf-9-205-2021, https://doi.org/10.5194/esurf-9-205-2021, 2021
Short summary
Short summary
Wave-transported boulders are important records for storm and tsunami impact over geological timescales. Their use for hazard assessment requires chronological information. We investigated the potential of a new dating technique, luminescence rock surface exposure dating, for estimating transport ages of wave-emplaced boulders. Our results indicate that the new approach may provide chronological information on decadal to millennial timescales for boulders not datable by any other method so far.
Christian Vincent, Diego Cusicanqui, Bruno Jourdain, Olivier Laarman, Delphine Six, Adrien Gilbert, Andrea Walpersdorf, Antoine Rabatel, Luc Piard, Florent Gimbert, Olivier Gagliardini, Vincent Peyaud, Laurent Arnaud, Emmanuel Thibert, Fanny Brun, and Ugo Nanni
The Cryosphere, 15, 1259–1276, https://doi.org/10.5194/tc-15-1259-2021, https://doi.org/10.5194/tc-15-1259-2021, 2021
Short summary
Short summary
In situ glacier point mass balance data are crucial to assess climate change in different regions of the world. Unfortunately, these data are rare because huge efforts are required to conduct in situ measurements on glaciers. Here, we propose a new approach from remote sensing observations. The method has been tested on the Argentière and Mer de Glace glaciers (France). It should be possible to apply this method to high-spatial-resolution satellite images and on numerous glaciers in the world.
Antoine Guillemot, Laurent Baillet, Stéphane Garambois, Xavier Bodin, Agnès Helmstetter, Raphaël Mayoraz, and Eric Larose
The Cryosphere, 15, 501–529, https://doi.org/10.5194/tc-15-501-2021, https://doi.org/10.5194/tc-15-501-2021, 2021
Short summary
Short summary
Among mountainous permafrost landforms, rock glaciers are composed of boulders, fine frozen materials, water and ice in various proportions. Displacement rates of active rock glaciers can reach several m/yr, contributing to emerging risks linked to gravitational hazards. Thanks to passive seismic monitoring, resonance effects related to seasonal freeze–thawing processes of the shallower layers have been monitored and modeled. This method is an accurate tool for studying rock glaciers at depth.
Leif S. Anderson, William H. Armstrong, Robert S. Anderson, and Pascal Buri
The Cryosphere, 15, 265–282, https://doi.org/10.5194/tc-15-265-2021, https://doi.org/10.5194/tc-15-265-2021, 2021
Short summary
Short summary
Many glaciers are thinning rapidly beneath debris cover (loose rock) that reduces melt, including Kennicott Glacier in Alaska. This contradiction has been explained by melt hotspots, such as ice cliffs, scattered within the debris cover. However, at Kennicott Glacier declining ice flow explains the rapid thinning. Through this study, Kennicott Glacier is now the first glacier in Alaska, and the largest glacier globally, where melt across its debris-covered tongue has been rigorously quantified.
Rabiul H. Biswas, Frédéric Herman, Georgina E. King, Benjamin Lehmann, and Ashok K. Singhvi
Clim. Past, 16, 2075–2093, https://doi.org/10.5194/cp-16-2075-2020, https://doi.org/10.5194/cp-16-2075-2020, 2020
Short summary
Short summary
A new approach to reconstruct the temporal variation of rock surface temperature using the thermoluminescence (TL) of feldspar is introduced. Multiple TL signals or thermometers in the range of 210 to 250 °C are sensitive to typical surface temperature fluctuations and can be used to constrain thermal histories of rocks over ~50 kyr. We show that it is possible to recover thermal histories of rocks using inverse modeling and with δ18O anomalies as a priori information.
Cited articles
Amschwand, D., Ivy-Ochs, S., Frehner, M., Steinemann, O., Christl, M., and
Vockenhuber, C.: Deciphering the evolution of the Bleis Marscha rock glacier
(Val d'Err, eastern Switzerland) with cosmogenic nuclide exposure dating,
aerial image correlation, and finite element modeling, The Cryosphere, 15, 2057–2081, https://doi.org/10.5194/tc-15-2057-2021, 2021.
Anderson, R. S., Anderson, L. S., Armstrong, W. H., Rossi, M. W., and Crump,
S. E.: Glaciation of alpine valleys: The glacier – debris-covered glacier
– rock glacier continuum, Geomorphology, 311, 127–142, https://doi.org/10.1016/j.geomorph.2018.03.015, 2018.
Andrés, N., Gómez-Ortiz, A., Fernández-Fernández, J. M.,
Tanarro, L. M., Salvador-Franch, F., Oliva, M., and Palacios, D.: Timing of
deglaciation and rock glacier origin in the southeastern Pyrenees: a review
and new data, Boreas, 47, 1050–1071, https://doi.org/10.1111/bor.12324, 2018.
Balco, G., Stone, J. O., Lifton, N. A., and Dunai, T. J.: A complete and
easily accessible means of calculating surface exposure ages or erosion
rates from 10Be and 26Al measurements, Quatern. Geochronol., 3, 174–195, https://doi.org/10.1016/J.QUAGEO.2007.12.001, 2008.
Barbier, R., Barféty, J.-C., Bocquet, A., Bordet P., Le Fort, P., and
Meloux, J.: La Grave “Aiguilles d'Arves – Col du Lautaret”, Carte
géologique à , BRGM, Orléans, 1973.
Barboux, C., Delaloye, R., and Lambiel, C.: Inventorying slope movements in
an Alpine environment using DInSAR, Earth Surf. Proc. Land., 39, 2087–2099, https://doi.org/10.1002/ESP.3603, 2014.
Barsch, D.: Ein Permafrostprofil aus Graubünden, Schweizer Alpen, Z. Geomorphol., 21, 79–86, 1977.
Berthling, I.: Beyond confusion: Rock glaciers as cryo-conditioned
landforms, Geomorphology, 131, 98–106, https://doi.org/10.1016/J.GEOMORPH.2011.05.002, 2011.
Blöthe, J. H., Halla, C., Schwalbe, E., Bottegal, E., Trombotto Liaudat,
D., and Schrott, L.: Surface velocity fields of active rock glaciers and
ice-debris complexes in the Central Andes of Argentina, Earth Surf. Proc. Land., 46, 504–522, https://doi.org/10.1002/esp.5042, 2021.
Bodin, X.: Géodynamique du pergélisol de montagne: fonctionnement, distribution et évolution récente. L'exemple du massif du Combeynot (Hautes Alpes), thèse de doctorat, Université Paris-Diderot,
p. 274, https://tel.archives-ouvertes.fr/tel-00203233/document (last access: 22 June 2022), 2007.
Bodin, X.: Present status and development of rock glacier complexes in
south-faced valleys (45∘ N, French Alps), Geografia Fisica e Dinamica Quaternaria, 36, 27–38, https://doi.org/10.4461/GFDQ.2013.36.2, 2013.
Bodin, X., Thibert, E., Sanchez, O., Rabatel, A., and Jaillet, S.:
Multi-Annual kinematics of an active rock glacier quantified from very
high-resolution DEMs: An application-case in the French Alps, Remote Sens., 10, 547, https://doi.org/10.3390/rs10040547, 2018.
Böhlert, R., Compeer, M., Egli, M., Brandová, D., Maisch, M., Kubik,
P. W., and Haeberli, W.: A combination of relative-numerical dating methods
indicates two high alpine rock glacier activity phases after the glacier
advance of the younger dryas, Open Geogr. J., 4, 115–130, 2011.
Braucher, R., Bourlès, D., Marchel, S., Vidal-Romani, J., Fernadez-Mosquera, D., Marti, K., Léanni, L., Chauvet, F., Arnold, M., Aumaître, G., and Keddadouche, K.: Determination of muon attenuation lengths in depth profiles from in situ produced cosmogenic nuclides, Nucl. Instrum. Meth. Phys. Res., 294, 484–490, https://doi.org/10.1016/j.nimb.2012.05.023, 2013.
Brown, E. T., Edmond, J. M., Raisbeck, G. M., Yiou, F., Kurz, M. D., and
Brook, E. J.: Examination of surface exposure ages of Antarctic moraines
using in situ produced 10Be and 26Al, Geophys. Res. Lett., 55, 2269–2283, https://doi.org/10.1016/0016-7037(91)90103-C, 1991.
Charton, J., Verfaillie, D., Jomelli, V., and Francou, B.: Early Holocene
rock glacier stabilisation at col du Lautaret (French Alps): Palaeoclimatic
implications, Geomorphology, 394, 107962, https://doi.org/10.1016/j.geomorph.2021.107962, 2021.
Chenet, M., Brunstein, D., Jomelli, V., Roussel, E., Rinterknecht, V.,
Mokadem, F., Biette, M., Robert, V., and Léanni, L.: 10Be cosmic-ray
exposure dating of moraines and rock avalanches in the Upper Romanche valley
(French Alps): Evidence of two glacial advances during the Late
Glacial/Holocene transition, Quaternary Sci. Rev., 148, 209–221, https://doi.org/10.1016/J.QUASCIREV.2016.07.025, 2016.
Claude, A., Ivy-Ochs, S., Kober, F., Antognini, M., Salcher, B., and Kubik,
P. W.: The Chironico landslide (Valle Leventina, southern Swiss Alps): age
and evolution, Swiss J. Geosci., 107, 273–291, https://doi.org/10.1007/s00015-014-0170-z, 2014.
Cossart, E., Fort, M., Bourles, D., Carcaillet, J., Perrier, R., Siame, L.,
and Braucher, R.: Climatic significance of glacier retreat and rockglaciers
re-assessed in the light of cosmogenic dating and weathering rind thickness
in Clarée valley (Briançonnais, French Alps), Catena, 80,
204–219, https://doi.org/10.1016/j.catena.2009.11.007, 2010.
Coûteaux, M. and Edouard, J.-L.: La déglaciation du site du lac des
Bèches (Massif des Ecrins), Etude pollenanalytique et glacio-morphologique, 75, 63–77, https://doi.org/10.3406/rga.1987.2666, 1987.
Cusicanqui, D., Rabatel, A., and Vincent, C.: Interpretation of Volume and
Flux Changes of the Laurichard Rock Glacier Between 1952 and 2019, French
Alps, J. Geophys. Res.-Earth, 126, e2021JF006161, https://doi.org/10.1029/2021JF006161, 2021.
Dall'Asta, E., Forlani, G., Roncella, R., Santise, M., Diotri, F., and Morra
di Cella, U.: Unmanned Aerial Systems and DSM matching for rock glacier
monitoring, ISPRS J. Photogram. Remote Sens., 127, 102–114, https://doi.org/10.1016/j.isprsjprs.2016.10.003, 2017.
Delaloye, R. and Echelard, T.: IPA Action Group Rock glacier inventories and
kinematics (version 4.1), 1–13, https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjvtLGEuLD4AhWVdc0KHXbGB98QFnoECAgQAQ&url=https%3A%2F%2Fbigweb.unifr.ch%2FScience%2FGeosciences%2FGeomorphology%2FPub%2FWebsite%2FIPA%2FGuidelines%2FV4%2F200507_Baseline_Concepts_Inventorying_Rock_Glaciers_V4.1.pdf&usg=AOvVaw1i3zQhaj3gemphcKQq-PEl
(last access: 15 June 2022), 2020.
Delaloye, R., Lambiel, C., and Gärtner-Roer, I.: Aperçu de la
cinématique des glaciers rocheux dans les alpes suisses. Rythme
saisonnier, variations interannuelles et tendance pluri-décennale, Geogr. Helv., 65, 135–145, https://doi.org/10.5194/gh-65-135-2010, 2010.
Delunel, R.: Evolution géomorphologique du massif des Ecrins-Pelvoux
depuis le Dernier Maximum Glaciaire-Apports des nucléides
cosmogéniques produits in-situ, https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwj3gKieuLD4AhWXRs0KHehDD3EQFnoECAgQAQ&url=https%3A%2F%2Ftel.archives-ouvertes.fr%2Ftel-00511048%2Fdocument&usg=AOvVaw0In5ks4OD9WaL852Xrw6iq
(last access: 15 June 2022), 2010.
Delunel, R., Bourlès, D. L., van der Beek, P. A., Schlunegger, F., Leya, I., Masarik, J., and Paquet, E.: Snow shielding factors for cosmogenic nuclide dating inferred from long-term neutron detector monitoring, Quatern. Geochronol., 24, 16–26, https://doi.org/10.1016/j.quageo.2014.07.003, 2014.
Durand, Y., Laternser, M., Giraud, G., Etchevers, P., Lesaffre, B., and
Mérindol, L.: Reanalysis of 44 yr of climate in the French Alps
(1958–2002): Methodology, model validation, climatology, and trends for air
temperature and precipitation, J. Appl. Meteorol. Clim., 48, 429–449, https://doi.org/10.1175/2008JAMC1808.1, 2009a.
Durand, Y., Giraud, G., Laternser, M., Etchevers, P., Mérindol, L., and
Lesaffre, B.: Reanalysis of 47 years of climate in the French Alps
(1958–2005): Climatology and trends for snow cover, J. Appl. Meteorol. Clim., 48, 2487–2512, https://doi.org/10.1175/2009JAMC1810.1, 2009b.
Eriksen, H., Rouyet, L., Lauknes, T. R., Berthling, I., Isaksen, K.,
Hindberg, H., Larsen, Y., and Corner, G. D.: Recent Acceleration of a Rock
Glacier Complex, Ádjet, Norway, Documented by 62 Years of Remote Sensing
Observations, Geophys. Res. Lett., 45, 8314–8323, https://doi.org/10.1029/2018GL077605, 2018.
Federici, P. R., Granger, D. E., Pappalardo, M., Ribolino, A., Spagnolo, M.,
and Cyr, A. J.: Exposure age dating and Equilibrium Line Altitude
reconstruction of an Egesen moraine in the Maritime Alps, Italy, Boreas, 37,
245–253, https://doi.org/10.1111/j.1502-3885.2007.00018.x, 2008.
Fernández-Fernández, J. M., Palacios, D., Andrés, N., Schimmelpfennig, I., Tanarro, L. M., Brynjólfsson, S., López-Acevedo, F. J., Sæmundsson, Þ., and Team, A. S. T. E. R.: Constraints on the timing of debris-covered and rock glaciers: An exploratory case study in the Hólar area, northern Iceland, Geomorphology, 361, 107196, https://doi.org/10.1016/j.geomorph.2020.107196, 2020.
Fleischer, F., Haas, F., Piermattei, L., Pfeiffer, M., Heckmann, T., Altmann, M., Rom, J., Stark, M., Wimmer, M. H., Pfeifer, N., and Becht, M.: Multi-decadal (1953–2017) rock glacier kinematics analysed by high-resolution topographic data in the upper Kaunertal, Austria, The Cryosphere, 15, 5345–5369, https://doi.org/10.5194/tc-15-5345-2021, 2021.
Francou, B.: Chutes de pierres et éboulisation dans les parois de
l'étage périglaciaire, Revue de géographie alpine, 70, 279–300, https://doi.org/10.3406/rga.1982.2508, 1982.
Francou, B. and Reynaud, L.: 10-year surficial velocities on a rock glacier
(Laurichard, French Alps), Permafrost Periglac. Process., 3, 209–213, https://doi.org/10.1002/ppp.3430030306, 1992.
Frauenfelder, R. and Kááb, A.: Towards a palaeoclimatic model of
rock glacier formation in the Swiss Alps, Ann. Glaciol., 31, 281–286, https://doi.org/10.3189/172756400781820264, 2000.
Frehner, M., Ling, A. H. M., and Gärtner-Roer, I.: Furrow-and-ridge
morphology on rockglaciers explained by gravity-driven buckle folding: A
case study from the murtèl rockglacier (Switzerland), Permafrost Periglac. Process., 26, 57–66, https://doi.org/10.1002/ppp.1831, 2015.
Fuchs, M. C., Böhlert, R., Krbetschek, M., Preusser, F., and Egli, M.:
Exploring the potential of luminescence methods for dating Alpine rock
glaciers, Quatern. Geochronol., 18, 17–33, https://doi.org/10.1016/j.quageo.2013.07.001, 2013.
Gallach, X., Ravanel, L., Egli, M., Brandova, D., Schaepman, M., Christl,
M., Gruber, S., Deline, P., Carcaillet, J., and Pallandre, F.: Timing of
rockfalls in the Mont Blanc massif (Western Alps): evidence from surface
exposure dating with cosmogenic 10Be, Landslides, 15, 1991–2000, https://doi.org/10.1007/s10346-018-0999-8, 2018.
García-Ruiz, J. M., Palacios, D., Fernández-Fernández, J. M., Andrés, N., Arnáez, J., Gómez-Villar, A., Santos-González, J., Álvarez-Martínez, J., Lana-Renault, N., Léanni, L., and ASTER Team: Glacial stages in the Peña Negra valley, Iberian Range, northern Iberian Peninsula: Assessing the importance of the glacial record in small cirques in a marginal mountain area, Geomorphology, 362, 107195,
https://doi.org/10.1016/j.geomorph.2020.107195, 2020.
Gardent, M., Rabatel, A., Dedieu, J. P., and Deline, P.: Multitemporal
glacier inventory of the French Alps from the late 1960s to the late 2000s,
Global Planet. Change, 120, 24–37, https://doi.org/10.1016/j.gloplacha.2014.05.004, 2014.
Giardino, J. R. and Vitek, J. D.: The significance of rock glaciers in the
glacial-periglacial landscape continuum, J. Quaternary Sci., 3, 97–103, https://doi.org/10.1002/jqs.3390030111, 1988.
Gilbert, G. K.: Systematic Asymmetry of Crest Lines in the High Sierra of
California, J. Geol., 12, 579–588, https://doi.org/10.1086/621182, 1904.
Gosse, J. C. and Phillips, F. M.: Terrestrial in situ cosmogenic nuclides:
Theory and application, Quaternary Sci. Rev., 20, 1475–1560, https://doi.org/10.1016/S0277-3791(00)00171-2, 2001.
Haeberli, W.: Mountain permafrost – research frontiers and a special
long-term challenge, Cold Reg. Sci. Technol., 96, 71–76,
https://doi.org/10.1016/j.coldregions.2013.02.004, 2013.
Haeberli, W., Hallet, B., Arenson, L., Elconin, R., Humlum, O., Kääb, A., Kaufmann, V., Ladanyi, B., Matsuoka, N., Springman, S., and Mühll, D. V.: Permafrost creep and rock glacier dynamics, Permafrost Periglac. Process., 17, 189–214, https://doi.org/10.1002/ppp.561, 2006.
Hippolyte, J. C., Bourlès, D., Braucher, R., Carcaillet, J., Léanni,
L., Arnold, M., and Aumaitre, G.: Cosmogenic 10Be dating of a sackung and its faulted rock glaciers, in the Alps of Savoy (France), Geomorphology, 108, 312–320, https://doi.org/10.1016/j.geomorph.2009.02.024, 2009.
Hofmann, F. M., Alexanderson, H., Schoeneich, P., Mertes, J. R., and
Léanni, L.: Post-Last Glacial Maximum glacier fluctuations in the
southern Écrins massif (westernmost Alps): insights from 10Be cosmic ray exposure dating, Boreas, 48, 1019–1041, https://doi.org/10.1111/BOR.12405,
2019.
Hormes, A., Ivy-Ochs, S., Kubik, P. W., Ferreli, L., and Maria Michetti, A.:
10Be exposure ages of a rock avalanche and a late glacial moraine in Alta Valtellina, Italian Alps, Quatern. Int., 190, 136–145, https://doi.org/10.1016/j.quaint.2007.06.036, 2008.
Humlum, O.: The geomorphic significance of rock glaciers: Estimates of rock
glacier debris volumes and headwall recession rates in West Greenland, Geomorphology, 35, 41–67, https://doi.org/10.1016/S0169-555X(00)00022-2, 2000.
Ikeda, A. and Matsuoka, N.: Pebbly versus bouldery rock glaciers: Morphology, structure and processes, Geomorphology, 73, 279–296, https://doi.org/10.1016/j.geomorph.2005.07.015, 2006.
Ikeda, A., Matsuoka, N., and Kääb, A.: Fast deformation of perennially frozen debris in a warm rock glacier in the Swiss Alps: An
effect of liquid water, J. Geophys. Res.-Earth, 113, F01021, https://doi.org/10.1029/2007JF000859, 2008.
Ivy-Ochs, S.: Glacier variations in the European Alps at the end of the last
glaciation, Cuadernos de investigación geográfica/Geographical Research Letters, 41, 295–315, https://doi.org/10.18172/CIG.2750, 2015.
Ivy-Ochs, S., Kerschner, H., Kubik, P. W., and Schlüchter, C.: Glacier
response in the European Alps to Heinrich Event 1 cooling: The Gschnitz
stadial, J. Quaternary Sci., 21, 115–130, https://doi.org/10.1002/jqs.955, 2006.
Ivy-Ochs, S., Kerschner, H., Reuther, A., Preusser, F., Heine, K., Maisch, M., Kubik, P. W., and Schlüchter, C.: Chronology of the last glacial
cycle in the European Alps, J. Quaternary Sci., 23, 559–573, https://doi.org/10.1002/jqs.1202, 2008.
Johnson, P. G.: Glacier- rock glacier transition in the southwest Yukon
Territory, Canada, Arct. Alp. Res., 12, 195–204, https://doi.org/10.2307/1550516, 1980.
Jones, D. B., Harrison, S., Anderson, K., and Whalley, W. B.: Rock glaciers
and mountain hydrology: A review, Earth-Sci. Rev., 193, 66–90, https://doi.org/10.1016/j.earscirev.2019.04.001, 2019.
Kaab, A., Haeberli, W., and Hilmar Gudmundsson, G.: Analysing the creep of
mountain permafrost using high precision aerial photogrammetry: 25 years of
monitoring Gruben rock glacier, Swiss Alps, Permafrost Periglac. Process., 8, 409–426, https://doi.org/10.1002/(SICI)1099-1530(199710/12)8:4<409::AID-PPP267>3.0.CO;2-C, 1997.
Kääb, A., Strozzi, T., Bolch, T., Caduff, R., Trefall, H. kon,
Stoffel, M., and Kokarev, A.: Inventory and changes of rock glacier creep
speeds in Ile Alatau and Kungöy Ala-Too, northern Tien Shan, since the 1950s, The Cryosphere, 15, 927–949, https://doi.org/10.5194/tc-15-927-2021, 2021.
Kellerer-Pirklbauer, A.: Potential weathering by freeze-thaw action in
alpine rocks in the European Alps during a nine year monitoring period, Geomorphology, 296, 113–131, https://doi.org/10.1016/j.geomorph.2017.08.020, 2017.
Kellerer-Pirklbauer, A. and Rieckh, M.: Monitoring nourishment processes in
the rooting zone of an active rock glacier in an alpine environment, Z. Geomorphol., 60, 99–121, https://doi.org/10.1127/zfg_suppl/2016/00245, 2016.
Kelly, M. A., Buoncristiani, J. F., and Schlüchter, C.: A reconstruction
of the last glacial maximum (LGM) ice-surface geometry in the western Swiss
Alps and contiguous Alpine regions in Italy and France, Ecl. Geolog. Helvet., 97, 57–75, https://doi.org/10.1007/s00015-004-1109-6, 2004.
Kenner, R., Phillips, M., Limpach, P., Beutel, J., and Hiller, M.:
Monitoring mass movements using georeferenced time-lapse photography:
Ritigraben rock glacier, western Swiss Alps, Cold Reg. Sci. Technol., 145, 127–134, https://doi.org/10.1016/j.coldregions.2017.10.018, 2018.
Kohl, C. P. and Nishiizumi, K.: Chemical isolation of quartz for measurement
of in-situ-produced cosmogenic nuclides, Geochim. Cosmochim. Ac., 56, 3583–3587, https://doi.org/10.1016/0016-7037(92)90401-4, 1992.
Konrad, S. K., Humphrey, N. F., Steig, E. J., Clark, D. H., Potter, N., and
Pfeffer, W. T.: Rock glacier dynamics and paleoclimatic implications,
Geology, 27, 1131–1134, https://doi.org/10.1130/0091-7613(1999)027<1131:RGDAPI>2.3.CO;2, 1999.
Krainer, K., Bressan, D., Dietre, B., Haas, J. N., Hajdas, I., Lang, K.,
Mair, V., Nickus, U., Reidl, D., Thies, H., and Tonidandel, D.: A 10,300-year-old permafrost core from the active rock glacier Lazaun, southern Ötztal Alps (South Tyrol, northern Italy), Quatern. Res., 83, 324–335, https://doi.org/10.1016/J.YQRES.2014.12.005, 2015.
Lehmann, B.: BenjaminLehmann/Esurf2022: Esurf2022_code_data, Zenodo [code and data set], https://doi.org/10.5281/zenodo.6686296, 2022.
Lehmann, B., Herman, F., Valla, P. G., King, G. E., Biswas, R. H., Ivy-Ochs,
S., Steinemann, O., and Christl, M.: Postglacial erosion of bedrock surfaces
and deglaciation timing: New insights from the Mont Blanc massif (western
Alps), Geology, 48, 139–144, https://doi.org/10.1130/G46585.1, 2020.
Le Roy, M., Deline, P., Carcaillet, J., Schimmelpfennig, I., and Ermini, M.:
10Be exposure dating of the timing of Neoglacial glacier advances in the Ecrins-Pelvoux massif, southern French Alps, Quaternary Sci. Rev., 178, 118–138, https://doi.org/10.1016/j.quascirev.2017.10.010, 2017.
Lifton, N., Sato, T., and Dunai, T. J.: Scaling in situ cosmogenic nuclide
production rates using analytical approximations to atmospheric cosmic-ray
fluxes, Earth Planet. Sc. Lett., 386, 149–160, https://doi.org/10.1016/j.epsl.2013.10.052, 2014.
Liu, L., Millar, C. I., Westfall, R. D., and Zebker, H. A.: Surface motion
of active rock glaciers in the Sierra Nevada, California, USA: Inventory and
a case study using InSAR, The Cryosphere, 7, 1109–1119,
https://doi.org/10.5194/tc-7-1109-2013, 2013.
Liu, Z., Zhu, J., Rosenthal, Y., Zhang, X., Otto-Bliesner, B. L., Timmermann, A., Smith, R. S., Lohmann, G., Zheng, W., and Timm, O. E.: The Holocene temperature conundrum, P. Natl. Acad. Sci. USA, 111, E3501,
https://doi.org/10.1073/PNAS.1407229111, 2014.
Marcer, M., Bodin, X., Brenning, A., Schoeneich, P., Charvet, R., and Gottardi, F.: Permafrost favorability index: Spatial modeling in the French
alps using a rock Glacier inventory, Front. Earth Sci., 5, 105, https://doi.org/10.3389/feart.2017.00105, 2017.
Marcer, M., Cicoira, A., Cusicanqui, D., Bodin, X., Echelard, T., Obregon,
R., and Schoeneich, P.: Rock glaciers throughout the French Alps accelerated
and destabilised since 1990 as air temperatures increased, Commun. Earth Environ., 2, 1–11, https://doi.org/10.1038/s43247-021-00150-6, 2021b.
Martin, L. C. P., Blard, P. H., Balco, G., Lavé, J., Delunel, R., Lifton, N., and Laurent, V.: The CREp program and the ICE-D production rate calibration database: A fully parameterizable and updated online tool to compute cosmic-ray exposure ages, Quatern. Geochronol., 38, 25–49, https://doi.org/10.1016/J.QUAGEO.2016.11.006, 2017.
Matthews, J. A. and Wilson, P.: Improved Schmidt-hammer exposure ages for
active and relict pronival ramparts in southern Norway, and their
palaeoenvironmental implications, Geomorphology, 246, 7–21, https://doi.org/10.1016/j.geomorph.2015.06.002, 2015.
Merchel, S. and Herpers, U.: An update on radiochemical separation techniques for the determination of long-lived radionuclides via accelerator mass spectrometry, Radiochim. Acta, 84, 215–219, https://doi.org/10.1524/ract.1999.84.4.215, 1999.
Micheletti, N., Tonini, M., and Lane, S. N.: Geomorphological activity at a
rock glacier front detected with a 3D density-based clustering algorithm,
Geomorphology, 278, 287–297, https://doi.org/10.1016/j.geomorph.2016.11.016, 2017.
Monegato, G., Scardia, G., Hajdas, I., Rizzini, F., and Piccin, A.: The
Alpine LGM in the boreal ice-sheets game, Scient. Rep., 7, 1–8, https://doi.org/10.1038/s41598-017-02148-7, 2017.
Monnier, S. and Kinnard, C.: Reconsidering the glacier to rock glacier
transformation problem: New insights from the central Andes of Chile, Geomorphology, 238, 47–55, https://doi.org/10.1016/j.geomorph.2015.02.025, 2015.
Moran, A. P., Ivy Ochs, S., Vockenhuber, C., and Kerschner, H.: Rock glacier
development in the Northern Calcareous Alps at the Pleistocene-Holocene
boundary, Geomorphology, 273, 178–188, https://doi.org/10.1016/j.geomorph.2016.08.017, 2016.
Necsoiu, M., Onaca, A., Wigginton, S., and Urdea, P.: Rock glacier dynamics
in Southern Carpathian Mountains from high-resolution optical and
multi-temporal SAR satellite imagery, Remote Sens. Environ., 177, 21–36, https://doi.org/10.1016/J.RSE.2016.02.025, 2016.
Nuth, C. and Kääb, A.: Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change, The Cryosphere5, 271–290, https://doi.org/10.5194/tc-5-271-2011, 2011.
Paasche, Ø., Dahl, S. O., Løvlie, R., Bakke, J., and Nesje, A.:
Rockglacier activity during the Last Glacial-Interglacial transition and
Holocene spring snowmelting, Quaternary Sci. Rev., 26, 793–807, https://doi.org/10.1016/j.quascirev.2006.11.017, 2007.
Palacios, D., Oliva, M., Gómez-Ortiz, A., Andrés, N., Fernández-Fernández, J. M., Schimmelpfennig, I., Léanni, L., and
Team, A. S. T. E. R.: Climate sensitivity and geomorphological response of
cirque glaciers from the late glacial to the Holocene, Sierra Nevada, Spain,
Quaternary Sci. Rev., 248, 106617, https://doi.org/10.1016/j.quascirev.2020.106617, 2020.
Pavón-Carrasco, F. J., Osete, M. L., Torta, J. M., and de !Santis, A.: A
geomagnetic field model for the Holocene based on archaeomagnetic and lava
flow data, Earth Planet. Sc. Lett., 388, 98–109, https://doi.org/10.1016/j.epsl.2013.11.046, 2014.
Portenga, E. W. and Bierman, P. R.: Understanding earth's eroding surface
with 10Be, GSA Today, 21, 4–10, https://doi.org/10.1130/G111A.1, 2011.
Protin, M., Schimmelpfennig, I., Mugnier, J. L., Ravanel, L., le Roy, M.,
Deline, P., Favier, V., Buoncristiani, J. F., Aumaître, G., Bourlès, D. L., and Keddadouche, K.: Climatic reconstruction for the Younger Dryas/Early Holocene transition and the Little Ice Age based on paleo-extents of Argentière glacier (French Alps), Quaternary Sci. Rev., 221, 105863, https://doi.org/10.1016/J.QUASCIREV.2019.105863, 2019.
Robson, B. A., MacDonell, S., Ayala, Á., Bolch, T., Nielsen, P. R., and
Vivero, S.: Glacier and rock glacier changes since the 1950s in the La Laguna catchment, Chile, The Cryosphere, 16, 647–665,
https://doi.org/10.5194/tc-16-647-2022, 2022.
Rodríguez-Rodríguez, L., Jiménez-Sánchez, M., Domínguez-Cuesta, M. J., Rinterknecht, V., and Pallàs, R.: Timing
of last deglaciation in the Cantabrian Mountains (Iberian Peninsula; North
Atlantic Region) based on in situ-produced 10Be exposure dating, Quaternary Sci. Rev., 171, 166–181, https://doi.org/10.1016/j.quascirev.2017.07.012, 2017.
Sandeman, A. F. and Ballantyne, C. K.: Talus rock glaciers in scotland:
Characteristics and controls on formation, Scot. Geogr. Mag., 112, 138–146, https://doi.org/10.1080/14702549608554947, 1996.
Scambos, T. A., Dutkiewicz, M. J., Wilson, J. C., and Bindschadler, R. A.:
Application of image cross-correlation to the measurement of glacier
velocity using satellite image data, Remote Sens. Environ., 42, 177–186, https://doi.org/10.1016/0034-4257(92)90101-O, 1992.
Scapozza, C., Lambiel, C., Bozzini, C., Mari, S., and Conedera, M.: Assessing the rock glacier kinematics on three different timescales: A case study from the southern Swiss Alps, Earth Surf. Proc. Land., 39, 2056–2069, https://doi.org/10.1002/ESP.3599, 2014.
Schimmelpfennig, I., Schaefer, J. M., Akçar, N., Koffman, T., Ivy-Ochs,
S., Schwartz, R., Finkel, R. C., Zimmerman, S., and Schlüchter, C.: A
chronology of Holocene and Little Ice Age glacier culminations of the
Steingletscher, Central Alps, Switzerland, based on high-sensitivity
beryllium-10 moraine dating, Earth Planet. Sc. Lett., 393, 220–230, https://doi.org/10.1016/j.epsl.2014.02.046, 2014.
Schindelwig, I., Akçar, N., Kubik, P. W., and Schlüchter, C.:
Lateglacial and early Holocene dynamics of adjacent valley glaciers in the
Western Swiss Alps, J. Quaternary Sci., 27, 114–124, https://doi.org/10.1002/jqs.1523, 2012.
Shean, D. E., Alexandrov, O., Moratto, Z. M., Smith, B. E., Joughin, I. R.,
Porter, C., and Morin, P.: An automated, open-source pipeline for mass
production of digital elevation models (DEMS) from very-high-resolution
commercial stereo satellite imagery, ISPRS J. Photogram. Remote Sens., 116, 101–117, https://doi.org/10.1016/j.isprsjprs.2016.03.012, 2016.
Steinemann, O., Reitner, J. M., Ivy-Ochs, S., Christl, M., and Synal, H. A.:
Tracking rockglacier evolution in the Eastern Alps from the Lateglacial to
the early Holocene, Quaternary Sci. Rev., 241, 106424,
https://doi.org/10.1016/J.QUASCIREV.2020.106424, 2020.
Strozzi, T., Caduff, R., Jones, N., Barboux, C., Delaloye, R., Bodin, X.,
Kääb, A., Mätzler, E., and Schrott, L.: Monitoring rock glacier
kinematics with satellite synthetic aperture radar, Remote Sens., 12, 559, https://doi.org/10.3390/RS12030559, 2020.
Thibert, E., Bodin, X., Bonnefoy-Demongeot, M., and Finance, F.: Extracting
the time signal in surface velocity changes along 3 decades at Laurichard
rock glacier (French Alps), https://www.researchgate.net/ (last access: 15 June 2022), 2018.
Uppala, S. M., Kållberg, P. W., Simmons, A. J., Andrae, U., Bechtold, V.
D. C., Fiorino, M., Gibson, J. K., Haseler, J., Hernandez, A., Kelly, G. A.,
Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R. P., Andersson, E.,
Arpe, K., Balmaseda, M. A., Beljaars, A. C. M., Berg, L. van de, Bidlot, J.,
Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher,
M., Fuentes, M., Hagemann, S., Hólm, E., Hoskins, B. J., Isaksen, L.,
Janssen, P. A. E. M., Jenne, R., Mcnally, A. P., Mahfouf, J.-F., Morcrette,
J.-J., Rayner, N. A., Saunders, R. W., Simon, P., Sterl, A., Trenberth, K.
E., Untch, A., Vasiljevic, D., Viterbo, P., and Woollen, J.: The ERA-40
re-analysis, Q. J. Roy. Meteorol. Soc., 131, 2961–3012, https://doi.org/10.1256/qj.04.176, 2005.
Valla, P. G., van der Beek, P. A., and Lague, D.: Fluvial incision into
bedrock: Insights from morphometric analysis and numerical modeling of
gorges incising glacial hanging valleys (Western Alps, France), J. Geophys. Res.-Earth, 115, 1–25, https://doi.org/10.1029/2008JF001079, 2010.
Vernay, M., Lafaysse, M., Hagenmuller, P., Nheili, R., Verfaillie, D., and
Morin, S.: The S2M meteorological and snow cover reanalysis in the French
mountainous areas (1958–present), AERIS [data set], https://doi.org/10.25326/37, 2020.
Vivero, S. and Lambiel, C.: Monitoring the crisis of a rock glacier with
repeated UAV surveys, Geogr. Helv., 74, 59–69, https://doi.org/10.5194/gh-74-59-2019, 2019.
Vivero, S., Bodin, X., Farías-Barahona, D., MacDonell, S., Schaffer,
N., Robson, B. A., and Lambiel, C.: Combination of Aerial, Satellite, and
UAV Photogrammetry for Quantifying Rock Glacier Kinematics in the Dry Andes
of Chile (30∘ S) Since the 1950s, Front. Remote Sens., 2, 42, https://doi.org/10.3389/FRSEN.2021.784015, 2021.
Wahrhaftig, C. and Cox, A.: Rock glaciers in the Alaska Range, Geol. Soc. Am. Bull., 70, 383–436, https://doi.org/10.1130/0016-7606(1959)70[383:RGITAR]2.0.CO;2, 1959.
Whalley, W. B.: Origin of rock glaciers, J. Glaciol., 13, 323–324, https://doi.org/10.3189/s0022143000023145, 1974.
Winkler, S. and Lambiel, C.: Age constraints of rock glaciers in the
Southern Alps/New Zealand – Exploring their palaeoclimatic potential, Holocene, 28, 778–790, https://doi.org/10.1177/0959683618756802, 2018.
Wirsig, C., Zasadni, J., Christl, M., Akçar, N., and Ivy-Ochs, S.:
Dating the onset of LGM ice surface lowering in the High Alps, Quaternary Sci. Rev., 143, 37–50, https://doi.org/10.1016/J.QUASCIREV.2016.05.001, 2016.
Wirz, V., Geertsema, M., Gruber, S., and Purves, R. S.: Temporal variability
of diverse mountain permafrost slope movements derived from multi-year daily
GPS data, Mattertal, Switzerland, Landslides, 13, 67–83,
https://doi.org/10.1007/s10346-014-0544-3, 2016.
Short summary
Rock glaciers are some of the most frequently occurring landforms containing ice in mountain environments. Here, we use field observations, analysis of aerial and satellite images, and dating methods to investigate the activity of the rock glacier of the Vallon de la Route in the French Alps. Our results suggest that the rock glacier is characterized by two major episodes of activity and that the rock glacier system promotes the maintenance of mountain erosion.
Rock glaciers are some of the most frequently occurring landforms containing ice in mountain...