Articles | Volume 10, issue 3
https://doi.org/10.5194/esurf-10-653-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-10-653-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Suspended sediment and discharge dynamics in a glaciated alpine environment: identifying crucial areas and time periods on several spatial and temporal scales in the Ötztal, Austria
Lena Katharina Schmidt
CORRESPONDING AUTHOR
Institute of Environmental Sciences and Geography, University of
Potsdam, 14476 Potsdam, Germany
Till Francke
Institute of Environmental Sciences and Geography, University of
Potsdam, 14476 Potsdam, Germany
Erwin Rottler
Institute of Environmental Sciences and Geography, University of
Potsdam, 14476 Potsdam, Germany
Theresa Blume
Section of Hydrology, GFZ German Research Centre for Geosciences,
14473 Potsdam, Germany
Johannes Schöber
Tiroler Wasserkraft AG (TiWAG), 6020 Innsbruck, Austria
Axel Bronstert
Institute of Environmental Sciences and Geography, University of
Potsdam, 14476 Potsdam, Germany
Related authors
Lena Katharina Schmidt, Till Francke, Peter Martin Grosse, and Axel Bronstert
Hydrol. Earth Syst. Sci., 28, 139–161, https://doi.org/10.5194/hess-28-139-2024, https://doi.org/10.5194/hess-28-139-2024, 2024
Short summary
Short summary
How suspended sediment export from glacierized high-alpine areas responds to future climate change is hardly assessable as many interacting processes are involved, and appropriate physical models are lacking. We present the first study, to our knowledge, exploring machine learning to project sediment export until 2100 in two high-alpine catchments. We find that uncertainties due to methodological limitations are small until 2070. Negative trends imply that peak sediment may have already passed.
Lena Katharina Schmidt, Till Francke, Peter Martin Grosse, Christoph Mayer, and Axel Bronstert
Hydrol. Earth Syst. Sci., 27, 1841–1863, https://doi.org/10.5194/hess-27-1841-2023, https://doi.org/10.5194/hess-27-1841-2023, 2023
Short summary
Short summary
We present a suitable method to reconstruct sediment export from decadal records of hydroclimatic predictors (discharge, precipitation, temperature) and shorter suspended sediment measurements. This lets us fill the knowledge gap on how sediment export from glacierized high-alpine areas has responded to climate change. We find positive trends in sediment export from the two investigated nested catchments with step-like increases around 1981 which are linked to crucial changes in glacier melt.
Amalie Skålevåg, Lena Katharina Schmidt, Nele Eggers, Jana Tjeda Brettin, Oliver Korup, and Axel Bronstert
EGUsphere, https://doi.org/10.5194/egusphere-2025-3683, https://doi.org/10.5194/egusphere-2025-3683, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
As glaciers retreat in mountain regions, heavy rainstorms increasingly control how much soil and sediment rivers carry downstream. We analysed rainfall and sediment data over 21 years in the Austrian Alps and found short, intense storms becoming more important for sediment movement, although total annual sediment transport is declining as glaciers shrink. This shift may increase flood hazards, affecting ecosystems and water quality downstream.
Marie-Therese Schmehl, Yojana Adhikari, Cathrina Balthasar, Anja Binder, Danica Clerc, Sophia Dobkowitz, Werner Gerwin, Kristin Günther, Heinrich Hartong, Thilo Heinken, Carsten Hess, Pierre L. Ibisch, Florent Jouy, Loretta Leinen, Thomas Raab, Frank Repmann, Susanne Rönnefarth, Lilly Rohlfs, Marina Schirrmacher, Jens Schröder, Maren Schüle, Andrea Vieth-Hillebrand, and Till Francke
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-313, https://doi.org/10.5194/essd-2025-313, 2025
Preprint under review for ESSD
Short summary
Short summary
We present data recorded by eight institutions within the PYROPHOB project, running from 2020 to 2024 at two forest research sites in northeastern Germany. The aim of the project was to monitor abiotic and biotic parameters of forest regrowth under different management regimes on former wildfire sites. The multitude of collected data allows for detailed analyses of the observables separately, as well as their interaction for a more multidisciplinary view on forest recovery after a wildfire.
Nazaré Suziane Soares, Carlos Alexandre Gomes Costa, Till Francke, Christian Mohr, Wolfgang Schwanghart, and Pedro Henrique Augusto Medeiros
EGUsphere, https://doi.org/10.5194/egusphere-2025-884, https://doi.org/10.5194/egusphere-2025-884, 2025
Short summary
Short summary
We use drone surveys to map river intermittency in reaches and classify them into "Wet", "Transition", "Dry" or "Not Determined". We train Random Forest models with 40 candidate predictors, and select altitude, drainage area, distance from dams and dynamic predictors. We separate different models based on dynamic predictors: satellite indices (a) and (b); or (c) accumulated precipitation (30 days). Model (a) is the most successful in simulating intermittency both temporally and spatially.
Till Francke, Cosimo Brogi, Alby Duarte Rocha, Michael Förster, Maik Heistermann, Markus Köhli, Daniel Rasche, Marvin Reich, Paul Schattan, Lena Scheiffele, and Martin Schrön
Geosci. Model Dev., 18, 819–842, https://doi.org/10.5194/gmd-18-819-2025, https://doi.org/10.5194/gmd-18-819-2025, 2025
Short summary
Short summary
Multiple methods for measuring soil moisture beyond the point scale exist. Their validation is generally hindered by not knowing the truth. We propose a virtual framework in which this truth is fully known and the sensor observations for cosmic ray neutron sensing, remote sensing, and hydrogravimetry are simulated. This allows for the rigorous testing of these virtual sensors to understand their effectiveness and limitations.
Patricio Yeste, Matilde García-Valdecasas Ojeda, Sonia R. Gámiz-Fortis, Yolanda Castro-Díez, Axel Bronstert, and María Jesús Esteban-Parra
Hydrol. Earth Syst. Sci., 28, 5331–5352, https://doi.org/10.5194/hess-28-5331-2024, https://doi.org/10.5194/hess-28-5331-2024, 2024
Short summary
Short summary
Integrating streamflow and evaporation data can help improve the physical realism of hydrologic models. We investigate the capabilities of the Variable Infiltration Capacity (VIC) to reproduce both hydrologic variables for 189 headwater located in Spain. Results from sensitivity analyses indicate that adding two vegetation parameters is enough to improve the representation of evaporation and that the performance of VIC exceeded that of the largest modelling effort currently available in Spain.
Daniel Altdorff, Maik Heistermann, Till Francke, Martin Schrön, Sabine Attinger, Albrecht Bauriegel, Frank Beyrich, Peter Biró, Peter Dietrich, Rebekka Eichstädt, Peter Martin Grosse, Arvid Markert, Jakob Terschlüsen, Ariane Walz, Steffen Zacharias, and Sascha E. Oswald
EGUsphere, https://doi.org/10.5194/egusphere-2024-3848, https://doi.org/10.5194/egusphere-2024-3848, 2024
Short summary
Short summary
The German federal state of Brandenburg is particularly prone to soil moisture droughts. To support the management of related risks, we introduce a novel soil moisture and drought monitoring network based on cosmic-ray neutron sensing technology. This initiative is driven by a collaboration of research institutions and federal state agencies, and it is the first of its kind in Germany to have started operation. In this brief communication, we outline the network design and share first results.
Amalie Skålevåg, Oliver Korup, and Axel Bronstert
Hydrol. Earth Syst. Sci., 28, 4771–4796, https://doi.org/10.5194/hess-28-4771-2024, https://doi.org/10.5194/hess-28-4771-2024, 2024
Short summary
Short summary
We present a cluster-based approach for inferring sediment discharge event types from suspended sediment concentration and streamflow. Applying it to a glacierised catchment, we find event magnitude and shape complexity to be the key characteristics separating event types, while hysteresis is less important. The four event types are attributed to compound rainfall–melt extremes, high snowmelt and glacier melt, freeze–thaw-modulated snow-melt and precipitation, and late-season glacier melt.
Daniel Rasche, Theresa Blume, and Andreas Güntner
SOIL, 10, 655–677, https://doi.org/10.5194/soil-10-655-2024, https://doi.org/10.5194/soil-10-655-2024, 2024
Short summary
Short summary
Soil moisture measurements at the field scale are highly beneficial for numerous (soil) hydrological applications. Cosmic-ray neutron sensing (CRNS) allows for the non-invasive monitoring of field-scale soil moisture across several hectares but only for the first few tens of centimetres of the soil. In this study, we modify and test a simple modeling approach to extrapolate CRNS-derived surface soil moisture information down to 450 cm depth and compare calibrated and uncalibrated model results.
Ulrich Strasser, Michael Warscher, Erwin Rottler, and Florian Hanzer
Geosci. Model Dev., 17, 6775–6797, https://doi.org/10.5194/gmd-17-6775-2024, https://doi.org/10.5194/gmd-17-6775-2024, 2024
Short summary
Short summary
openAMUNDSEN is a fully distributed open-source snow-hydrological model for mountain catchments. It includes process representations of an empirical, semi-empirical, and physical nature. It uses temperature, precipitation, humidity, radiation, and wind speed as forcing data and is computationally efficient, of a modular nature, and easily extendible. The Python code is available on GitHub (https://github.com/openamundsen/openamundsen), including documentation (https://doc.openamundsen.org).
Michael Warscher, Thomas Marke, Erwin Rottler, and Ulrich Strasser
Earth Syst. Sci. Data, 16, 3579–3599, https://doi.org/10.5194/essd-16-3579-2024, https://doi.org/10.5194/essd-16-3579-2024, 2024
Short summary
Short summary
Continuous observations of snow and climate at high altitudes are still sparse. We present a unique collection of weather and snow cover data from three automatic weather stations at remote locations in the Ötztal Alps (Austria) that include continuous recordings of snow cover properties. The data are available over multiple winter seasons and enable new insights for snow hydrological research. The data are also used in operational applications, i.e., for avalanche warning and flood forecasting.
Maik Heistermann, Till Francke, Martin Schrön, and Sascha E. Oswald
Hydrol. Earth Syst. Sci., 28, 989–1000, https://doi.org/10.5194/hess-28-989-2024, https://doi.org/10.5194/hess-28-989-2024, 2024
Short summary
Short summary
Cosmic-ray neutron sensing (CRNS) is a non-invasive technique used to obtain estimates of soil water content (SWC) at a horizontal footprint of around 150 m and a vertical penetration depth of up to 30 cm. However, typical CRNS applications require the local calibration of a function which converts neutron counts to SWC. As an alternative, we propose a generalized function as a way to avoid the use of local reference measurements of SWC and hence a major source of uncertainty.
Stefano Gianessi, Matteo Polo, Luca Stevanato, Marcello Lunardon, Till Francke, Sascha E. Oswald, Hami Said Ahmed, Arsenio Toloza, Georg Weltin, Gerd Dercon, Emil Fulajtar, Lee Heng, and Gabriele Baroni
Geosci. Instrum. Method. Data Syst., 13, 9–25, https://doi.org/10.5194/gi-13-9-2024, https://doi.org/10.5194/gi-13-9-2024, 2024
Short summary
Short summary
Soil moisture monitoring is important for many applications, from improving weather prediction to supporting agriculture practices. Our capability to measure this variable is still, however, limited. In this study, we show the tests conducted on a new soil moisture sensor at several locations. The results show that the new sensor is a valid and compact alternative to more conventional, non-invasive soil moisture sensors that can pave the way for a wide range of applications.
Lena Katharina Schmidt, Till Francke, Peter Martin Grosse, and Axel Bronstert
Hydrol. Earth Syst. Sci., 28, 139–161, https://doi.org/10.5194/hess-28-139-2024, https://doi.org/10.5194/hess-28-139-2024, 2024
Short summary
Short summary
How suspended sediment export from glacierized high-alpine areas responds to future climate change is hardly assessable as many interacting processes are involved, and appropriate physical models are lacking. We present the first study, to our knowledge, exploring machine learning to project sediment export until 2100 in two high-alpine catchments. We find that uncertainties due to methodological limitations are small until 2070. Negative trends imply that peak sediment may have already passed.
Daniel Rasche, Jannis Weimar, Martin Schrön, Markus Köhli, Markus Morgner, Andreas Güntner, and Theresa Blume
Hydrol. Earth Syst. Sci., 27, 3059–3082, https://doi.org/10.5194/hess-27-3059-2023, https://doi.org/10.5194/hess-27-3059-2023, 2023
Short summary
Short summary
We introduce passive downhole cosmic-ray neutron sensing (d-CRNS) as an approach for the non-invasive estimation of soil moisture in deeper layers of the unsaturated zone which exceed the observational window of above-ground CRNS applications. Neutron transport simulations are used to derive mathematical descriptions and transfer functions, while experimental measurements in an existing groundwater observation well illustrate the feasibility and applicability of the approach.
Maik Heistermann, Till Francke, Lena Scheiffele, Katya Dimitrova Petrova, Christian Budach, Martin Schrön, Benjamin Trost, Daniel Rasche, Andreas Güntner, Veronika Döpper, Michael Förster, Markus Köhli, Lisa Angermann, Nikolaos Antonoglou, Manuela Zude-Sasse, and Sascha E. Oswald
Earth Syst. Sci. Data, 15, 3243–3262, https://doi.org/10.5194/essd-15-3243-2023, https://doi.org/10.5194/essd-15-3243-2023, 2023
Short summary
Short summary
Cosmic-ray neutron sensing (CRNS) allows for the non-invasive estimation of root-zone soil water content (SWC). The signal observed by a single CRNS sensor is influenced by the SWC in a radius of around 150 m (the footprint). Here, we have put together a cluster of eight CRNS sensors with overlapping footprints at an agricultural research site in north-east Germany. That way, we hope to represent spatial SWC heterogeneity instead of retrieving just one average SWC estimate from a single sensor.
Lena Katharina Schmidt, Till Francke, Peter Martin Grosse, Christoph Mayer, and Axel Bronstert
Hydrol. Earth Syst. Sci., 27, 1841–1863, https://doi.org/10.5194/hess-27-1841-2023, https://doi.org/10.5194/hess-27-1841-2023, 2023
Short summary
Short summary
We present a suitable method to reconstruct sediment export from decadal records of hydroclimatic predictors (discharge, precipitation, temperature) and shorter suspended sediment measurements. This lets us fill the knowledge gap on how sediment export from glacierized high-alpine areas has responded to climate change. We find positive trends in sediment export from the two investigated nested catchments with step-like increases around 1981 which are linked to crucial changes in glacier melt.
Anne Hartmann, Markus Weiler, Konrad Greinwald, and Theresa Blume
Hydrol. Earth Syst. Sci., 26, 4953–4974, https://doi.org/10.5194/hess-26-4953-2022, https://doi.org/10.5194/hess-26-4953-2022, 2022
Short summary
Short summary
Analyzing the impact of soil age and rainfall intensity on vertical subsurface flow paths in calcareous soils, with a special focus on preferential flow occurrence, shows how water flow paths are linked to the organization of evolving landscapes. The observed increase in preferential flow occurrence with increasing moraine age provides important but rare data for a proper representation of hydrological processes within the feedback cycle of the hydro-pedo-geomorphological system.
Achim Brauer, Ingo Heinrich, Markus J. Schwab, Birgit Plessen, Brian Brademann, Matthias Köppl, Sylvia Pinkerneil, Daniel Balanzategui, Gerhard Helle, and Theresa Blume
DEUQUA Spec. Pub., 4, 41–58, https://doi.org/10.5194/deuquasp-4-41-2022, https://doi.org/10.5194/deuquasp-4-41-2022, 2022
Maik Heistermann, Heye Bogena, Till Francke, Andreas Güntner, Jannis Jakobi, Daniel Rasche, Martin Schrön, Veronika Döpper, Benjamin Fersch, Jannis Groh, Amol Patil, Thomas Pütz, Marvin Reich, Steffen Zacharias, Carmen Zengerle, and Sascha Oswald
Earth Syst. Sci. Data, 14, 2501–2519, https://doi.org/10.5194/essd-14-2501-2022, https://doi.org/10.5194/essd-14-2501-2022, 2022
Short summary
Short summary
This paper presents a dense network of cosmic-ray neutron sensing (CRNS) to measure spatio-temporal soil moisture patterns during a 2-month campaign in the Wüstebach headwater catchment in Germany. Stationary, mobile, and airborne CRNS technology monitored the root-zone water dynamics as well as spatial heterogeneity in the 0.4 km2 area. The 15 CRNS stations were supported by a hydrogravimeter, biomass sampling, and a wireless soil sensor network to facilitate holistic hydrological analysis.
Nils Hinrich Kaplan, Theresa Blume, and Markus Weiler
Hydrol. Earth Syst. Sci., 26, 2671–2696, https://doi.org/10.5194/hess-26-2671-2022, https://doi.org/10.5194/hess-26-2671-2022, 2022
Short summary
Short summary
This study is analyses how characteristics of precipitation events and soil moisture and temperature dynamics during these events can be used to model the associated streamflow responses in intermittent streams. The models are used to identify differences between the dominant controls of streamflow intermittency in three distinct geologies of the Attert catchment, Luxembourg. Overall, soil moisture was found to be the most important control of intermittent streamflow in all geologies.
Heye Reemt Bogena, Martin Schrön, Jannis Jakobi, Patrizia Ney, Steffen Zacharias, Mie Andreasen, Roland Baatz, David Boorman, Mustafa Berk Duygu, Miguel Angel Eguibar-Galán, Benjamin Fersch, Till Franke, Josie Geris, María González Sanchis, Yann Kerr, Tobias Korf, Zalalem Mengistu, Arnaud Mialon, Paolo Nasta, Jerzy Nitychoruk, Vassilios Pisinaras, Daniel Rasche, Rafael Rosolem, Hami Said, Paul Schattan, Marek Zreda, Stefan Achleitner, Eduardo Albentosa-Hernández, Zuhal Akyürek, Theresa Blume, Antonio del Campo, Davide Canone, Katya Dimitrova-Petrova, John G. Evans, Stefano Ferraris, Félix Frances, Davide Gisolo, Andreas Güntner, Frank Herrmann, Joost Iwema, Karsten H. Jensen, Harald Kunstmann, Antonio Lidón, Majken Caroline Looms, Sascha Oswald, Andreas Panagopoulos, Amol Patil, Daniel Power, Corinna Rebmann, Nunzio Romano, Lena Scheiffele, Sonia Seneviratne, Georg Weltin, and Harry Vereecken
Earth Syst. Sci. Data, 14, 1125–1151, https://doi.org/10.5194/essd-14-1125-2022, https://doi.org/10.5194/essd-14-1125-2022, 2022
Short summary
Short summary
Monitoring of increasingly frequent droughts is a prerequisite for climate adaptation strategies. This data paper presents long-term soil moisture measurements recorded by 66 cosmic-ray neutron sensors (CRNS) operated by 24 institutions and distributed across major climate zones in Europe. Data processing followed harmonized protocols and state-of-the-art methods to generate consistent and comparable soil moisture products and to facilitate continental-scale analysis of hydrological extremes.
Till Francke, Maik Heistermann, Markus Köhli, Christian Budach, Martin Schrön, and Sascha E. Oswald
Geosci. Instrum. Method. Data Syst., 11, 75–92, https://doi.org/10.5194/gi-11-75-2022, https://doi.org/10.5194/gi-11-75-2022, 2022
Short summary
Short summary
Cosmic-ray neutron sensing (CRNS) is a non-invasive tool for measuring hydrogen pools like soil moisture, snow, or vegetation. This study presents a directional shielding approach, aiming to measure in specific directions only. The results show that non-directional neutron transport blurs the signal of the targeted direction. For typical instruments, this does not allow acceptable precision at a daily time resolution. However, the mere statistical distinction of two rates is feasible.
Daniel Rasche, Markus Köhli, Martin Schrön, Theresa Blume, and Andreas Güntner
Hydrol. Earth Syst. Sci., 25, 6547–6566, https://doi.org/10.5194/hess-25-6547-2021, https://doi.org/10.5194/hess-25-6547-2021, 2021
Short summary
Short summary
Cosmic-ray neutron sensing provides areal average soil moisture measurements. We investigated how distinct differences in spatial soil moisture patterns influence the soil moisture estimates and present two approaches to improve the estimate of soil moisture close to the instrument by reducing the influence of soil moisture further afield. Additionally, we show that the heterogeneity of soil moisture can be assessed based on the relationship of different neutron energies.
Conrad Jackisch, Sibylle K. Hassler, Tobias L. Hohenbrink, Theresa Blume, Hjalmar Laudon, Hilary McMillan, Patricia Saco, and Loes van Schaik
Hydrol. Earth Syst. Sci., 25, 5277–5285, https://doi.org/10.5194/hess-25-5277-2021, https://doi.org/10.5194/hess-25-5277-2021, 2021
Maik Heistermann, Till Francke, Martin Schrön, and Sascha E. Oswald
Hydrol. Earth Syst. Sci., 25, 4807–4824, https://doi.org/10.5194/hess-25-4807-2021, https://doi.org/10.5194/hess-25-4807-2021, 2021
Short summary
Short summary
Cosmic-ray neutron sensing (CRNS) is a powerful technique for retrieving representative estimates of soil moisture in footprints extending over hectometres in the horizontal and decimetres in the vertical. This study, however, demonstrates the potential of CRNS to obtain spatio-temporal patterns of soil moisture beyond isolated footprints. To that end, we analyse data from a unique observational campaign that featured a dense network of more than 20 neutron detectors in an area of just 1 km2.
Anne Hartmann, Markus Weiler, Konrad Greinwald, and Theresa Blume
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-242, https://doi.org/10.5194/hess-2021-242, 2021
Manuscript not accepted for further review
Short summary
Short summary
Our field observation-based examination of flow path evolution, soil formation and vegetation succession across ten millennia on calcareous parent material shows how water flow paths and subsurface water storage are linked to the organization of evolving landscapes. We provide important but rare data and observations for a proper handling of hydrologic processes and their role within the feedback cycle of the hydro-pedo-geomorphological system.
Erwin Rottler, Axel Bronstert, Gerd Bürger, and Oldrich Rakovec
Hydrol. Earth Syst. Sci., 25, 2353–2371, https://doi.org/10.5194/hess-25-2353-2021, https://doi.org/10.5194/hess-25-2353-2021, 2021
Short summary
Short summary
The mesoscale hydrological model (mHM) forced with an ensemble of climate projection scenarios was used to assess potential future changes in flood seasonality in the Rhine River basin. Results indicate that future changes in flood characteristics are controlled by increases in precipitation sums and diminishing snowpacks. The decreases in snowmelt can counterbalance increasing precipitation, resulting in only small and transient changes in streamflow maxima.
Anne Hartmann, Markus Weiler, and Theresa Blume
Earth Syst. Sci. Data, 12, 3189–3204, https://doi.org/10.5194/essd-12-3189-2020, https://doi.org/10.5194/essd-12-3189-2020, 2020
Short summary
Short summary
Our analysis of soil physical and hydraulic properties across two soil chronosequences of 10 millennia in the Swiss Alps provides important observation of the evolution of soil hydraulic behavior. A strong co-evolution of soil physical and hydraulic properties was revealed by the observed change of fast-draining coarse-textured soils to slow-draining soils with a high water-holding capacity in correlation with a distinct change in structural properties and organic matter content.
Daniel Beiter, Markus Weiler, and Theresa Blume
Hydrol. Earth Syst. Sci., 24, 5713–5744, https://doi.org/10.5194/hess-24-5713-2020, https://doi.org/10.5194/hess-24-5713-2020, 2020
Short summary
Short summary
We investigated the interactions between streams and their adjacent hillslopes in terms of water flow. It could be revealed that soil structure has a strong influence on how hillslopes connect to the streams, while the groundwater table tells us a lot about when the two connect. This observation could be used to improve models that try to predict whether or not hillslopes are in a state where a rain event will be likely to produce a flood in the stream.
Conrad Jackisch, Samuel Knoblauch, Theresa Blume, Erwin Zehe, and Sibylle K. Hassler
Biogeosciences, 17, 5787–5808, https://doi.org/10.5194/bg-17-5787-2020, https://doi.org/10.5194/bg-17-5787-2020, 2020
Short summary
Short summary
We developed software to calculate the root water uptake (RWU) of beech tree roots from soil moisture dynamics. We present our approach and compare RWU to measured sap flow in the tree stem. The study relates to two sites that are similar in topography and weather but with contrasting soils. While sap flow is very similar between the two sites, the RWU is different. This suggests that soil characteristics have substantial influence. Our easy-to-implement RWU estimate may help further studies.
Nils Hinrich Kaplan, Theresa Blume, and Markus Weiler
Hydrol. Earth Syst. Sci., 24, 5453–5472, https://doi.org/10.5194/hess-24-5453-2020, https://doi.org/10.5194/hess-24-5453-2020, 2020
Short summary
Short summary
In recent decades the demand for detailed information of spatial and temporal dynamics of the stream network has grown in the fields of eco-hydrology and extreme flow prediction. We use temporal streamflow intermittency data obtained at various sites using innovative sensing technology as well as spatial predictors to predict and map probabilities of streamflow intermittency. This approach has the potential to provide intermittency maps for hydrological modelling and management practices.
Benjamin Fersch, Till Francke, Maik Heistermann, Martin Schrön, Veronika Döpper, Jannis Jakobi, Gabriele Baroni, Theresa Blume, Heye Bogena, Christian Budach, Tobias Gränzig, Michael Förster, Andreas Güntner, Harrie-Jan Hendricks Franssen, Mandy Kasner, Markus Köhli, Birgit Kleinschmit, Harald Kunstmann, Amol Patil, Daniel Rasche, Lena Scheiffele, Ulrich Schmidt, Sandra Szulc-Seyfried, Jannis Weimar, Steffen Zacharias, Marek Zreda, Bernd Heber, Ralf Kiese, Vladimir Mares, Hannes Mollenhauer, Ingo Völksch, and Sascha Oswald
Earth Syst. Sci. Data, 12, 2289–2309, https://doi.org/10.5194/essd-12-2289-2020, https://doi.org/10.5194/essd-12-2289-2020, 2020
Cited articles
Abermann, J., Lambrecht, A., Fischer, A., and Kuhn, M.: Quantifying changes and trends in glacier area and volume in the Austrian Ötztal Alps (1969-1997-2006), The Cryosphere, 3, 205–215, https://doi.org/10.5194/tc-3-205-2009, 2009.
Ballantyne, C. K.: Paraglacial geomorphology, Quat. Sci. Rev., 21,
1935–2017, https://doi.org/10.1016/S0277-3791(02)00005-7, 2002.
Beniston, M., Farinotti, D., Stoffel, M., Andreassen, L. M., Coppola, E., Eckert, N., Fantini, A., Giacona, F., Hauck, C., Huss, M., Huwald, H., Lehning, M., López-Moreno, J.-I., Magnusson, J., Marty, C., Morán-Tejéda, E., Morin, S., Naaim, M., Provenzale, A., Rabatel, A., Six, D., Stötter, J., Strasser, U., Terzago, S., and Vincent, C.: The European mountain cryosphere: a review of its current state, trends, and future challenges, The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018, 2018.
Beylich, A. A., Laute, K., and Storms, J. E. A.: Contemporary suspended
sediment dynamics within two partly glacierized mountain drainage basins in
western Norway (Erdalen and Bødalen, inner Nordfjord), Geomorphology,
287, 126–143, https://doi.org/10.1016/j.geomorph.2015.12.013, 2017.
Bilotta, G. S. and Brazier, R. E.: Understanding the influence of suspended
solids on water quality and aquatic biota, Water Res., 42, 2849–2861, https://doi.org/10.1016/j.watres.2008.03.018, 2008.
Boeckli, L., Brenning, A., Gruber, S., and Noetzli, J.: Permafrost distribution in the European Alps: calculation and evaluation of an index map and summary statistics, The Cryosphere, 6, 807–820, https://doi.org/10.5194/tc-6-807-2012, 2012.
Braun, L. N., Escher-Vetter, H., Siebers, M., and Weber, M.: Water Balance
of the highly Glaciated Vernagt Basin, Ötztal Alps, in: The water
balance of the alps: what do we need to protect the water resources of the
Alps?; proceedings of the conference held at Innsbruck university, 28–29
September 2006, Univ. Press, Innsbruck, 2007.
Buckel, J. and Otto, J.-C.: The Austrian Glacier Inventory GI 4 (2015) in
ArcGis (shapefile) format, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.887415, 2018.
Bürger, G., Pfister, A., and Bronstert, A.: Temperature-Driven Rise in
Extreme Sub-Hourly Rainfall, J. Clim., 32, 7597–7609, https://doi.org/10.1175/JCLI-D-19-0136.1, 2019.
Carrivick, J. L. and Heckmann, T.: Short-term geomorphological evolution of
proglacial systems, Geomorphology, 287, 3–28, https://doi.org/10.1016/j.geomorph.2017.01.037, 2017.
Cavalli, M., Trevisani, S., Comiti, F., and Marchi, L.: Geomorphometric
assessment of spatial sediment connectivity in small Alpine catchments,
Geomorphology, 188, 31–41, https://doi.org/10.1016/j.geomorph.2012.05.007, 2013.
Chiarle, M., Geertsema, M., Mortara, G., and Clague, J. J.: Relations
between climate change and mass movement: Perspectives from the Canadian
Cordillera and the European Alps, Glob. Planet. Change, 202, 103499, https://doi.org/10.1016/j.gloplacha.2021.103499, 2021.
Collins, D. N.: Seasonal and annual variations of suspended sediment
transport in meltwaters draining from an Alpine glacier, in: Hydrological
Measurements; the Water Cycle (Proceedings of two Lausanne Symposia), Hydrology in Mountainous Regions I: Hydrological Measurements; the Water Cycle 193, Lousanne, 9,
1990.
Collins, D. N.: A conceptually based model of the interaction between
flowing meltwater and subglacial sediment, Ann. Glaciol., 22, 224–232, https://doi.org/10.3189/1996AoG22-1-224-232, 1996.
Costa, A., Anghileri, D., and Molnar, P.: Hydroclimatic control on suspended sediment dynamics of a regulated Alpine catchment: a conceptual approach, Hydrol. Earth Syst. Sci., 22, 3421–3434, https://doi.org/10.5194/hess-22-3421-2018, 2018.
Delaney, I. and Adhikari, S.: Increased Subglacial Sediment Discharge in a
Warming Climate: Consideration of Ice Dynamics, Glacial Erosion, and Fluvial
Sediment Transport, Geophys. Res. Lett., 47, e2019GL085672, https://doi.org/10.1029/2019GL085672, 2020.
Delaney, I., Bauder, A., Huss, M., and Weidmann, Y.: Proglacial erosion
rates and processes in a glacierized catchment in the Swiss Alps, Earth
Surf. Process. Landf., 43, 765–778, https://doi.org/10.1002/esp.4239, 2018a.
Delaney, I., Bauder, A., Werder, M., and Farinotti, D.: Regional and annual
variability in subglacial sediment transport by water for two glaciers in
the Swiss Alps, Front. Earth Sci., 6, 175, https://doi.org/10.3929/ethz-b-000305762,
2018b.
Environmental Systems Research Institute (Redlands, CA):
ArcGIS Desktop, Release 10.6.1 [code], 2018.
Escher-Vetter, H., Braun, L. N., and Siebers, M.:
Hydrological and meteorological records from the Vernagtferner Basin – Vernagtbach station, for the years 2002 to 2012, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.829530, 2014.
Felix, D., Albayrak, I., and Boes, R. M.: In-situ investigation on real-time
suspended sediment measurement techniques: Turbidimetry, acoustic
attenuation, laser diffraction (LISST) and vibrating tube densimetry, Int.
J. Sediment Res., 33, 3–17, https://doi.org/10.1016/j.ijsrc.2017.11.003, 2018.
Fischer, A., Seiser, B., Stocker-Waldhuber, M., and Abermann, J.: The
Austrian Glacier Inventory GI 3, 2006, in ArcGIS (shapefile) format, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.844985, 2015.
Gabbud, C. and Lane, S. N.: Ecosystem impacts of Alpine water intakes for
hydropower: the challenge of sediment management, WIREs Water, 3, 41–61,
https://doi.org/10.1002/wat2.1124, 2016.
Gattermayr, W.: Das hydrographische Regime der Ötztaler Ache, in: Wetter und Klima im Wandel, edited by:
Koch, E.-M. and Erschbamer, B., vol. 3 Klima,
Wetter, Gletscher im Wandel, Innsbruck University Press, Innsbruck, 35,
2013.
Giorgi, F., Torma, C., Coppola, E., Ban, N., Schär, C., and Somot, S.:
Enhanced summer convective rainfall at Alpine high elevations in response to
climate warming, Nat. Geosci., 9, 584–589, https://doi.org/10.1038/ngeo2761, 2016.
Gobiet, A., Kotlarski, S., Beniston, M., Heinrich, G., Rajczak, J., and
Stoffel, M.: 21st century climate change in the European Alps – A review,
Sci. Total Environ., 493, 1138–1151, https://doi.org/10.1016/j.scitotenv.2013.07.050,
2014.
Guillon, H., Mugnier, J.-L., and Buoncristiani, J.-F.: Proglacial sediment
dynamics from daily to seasonal scales in a glaciated Alpine catchment
(Bossons glacier, Mont Blanc massif, France), Earth Surf. Process. Landf.,
43, 1478–1495, https://doi.org/10.1002/esp.4333, 2018.
Hallet, B., Hunter, L., and Bogen, J.: Rates of erosion and sediment
evacuation by glaciers: A review of field data and their implications, Glob.
Planet. Change, 12, 213–235, https://doi.org/10.1016/0921-8181(95)00021-6, 1996.
Hanus, S., Hrachowitz, M., Zekollari, H., Schoups, G., Vizcaino, M., and Kaitna, R.: Future changes in annual, seasonal and monthly runoff signatures in contrasting Alpine catchments in Austria, Hydrol. Earth Syst. Sci., 25, 3429–3453, https://doi.org/10.5194/hess-25-3429-2021, 2021.
Hanzer, F., Förster, K., Nemec, J., and Strasser, U.: Projected cryospheric and hydrological impacts of 21st century climate change in the Ötztal Alps (Austria) simulated using a physically based approach, Hydrol. Earth Syst. Sci., 22, 1593–1614, https://doi.org/10.5194/hess-22-1593-2018, 2018.
Hinderer, M., Kastowski, M., Kamelger, A., Bartolini, C., and Schlunegger,
F.: River loads and modern denudation of the Alps – A review, Earth-Sci.
Rev., 118, 11–44, https://doi.org/10.1016/j.earscirev.2013.01.001, 2013.
Hock, R.: 4.5 Hydrologische Veränderungen in vergletscherten
Einzugsgebieten, in: Warnsignal Klima: Hochgebirge im Wandel, edited by:
Lozán, J. L., Breckle, S.-W., and Graßl, H., Österreichischer Wasser- und Abfallwirtschaftsverband ÖWAV, Wien,
5, https://doi.org/10.25592/uhhfdm.9252, 2020.
Hock, R., Jansson, P., and Braun, L. N.: Modelling the Response of Mountain
Glacier Discharge to Climate Warming, in: Global Change and Mountain
Regions: An Overview of Current Knowledge, edited by: Huber, U. M., Bugmann,
H. K. M., and Reasoner, M. A., Springer Netherlands, Dordrecht, 243–252,
https://doi.org/10.1007/1-4020-3508-X_25, 2005.
Huggel, C., Salzmann, N., Allen, S., Caplan-Auerbach, J., Fischer, L.,
Haeberli, W., Larsen, C., Schneider, D., and Wessels, R.: Recent and future
warm extreme events and high-mountain slope stability, Philos. Trans. R.
Soc. Math. Phys. Eng. Sci., 368, 2435–2459, https://doi.org/10.1098/rsta.2010.0078,
2010.
Huss, M., Bookhagen, B., Huggel, C., Jacobsen, D., Bradley, R. S., Clague,
J. J., Vuille, M., Buytaert, W., Cayan, D. R., Greenwood, G., Mark, B. G.,
Milner, A. M., Weingartner, R., and Winder, M.: Toward mountains without
permanent snow and ice, Earths Future, 5, 418–435, https://doi.org/10.1002/2016EF000514, 2017.
Klug, C., Rieg, L., Ott, P., Mössinger, M., Sailer, R., and Stötter,
J.: A Multi-Methodological Approach to Determine Permafrost Occurrence and
Ground Surface Subsidence in Mountain Terrain, Tyrol, Austria, Permafr.
Periglac. Process., 28, 249–265, https://doi.org/10.1002/ppp.1896, 2017.
Kormann, C., Bronstert, A., Francke, T., Recknagel, T., and Graeff, T.:
Model-Based Attribution of High-Resolution Streamflow Trends in Two Alpine
Basins of Western Austria, Hydrology, 3, 7, https://doi.org/10.3390/hydrology3010007,
2016.
Kuhn, M., Nickus, U., and Pellet, F.: Precipitation Patterns in the Inner
Ötztal, 17, Internationale Tagung für Alpine Meteorologie, Offenbach am Main, 1982.
Kuhn, M., Helfricht, K., Ortner, M., Landmann, J., and Gurgiser, W.: Liquid
water storage in snow and ice in 86 Eastern Alpine basins and its changes
from 1970–97 to 1998–2006, Ann. Glaciol., 57, 11–18, https://doi.org/10.1017/aog.2016.24, 2016.
Lalk, P., Haimann, M., and Habersack, H.: Monitoring, Analyse und
Interpretation des Schwebstofftransportes an österreichischen
Flüssen, Österr. Wasser- Abfallwirtsch., 66, 306–315, https://doi.org/10.1007/s00506-014-0175-x, 2014.
Land Tirol: Digital terrain model of Tyrol, 10m resolution, EPSG 31254 [data
set], https://www.data.gv.at/katalog/dataset/land-tirol_tirolgelnde (last access: 5 July 2021), 2016.
Land Tirol:
tiris OGD map service “Wasser”, Amt der Tiroler Landesregierung, Abt. Raumordnung und Statistik, FB tiris, Innsbruck, Austria, State of Tyrol [data set], https://www.data.gv.at/katalog/dataset/0b5d6529-d88c-46c0-84f7-b37282e96ce8,
last access: 5 July 2021.
Lane, S. N., Bakker, M., Gabbud, C., Micheletti, N., and Saugy, J.-N.:
Sediment export, transient landscape response and catchment-scale
connectivity following rapid climate warming and Alpine glacier recession,
Geomorphology, 277, 210–227, https://doi.org/10.1016/j.geomorph.2016.02.015, 2017.
Leggat, M. S., Owens, P. N., Stott, T. A., Forrester, B. J., Déry, S.
J., and Menounos, B.: Hydro-meteorological drivers and sources of suspended
sediment flux in the pro-glacial zone of the retreating Castle Creek
Glacier, Cariboo Mountains, British Columbia, Canada, Earth Surf. Process.
Landf., 40, 1542–1559, https://doi.org/10.1002/esp.3755, 2015.
Li, D., Overeem, I., Kettner, A., Zhou, Y., and Xixi, L.: Air Temperature
Regulates Erodible Landscape, Water, and Sediment Fluxes in the
Permafrost-Dominated Catchment on the Tibetan Plateau, Water Resour. Res.,
57, e2020WR028193, https://doi.org/10.1029/2020WR028193, 2021.
Matiu, M., Jacob, A., and Notarnicola, C.: Daily MODIS Snow Cover Maps for
the European Alps from 2002 onwards at 250 m Horizontal Resolution Along
with a Nearly Cloud-Free Version, Data [data set], 5, 1, https://doi.org/10.3390/data5010001,
2020.
Merten, G., Capel, P., and Minella, J. P. G.: Effects of suspended sediment
concentration and grain size on three optical turbidity sensors, J. Soils
Sediments, 14, 1235–1241, https://doi.org/10.1007/s11368-013-0813-0, 2014.
Micheletti, N. and Lane, S. N.: Water yield and sediment export in small,
partially glaciated Alpine watersheds in a warming climate, Water Resour.
Res., 52, 4924–4943, https://doi.org/10.1002/2016WR018774, 2016.
Milliman, J. D. and Syvitski, J. P. M.: Geomorphic/Tectonic Control of
Sediment Discharge to the Ocean: The Importance of Small Mountainous Rivers,
J. Geol., 100, 525–544, https://doi.org/10.1086/629606, 1992.
Nones, M.: Dealing with sediment transport in flood risk management, Acta
Geophys., 67, 677–685, https://doi.org/10.1007/s11600-019-00273-7, 2019.
Orwin, J. F. and Smart, C. C.: Short-term spatial and temporal patterns of
suspended sediment transfer in proglacial channels, small River Glacier,
Canada, Hydrol. Process., 18, 1521–1542, https://doi.org/10.1002/hyp.1402, 2004.
R Core Team: R: A language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria, R Core Team [code], https://www.R-project.org/ (last access: 28 June 2022), 2018.
Rottler, E., Francke, T., Bürger, G., and Bronstert, A.: Long-term changes in central European river discharge for 1869–2016: impact of changing snow covers, reservoir constructions and an intensified hydrological cycle, Hydrol. Earth Syst. Sci., 24, 1721–1740, https://doi.org/10.5194/hess-24-1721-2020, 2020.
Rottler, E., Vormoor, K., Francke, T., Warscher, M., Strasser, U., and
Bronstert, A.: Elevation-dependent compensation effects in snowmelt in the
Rhine River Basin upstream gauge Basel, Hydrol. Res., 52, 536–557, https://doi.org/10.2166/nh.2021.092, 2021.
Savi, S., Comiti, F., and Strecker, M. R.: Pronounced increase in slope
instability linked to global warming: A case study from the eastern European
Alps, Earth Surf. Process. Landf., 46, 1328–1347, https://doi.org/10.1002/esp.5100, 2020.
Scherrer, S. C., Fischer, E. M., Posselt, R., Liniger, M. A., Croci-Maspoli,
M., and Knutti, R.: Emerging trends in heavy precipitation and hot
temperature extremes in Switzerland, J. Geophys. Res.-Atmos., 121,
2626–2637, https://doi.org/10.1002/2015JD024634, 2016.
Schmidt, L. K. and Hydrographic Service of Tyrol, Austria:
Discharge and suspended sediment time series of 2006–2020 of gauges Vent Rofenache and Tumpen in the glacierized high-alpine Ötztal, Tyrol, Austria, B2Share [data set],
https://doi.org/10.23728/b2share.be13f43ce9bb46d8a7eedb7b56df3140, 2021.
Schöber, J. and Hofer, B.: The sediment budget of the glacial streams in
the catchment area of the Gepatsch reservoir in the Ötztal Alps in the
period 1965–2015, ICOLD 2018 Wien Int. Com. Large Dam Syst. Proc., 2018.
Schöber, J., Schneider, K., Helfricht, K., Schattan, P., Achleitner, S.,
Schöberl, F., and Kirnbauer, R.: Snow cover characteristics in a
glacierized catchment in the Tyrolean Alps – Improved spatially distributed
modelling by usage of Lidar data, J. Hydrol., 519, 3492–3510, https://doi.org/10.1016/j.jhydrol.2013.12.054, 2014.
Sommer, C., Malz, P., Seehaus, T. C., Lippl, S., Zemp, M., and Braun, M. H.:
Rapid glacier retreat and downwasting throughout the European Alps in the
early 21 st century, Nat. Commun., 11, 3209, https://doi.org/10.1038/s41467-020-16818-0, 2020.
Stoll, E., Hanzer, F., Oesterle, F., Nemec, J., Schöber, J., Huttenlau,
M., and Förster, K.: What Can We Learn from Comparing
Glacio-Hydrological Models?, Atmosphere, 11, 981, https://doi.org/10.3390/atmos11090981, 2020.
Strasser, U., Marke, T., Braun, L., Escher-Vetter, H., Juen, I., Kuhn, M., Maussion, F., Mayer, C., Nicholson, L., Niedertscheider, K., Sailer, R., Stötter, J., Weber, M., and Kaser, G.: The Rofental: a high Alpine research basin (1890–3770 m a.s.l.) in the Ötztal Alps (Austria) with over 150 years of hydrometeorological and glaciological observations, Earth Syst. Sci. Data, 10, 151–171, https://doi.org/10.5194/essd-10-151-2018, 2018.
Swift, D. A., Nienow, P. W., and Hoey, T. B.: Basal sediment evacuation by
subglacial meltwater: suspended sediment transport from Haut Glacier
d'Arolla, Switzerland, Earth Surf. Process. Landf., 30, 867–883, https://doi.org/10.1002/esp.1197, 2005.
Tschada, H. and Hofer, B.: Total solids load from the catchment area of the
Kaunertal hydroelectric power station: the results of 25 years of operation,
in: Hydrology in Mountain Regions. II – Artificial Reservoirs; Waters and
Slopes (Proceedings of two Lausanne Symposia), Lausanne, 8, 1990.
Tsyplenkov, A., Vanmaercke, M., Golosov, V., and Chalov, S.: Suspended
sediment budget and intra-event sediment dynamics of a small glaciated
mountainous catchment in the Northern Caucasus, J. Soils Sediments, 20,
3266–3281, https://doi.org/10.1007/s11368-020-02633-z, 2020.
Umweltbundesamt: CORINE Landcover 2018, Umweltbundesamt [data set], https://www.data.gv.at/katalog/dataset/clc2018 (last access: 13 September 2018), 2018.
van Tiel, M., Kohn, I., Loon, A. F. V., and Stahl, K.: The compensating
effect of glaciers: Characterizing the relation between interannual
streamflow variability and glacier cover, Hydrol. Process., 34, 553–568, https://doi.org/10.1002/hyp.13603, 2019.
Vercruysse, K., Grabowski, R. C., and Rickson, R. J.: Suspended sediment
transport dynamics in rivers: Multi-scale drivers of temporal variation,
Earth-Sci. Rev., 166, 38–52, https://doi.org/10.1016/j.earscirev.2016.12.016, 2017.
Vormoor, K., Lawrence, D., Heistermann, M., and Bronstert, A.: Climate change impacts on the seasonality and generation processes of floods – projections and uncertainties for catchments with mixed snowmelt/rainfall regimes, Hydrol. Earth Syst. Sci., 19, 913–931, https://doi.org/10.5194/hess-19-913-2015, 2015.
Weber, M. and Prasch, M.: Influence of the Glaciers on Runoff Regime and Its
Change, in: Regional Assessment of Global Change Impacts, edited by: Mauser,
W. and Prasch, M., Springer International Publishing, Cham, 493–509, https://doi.org/10.1007/978-3-319-16751-0_56, 2016.
Wijngaard, R. R., Helfricht, K., Schneeberger, K., Huttenlau, M., Schneider,
K., and Bierkens, M. F. P.: Hydrological response of the Ötztal
glacierized catchments to climate change, Hydrol. Res., 47, 979–995, https://doi.org/10.2166/nh.2015.093, 2016.
World Glacier Monitoring Service: Fluctuations of Glaciers Database, WGMS
[data set], https://doi.org/10.5904/wgms-fog-2021-05, 2021.
Wulf, H., Bookhagen, B., and Scherler, D.: Climatic and geologic controls on suspended sediment flux in the Sutlej River Valley, western Himalaya, Hydrol. Earth Syst. Sci., 16, 2193–2217, https://doi.org/10.5194/hess-16-2193-2012, 2012.
Zentralanstalt für Meteorologie und Geodynamik (ZAMG), Climate Data of
Austria 1971–2000,
http://www.zamg.ac.at/fix/klima/oe71-00/klima2000/klimadaten_oesterreich_1971_frame1.htm (last access: 15 October 2021), 2013.
Short summary
Climate change fundamentally alters glaciated high-alpine areas, but it is unclear how this affects riverine sediment transport. As a first step, we aimed to identify the most important processes and source areas in three nested catchments in the Ötztal, Austria, in the past 15 years. We found that areas above 2500 m were crucial and that summer rainstorms were less influential than glacier melt. These findings provide a baseline for studies on future changes in high-alpine sediment dynamics.
Climate change fundamentally alters glaciated high-alpine areas, but it is unclear how this...