Articles | Volume 10, issue 4
https://doi.org/10.5194/esurf-10-687-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-10-687-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Probabilistic estimation of depth-resolved profiles of soil thermal diffusivity from temperature time series
Carlotta Brunetti
CORRESPONDING AUTHOR
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
John Lamb
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Stijn Wielandt
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Sebastian Uhlemann
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Ian Shirley
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Patrick McClure
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Baptiste Dafflon
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Related authors
Baptiste Dafflon, Stijn Wielandt, John Lamb, Patrick McClure, Ian Shirley, Sebastian Uhlemann, Chen Wang, Sylvain Fiolleau, Carlotta Brunetti, Franklin H. Akins, John Fitzpatrick, Samuel Pullman, Robert Busey, Craig Ulrich, John Peterson, and Susan S. Hubbard
The Cryosphere, 16, 719–736, https://doi.org/10.5194/tc-16-719-2022, https://doi.org/10.5194/tc-16-719-2022, 2022
Short summary
Short summary
This study presents the development and validation of a novel acquisition system for measuring finely resolved depth profiles of soil and snow temperature at multiple locations. Results indicate that the system reliably captures the dynamics in snow thickness, as well as soil freezing and thawing depth, enabling advances in understanding the intensity and timing in surface processes and their impact on subsurface thermohydrological regimes.
Jonathan Bachman, John Lamb, Craig Ulrich, Neslihan Taş, and Baptiste Dafflon
EGUsphere, https://doi.org/10.5194/egusphere-2025-2341, https://doi.org/10.5194/egusphere-2025-2341, 2025
Short summary
Short summary
We studied how Arctic landscapes change as the ground thaws by comparing measurements taken ten years apart. We found that some areas sank and new ponds formed, with different patterns depending on the shape of the land. These changes affect how water and carbon flow and cycle through the environment. The results help understand how and where the Arctic is shifting, and highlight the need for repeated observations to track long-term changes.
Xiang Huang, Yu Zhang, Bo Gao, Charles J. Abolt, Ryan L. Crumley, Cansu Demir, Richard P. Fiorella, Bob Busey, Bob Bolton, Scott L. Painter, and Katrina E. Bennett
EGUsphere, https://doi.org/10.5194/egusphere-2025-1753, https://doi.org/10.5194/egusphere-2025-1753, 2025
Short summary
Short summary
Predicting hydrological runoff in Arctic permafrost regions is difficult due to limited observations and complex terrain. We used a detailed physics-based model to improve runoff estimates in a Earth system land model. Our method improved runoff accuracy and worked well across two different Arctic regions. This helps make climate models more reliable for understanding water flow in permafrost areas under a changing climate.
Claire L. Bachand, Chen Wang, Baptiste Dafflon, Lauren N. Thomas, Ian Shirley, Sarah Maebius, Colleen M. Iversen, and Katrina E. Bennett
The Cryosphere, 19, 393–400, https://doi.org/10.5194/tc-19-393-2025, https://doi.org/10.5194/tc-19-393-2025, 2025
Short summary
Short summary
Temporally continuous snow depth estimates are important for understanding changing snow patterns and impacts on frozen ground in the Arctic. In this work, we developed an approach to predict snow depth from variability in snow–ground interface temperature using small temperature sensors that are cheap and easy to deploy. This new technique enables spatially distributed and temporally continuous snowpack monitoring that has not previously been possible.
Ian Shirley, Sebastian Uhlemann, John Peterson, Katrina Bennett, Susan S. Hubbard, and Baptiste Dafflon
EGUsphere, https://doi.org/10.5194/egusphere-2023-968, https://doi.org/10.5194/egusphere-2023-968, 2023
Preprint archived
Short summary
Short summary
Snow depth has a strong impact on soil temperatures and carbon cycling in the arctic. Because of this, we want to understand why snow is deeper in some places than others. Using cameras mounted on a drone, we mapped snow depth, vegetation height, and elevation across a watershed in Alaska. In this paper, we develop novel techniques using image processing and machine learning to characterize the influence of topography and shrubs on snow depth in the watershed.
Katrina E. Bennett, Greta Miller, Robert Busey, Min Chen, Emma R. Lathrop, Julian B. Dann, Mara Nutt, Ryan Crumley, Shannon L. Dillard, Baptiste Dafflon, Jitendra Kumar, W. Robert Bolton, Cathy J. Wilson, Colleen M. Iversen, and Stan D. Wullschleger
The Cryosphere, 16, 3269–3293, https://doi.org/10.5194/tc-16-3269-2022, https://doi.org/10.5194/tc-16-3269-2022, 2022
Short summary
Short summary
In the Arctic and sub-Arctic, climate shifts are changing ecosystems, resulting in alterations in snow, shrubs, and permafrost. Thicker snow under shrubs can lead to warmer permafrost because deeper snow will insulate the ground from the cold winter. In this paper, we use modeling to characterize snow to better understand the drivers of snow distribution. Eventually, this work will be used to improve models used to study future changes in Arctic and sub-Arctic snow patterns.
Baptiste Dafflon, Stijn Wielandt, John Lamb, Patrick McClure, Ian Shirley, Sebastian Uhlemann, Chen Wang, Sylvain Fiolleau, Carlotta Brunetti, Franklin H. Akins, John Fitzpatrick, Samuel Pullman, Robert Busey, Craig Ulrich, John Peterson, and Susan S. Hubbard
The Cryosphere, 16, 719–736, https://doi.org/10.5194/tc-16-719-2022, https://doi.org/10.5194/tc-16-719-2022, 2022
Short summary
Short summary
This study presents the development and validation of a novel acquisition system for measuring finely resolved depth profiles of soil and snow temperature at multiple locations. Results indicate that the system reliably captures the dynamics in snow thickness, as well as soil freezing and thawing depth, enabling advances in understanding the intensity and timing in surface processes and their impact on subsurface thermohydrological regimes.
Haruko M. Wainwright, Sebastian Uhlemann, Maya Franklin, Nicola Falco, Nicholas J. Bouskill, Michelle E. Newcomer, Baptiste Dafflon, Erica R. Siirila-Woodburn, Burke J. Minsley, Kenneth H. Williams, and Susan S. Hubbard
Hydrol. Earth Syst. Sci., 26, 429–444, https://doi.org/10.5194/hess-26-429-2022, https://doi.org/10.5194/hess-26-429-2022, 2022
Short summary
Short summary
This paper has developed a tractable approach for characterizing watershed heterogeneity and its relationship with key functions such as ecosystem sensitivity to droughts and nitrogen export. We have applied clustering methods to classify hillslopes into
watershed zonesthat have distinct distributions of bedrock-to-canopy properties as well as key functions. This is a powerful approach for guiding watershed experiments and sampling as well as informing hydrological and biogeochemical models.
Jiancong Chen, Baptiste Dafflon, Anh Phuong Tran, Nicola Falco, and Susan S. Hubbard
Hydrol. Earth Syst. Sci., 25, 6041–6066, https://doi.org/10.5194/hess-25-6041-2021, https://doi.org/10.5194/hess-25-6041-2021, 2021
Short summary
Short summary
The novel hybrid predictive modeling (HPM) approach uses a long short-term memory recurrent neural network to estimate evapotranspiration (ET) and ecosystem respiration (Reco) with only meteorological and remote-sensing inputs. We developed four use cases to demonstrate the applicability of HPM. The results indicate HPM is capable of providing ET and Reco estimations in challenging mountainous systems and enhances our understanding of watershed dynamics at sparsely monitored watersheds.
Qina Yan, Haruko Wainwright, Baptiste Dafflon, Sebastian Uhlemann, Carl I. Steefel, Nicola Falco, Jeffrey Kwang, and Susan S. Hubbard
Earth Surf. Dynam., 9, 1347–1361, https://doi.org/10.5194/esurf-9-1347-2021, https://doi.org/10.5194/esurf-9-1347-2021, 2021
Short summary
Short summary
We develop a hybrid model to estimate the spatial distribution of the thickness of the soil layer, which also provides estimations of soil transport and soil production rates. We apply this model to two examples of hillslopes in the East River watershed in Colorado and validate the model. The results show that the north-facing (NF) hillslope has a deeper soil layer than the south-facing (SF) hillslope and that the hybrid model provides better accuracy than a machine-learning model.
Cited articles
Abu-Hamdeh, N. H.: Thermal properties of soils as affected by density and water content, Biosyst. Eng., 86, 97–102,
https://doi.org/10.1016/S1537-5110(03)00112-0, 2003. a, b
Al Nakshabandi, G. and Kohnke, H.: Thermal conductivity and diffusivity of
soils as related to moisture tension and other physical properties,
Agricult,. Meteorol., 2, 271–279, https://doi.org/10.1016/0002-1571(65)90013-0, 1965. a, b
An, K., Wang, W., Zhao, Y., Huang, W., Chen, L., Zhang, Z., Wang, Q., and Li,
W.: Estimation from soil temperature of soil thermal diffusivity and heat
flux in sub-surface layers, Bound.-Lay. Meteorol., 158, 473–488,
https://doi.org/10.1007/s10546-015-0096-7, 2016. a
Arkhangel'skaya, T.: Parameterization and mathematical modeling of the
dependence of soil thermal diffusivity on the water content, Euras. Soil Sci., 42, 162–172, https://doi.org/10.1134/S1064229309020070, 2009.
a, b
Arkhangel'skaya, T. and Lukyashchenko, K.: Estimating soil thermal diffusivity at different water contents from easily available data on soil texture, bulk density, and organic carbon content, Biosyst. Eng., 168, 83–95, https://doi.org/10.1016/j.biosystemseng.2017.06.011, 2018. a, b, c, d
Beardsmore, G., Egan, S., and Sandiford, M.: A Fourier Spectral Method to
Measure the Thermal Diffusivity of Soil, Geotech. Test. J., 43, 3, https://doi.org/10.1520/GTJ20180300, 2020. a, b, c
Brunetti, C., Lamb, J., Wielandt, S., Uhlemann, S., Shirley, I., McClure, P.,
and Dafflon, B.: Probabilistic estimation of depth-resolved profiles of soil
thermal diffusivity from temperature time series: Supporting Data, Next
Generation Ecosystem Experiments Arctic Data Collection, Oak Ridge National
Laboratory, US Department of Energy, Oak Ridge, Tennessee, USA [code and data set], https://doi.org/10.5440/1433255, 2022. a, b, c
Carson, J. E.: Analysis of soil and air temperatures by Fourier techniques,
J. Geophys. Res., 68, 2217–2232, https://doi.org/10.1029/JZ068i008p02217, 1963. a
Choi, W., Kikumoto, H., Choudhary, R., and Ooka, R.: Bayesian inference for
thermal response test parameter estimation and uncertainty assessment, Appl. Energ., 209, 306–321, https://doi.org/10.1016/j.apenergy.2017.10.034, 2018. a
Courant, R., Friedrichs, K., and Lewy, H.: Über die partiellen
Differenzengleichungen der mathematischen Physik, Math. Annal., 100,
32–74, 1928. a
Dafflon, B., Brunetti, C., Lamb, J., Uhlemann, S., Shirley, I., McClure, P.,
and Wang, C.: Soil physical and thermal properties from soil samples at
multiple locations at Teller Road Site, Seward Peninsula, Alaska, 2019,
Next Generation Ecosystem Experiments Arctic Data Collection, Oak Ridge
National Laboratory, US Department of Energy, Oak Ridge, Tennessee, USA [data set], https://doi.org/10.5440/1860505, 2022a. a, b
Dafflon, B., Wielandt, S., Lamb, J., McClure, P., Shirley, I., Uhlemann, S., Wang, C., Fiolleau, S., Brunetti, C., Akins, F. H., Fitzpatrick, J., Pullman, S., Busey, R., Ulrich, C., Peterson, J., and Hubbard, S. S.: A distributed temperature profiling system for vertically and laterally dense acquisition of soil and snow temperature, The Cryosphere, 16, 719–736, https://doi.org/10.5194/tc-16-719-2022, 2022b. a, b
De Simon, L., Iglesias, M., Jones, B., and Wood, C.: Quantifying uncertainty in thermophysical properties of walls by means of Bayesian inversion, Energ. Build., 177, 220–245, https://doi.org/10.1016/j.enbuild.2018.06.045, 2018. a
Gao, Z., Lenschow, D. H., Horton, R., Zhou, M., Wang, L., and Wen, J.:
Comparison of two soil temperature algorithms for a bare ground site on the
Loess Plateau in China, J. Geophys. Res.-Atmos., 113, D18105, https://doi.org/10.1029/2008JD010285, 2008. a, b
Gao, Z., Tong, B., Horton, R., Mamtimin, A., Li, Y., and Wang, L.:
Determination of desert soil apparent thermal diffusivity using a
conduction-convection algorithm, J. Geophys. Res.-Atmos., 122, 9569–9578, https://doi.org/10.1002/2017JD027290, 2017. a, b, c, d
Gelman, A. and Rubin, D. B.: Inference from iterative simulation using multiple sequences, Stat. Sci., 7, 457–472, https://doi.org/10.1214/ss/1177011136, 1992. a
Gelman, A., Roberts, G. O., and Gilks, W. R.: Efficient Metropolis jumping rules, Bayesian Statistics, http://people.ee.duke.edu/~lcarin/baystat5.pdf (last access: 23 June 2022), 1996. a
Gilks, W. R., Richardson, S., and Spiegelhalter, D. J.: Introducing Markov
chain Monte, Markov chain Monte Carlo in practice, Chapman and Hall/CRC, p. 1, https://doi.org/10.1201/b14835, 1995. a
Gnanasekaran, N. and Balaji, C.: Markov Chain Monte Carlo (MCMC) approach for
the determination of thermal diffusivity using transient fin heat transfer
experiments, Int. J. Therm. Sci, 63, 46–54,
https://doi.org/10.1016/j.ijthermalsci.2012.07.005, 2013. a
Hillel, D.: Introduction to soil physics, Academic Press, New York,
https://doi.org/10.1016/C2009-0-03052-9, 1982. a, b
Hinkel, K. M.: Estimating seasonal values of thermal diffusivity in thawed and frozen soils using temperature time series, Cold Reg. Sci. Technol., 26, 1–15, https://doi.org/10.1016/S0165-232X(97)00004-9, 1997. a
Horton, R., Wierenga, P., and Nielsen, D.: Evaluation of methods for
determining the apparent thermal diffusivity of soil near the surface, Soil
Sci. Soc. Am. J., 47, 25–32, https://doi.org/10.2136/sssaj1983.03615995004700010005x, 1983. a
Huang, Y., Jiang, J., Ma, S., Ricciuto, D., Hanson, P. J., and Luo, Y.: Soil
thermal dynamics, snow cover, and frozen depth under five temperature treatments in an ombrotrophic bog: Constrained forecast with data
assimilation, J. Geophys. Res.-Biogeo., 122, 2046–2063, https://doi.org/10.1002/2016JG003725, 2017. a
Irvine, D. J., Briggs, M. A., Lautz, L. K., Gordon, R. P., McKenzie, J. M., and Cartwright, I.: Using diurnal temperature signals to infer vertical
groundwater-surface water exchange, Groundwater, 55, 10–26,
https://doi.org/10.1111/gwat.12459, 2017. a
Jafarov, E., Nicolsky, D., Romanovsky, V., Walsh, J., Panda, S., and Serreze,
M.: The effect of snow: How to better model ground surface temperatures, Cold
Reg. Sci. Technol., 102, 63–77, https://doi.org/10.1016/j.coldregions.2014.02.007, 2014. a
Jafarov, E. E., Marchenko, S. S., and Romanovsky, V.: Numerical modeling of
permafrost dynamics in Alaska using a high spatial resolution dataset, The
Cryosphere, 6, 613–624, https://doi.org/10.5194/tc-6-613-2012, 2012. a, b
Jafarov, E. E., Harp, D. R., Coon, E. T., Dafflon, B., Tran, A. P., Atchley,
A. L., Lin, Y., and Wilson, C. J.: Estimation of subsurface porosities and
thermal conductivities of polygonal tundra by coupled inversion of electrical
resistivity, temperature, and moisture content data, The Cryosphere, 14,
77–91, https://doi.org/10.5194/tc-14-77-2020, 2020. a, b
Jong van Lier, Q. D. and Durigon, A.: Soil thermal diffusivity estimated from
data of soil temperature and single soil component properties, Revista
Brasileira de Ciência do Solo, 37, 106–112,
https://doi.org/10.1590/S0100-06832013000100011, 2013. a, b
Kaipio, J. P. and Fox, C.: The Bayesian framework for inverse problems in heat transfer, Heat Trans. Eng., 32, 718–753,
https://doi.org/10.1080/01457632.2011.525137, 2011. a
Kim, H., Lee, J.-Y., and Kim, K.: Estimation of thermal diffusivity of soils in Antarctica using temperature time series data, Episod. J. Int. Geosci., 42, 245–252, https://doi.org/10.18814/epiiugs/2019/019020, 2019. a, b
Koven, C. D., Riley, W. J., and Stern, A.: Analysis of permafrost thermal
dynamics and response to climate change in the CMIP5 Earth System Models, J. Climate, 26, 1877–1900, https://doi.org/10.1175/JCLI-D-12-00228.1, 2013. a
Krzeminska, D. M., Steele-Dunne, S. C., Bogaard, T. A., Rutten, M. M., Sailhac, P., and Geraud, Y.: High-resolution temperature observations to monitor soil thermal properties as a proxy for soil moisture condition in clay-shale landslide, Hydrol. Process., 26, 2143–2156, https://doi.org/10.1002/hyp.7980, 2012. a, b, c, d
Laloy, E. and Vrugt, J. A.: High-dimensional posterior exploration of
hydrologic models using multiple-try DREAM(ZS) and high-performance computing, Water Resour. Res., 48, W01526, https://doi.org/10.1029/2011WR010608, 2012. a
Léger, E., Dafflon, B., Robert, Y., Ulrich, C., Peterson, J. E., Biraud,
S. C., Romanovsky, V. E., and Hubbard, S. S.: A distributed temperature
profiling method for assessing spatial variability in ground temperatures in
a discontinuous permafrost region of Alaska, The Cryosphere, 13, 2853–2867,
https://doi.org/10.5194/tc-13-2853-2019, 2019. a
Mengistu, A. G., van Rensburg, L. D., and Mavimbela, S. S.: The effect of soil water and temperature on thermal properties of two soils developed from
aeolian sands in South Africa, Catena, 158, 184–193,
https://doi.org/10.1016/j.catena.2017.07.001, 2017. a, b
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and
Teller, E.: Equation of state calculations by fast computing machines, J. Chem. Phys., 21, 1087–1092, https://doi.org/10.1063/1.1699114, 1953. a
Nicolsky, D. and Romanovsky, V. E.: Modeling long-term permafrost degradation, J. Geophys. Res.-Earth, 123, 1756–1771,
https://doi.org/10.1029/2018JF004655, 2018. a
Ochsner, T. E. and Baker, J. M.: In situ monitoring of soil thermal properties and heat flux during freezing and thawing, Soil Sci. Soc. Am. J., 72, 1025–1032, https://doi.org/10.2136/sssaj2007.0283, 2008. a, b
Ochsner, T. E., Horton, R., and Ren, T.: A new perspective on soil thermal
properties, Soil Sci. Soc. Am. J., 65, 1641–1647, https://doi.org/10.2136/sssaj2001.1641, 2001. a, b
Oliva, M. and Fritz, M.: Permafrost degradation on a warmer Earth: Challenges
and perspectives, Curr. Opin. Environ. Sci. Health, 5, 14–18, https://doi.org/10.1016/j.coesh.2018.03.007, 2018. a
Petter Langtangen, H. and Linge, S.: Finite difference computing with PDEs: a
modern software approach, Springer Nature, https://doi.org/10.1007/978-3-319-55456-3,
2017. a
Praprotnik, M., Sterk, M., and Trobec, R.: Inhomogeneous heat-conduction
problems solved by a new explicit finite difference scheme, Int. J. Pure Appl. Math., 13, 275–292, 2004. a
Rajeev, P. and Kodikara, J.: Estimating apparent thermal diffusivity of soil
using field temperature time series, Geomech. Geoeng., 11, 28–46, https://doi.org/10.1080/17486025.2015.1006266, 2016. a, b
Rasmussen, L. H., Zhang, W., Hollesen, J., Cable, S., Christiansen, H. H.,
Jansson, P.-E., and Elberling, B.: Modelling present and future permafrost
thermal regimes in Northeast Greenland, Cold Reg. Sci. Technol., 146, 199–213, https://doi.org/10.1016/j.coldregions.2017.10.011, 2018. a
Renard, P., Alcolea, A., and Gingsbourger, D.: Stochastic versus deterministic approaches, in: Environmental Modelling: Finding Simplicity in Complexity, 2nd Edn., edited by: Wainwright, J. and Mulligan, M., Wiley Online Library, 133–149, https://doi.org/10.1002/9781118351475.ch8, 2013. a
Robert, C. and Casella, G.: Monte Carlo statistical methods, Springer Science & Business Media, https://doi.org/10.1007/978-1-4757-4145-2, 2013. a
Rodler, A., Guernouti, S., and Musy, M.: Bayesian inference method for in situ thermal conductivity and heat capacity identification: Comparison to ISO
standard, Construct. Build. Mater., 196, 574–593,
https://doi.org/10.1016/j.conbuildmat.2018.11.110, 2019. a, b, c
Romanovsky, V., Cable, W., and Dolgikh, K.: Soil Temperature and Moisture,
Teller Road Mile Marker 27, Seward Peninsula, Alaska, beginning 2016, Next
Generation Ecosystem Experiments Arctic Data Collection, Oak Ridge National
Laboratory, US Department of Energy, Oak Ridge, Tennessee, USA [data set],
https://doi.org/10.5440/1581437, 2020. a
Romanovsky, V. E. and Osterkamp, T.: Effects of unfrozen water on heat and mass transport processes in the active layer and permafrost, Permafrost
Periglac. Process., 11, 219–239, https://doi.org/10.1002/1099-1530(200007/09)11:3<219::AID-PPP352>3.0.CO;2-7, 2000. a
Shockley, E. M., Vrugt, J. A., and Lopez, C. F.: PyDREAM: high-dimensional parameter inference for biological models in python, Bioinformatics, 34, 695–697, https://doi.org/10.1093/bioinformatics/btx626, 2018. a
Somasundharam, S. and Reddy, K.: Inverse estimation of thermal properties using Bayesian inference and three different sampling techniques, Invers. Problem. Sci. Eng., 25, 73–88, https://doi.org/10.1080/17415977.2016.1138946, 2017. a
Steele-Dunne, S., Rutten, M., Krzeminska, D., Hausner, M., Tyler, S., Selker,
J., Bogaard, T., and Van De Giesen, N.: Feasibility of soil moisture
estimation using passive distributed temperature sensing, Water Resour. Res., 46, W03534, https://doi.org/10.1029/2009WR008272, 2010. a
Tong, B., Gao, Z., Horton, R., Li, Y., and Wang, L.: An empirical model for
estimating soil thermal conductivity from soil water content and porosity,
J. Hydrometeorol., 17, 601–613, https://doi.org/10.1175/JHM-D-15-0119.1, 2016. a, b
Tran, A. P., Dafflon, B., and Hubbard, S. S.: Coupled land surface–subsurface hydrogeophysical inverse modeling to estimate soil organic carbon content and explore associated hydrological and thermal dynamics in the Arctic tundra, The Cryosphere, 11, 2089–2109, https://doi.org/10.5194/tc-11-2089-2017, 2017. a, b, c
Uhlemann, S., Dafflon, B., Peterson, J., Ulrich, C., Shirley, I., Michail, S., and Hubbard, S.: Geophysical monitoring shows that spatial heterogeneity in thermohydrological dynamics reshapes a transitional permafrost system,
Geophys. Res. Lett., 48, e2020GL091149, https://doi.org/10.1029/2020gl091149, 2021. a
Vrugt, J. A.: Markov chain Monte Carlo simulation using the DREAM software
package: Theory, concepts, and MATLAB implementation, Environ. Model. Softw., 75, 273–316, https://doi.org/10.1016/j.envsoft.2015.08.013, 2016.
a, b, c
Xie, X., Lu, Y., Ren, T., and Horton, R.: An empirical model for estimating
soil thermal diffusivity from texture, bulk density, and degree of
saturation, J. Hydrometeorol., 19, 445–457, https://doi.org/10.1175/JHM-D-17-0131.1, 2018. a, b
Zhang, M., Wen, Z., Xue, K., Chen, L., and Li, D.: A coupled model for liquid
water, water vapor and heat transport of saturated–unsaturated soil in cold
regions: model formulation and verification, Environ. Earth Sci., 75, 701, https://doi.org/10.1007/s12665-016-5499-3, 2016.
a
Zhao, Y., Si, B., He, H., Xu, J., Peth, S., and Horn, R.: Modeling of coupled
water and heat transfer in freezing and thawing soils, Inner Mongolia, Water,
8, 424, https://doi.org/10.3390/w8100424, 2016. a
Zhu, D., Ciais, P., Krinner, G., Maignan, F., Puig, A. J., and Hugelius, G.:
Controls of soil organic matter on soil thermal dynamics in the northern high
latitudes, Nat. Commun., 10, 1–9, https://doi.org/10.1038/s41467-019-11103-1, 2019. a, b
Short summary
This paper proposes a method to estimate thermal diffusivity and its uncertainty over time, at numerous locations and at an unprecedented vertical spatial resolution from soil temperature time series. We validate and apply this method to synthetic and field case studies. The improved quantification of soil thermal properties is a cornerstone for advancing the indirect estimation of the fraction of soil components needed to predict subsurface storage and fluxes of water, carbon, and nutrients.
This paper proposes a method to estimate thermal diffusivity and its uncertainty over time, at...