Articles | Volume 10, issue 4
https://doi.org/10.5194/esurf-10-723-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-10-723-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Volume, evolution, and sedimentation of future glacier lakes in Switzerland over the 21st century
Tim Steffen
Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, 8092 Zurich, Switzerland
Swiss Federal Institute for Forest, Snow and Landscape Research
(WSL), 8903 Birmensdorf, Switzerland
Matthias Huss
Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, 8092 Zurich, Switzerland
Swiss Federal Institute for Forest, Snow and Landscape Research
(WSL), 8903 Birmensdorf, Switzerland
Department of Geosciences, University of Fribourg, 1700 Fribourg,
Switzerland
Rebekka Estermann
Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, 8092 Zurich, Switzerland
Swiss Federal Institute for Forest, Snow and Landscape Research
(WSL), 8903 Birmensdorf, Switzerland
Elias Hodel
Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, 8092 Zurich, Switzerland
Swiss Federal Institute for Forest, Snow and Landscape Research
(WSL), 8903 Birmensdorf, Switzerland
Daniel Farinotti
CORRESPONDING AUTHOR
Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, 8092 Zurich, Switzerland
Swiss Federal Institute for Forest, Snow and Landscape Research
(WSL), 8903 Birmensdorf, Switzerland
Related authors
No articles found.
Ian Delaney, Andrew J. Tedstone, Mauro A. Werder, and Daniel Farinotti
The Cryosphere, 19, 2779–2795, https://doi.org/10.5194/tc-19-2779-2025, https://doi.org/10.5194/tc-19-2779-2025, 2025
Short summary
Short summary
Sediment transport capacity depends on water velocity and channel width. In rivers, water discharge changes affect flow depth, width, and velocity. Yet, under glaciers, discharge variations alter velocity more than channel shape. Due to these differences, this study shows that sediment transport capacity under glaciers varies widely and peaks before water flow, creating a complex relationship. Understanding these dynamics helps interpret sediment discharge from glaciers in different climates.
Aaron Cremona, Matthias Huss, Johannes Marian Landmann, Mauro Marty, Marijn van der Meer, Christian Ginzler, and Daniel Farinotti
EGUsphere, https://doi.org/10.5194/egusphere-2025-2929, https://doi.org/10.5194/egusphere-2025-2929, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Our study provides daily mass balance estimates for every Swiss glacier from 2010–2024 using modelling, remote sensing observations, and machine learning. Over the period, Swiss glaciers lost nearly a quarter of their ice volume. The approach enables investigating the spatio-temporal variability of glacier mass balance in relation to the driving climatic factors.
Jane Walden, Mylène Jacquemart, Bretwood Higman, Romain Hugonnet, Andrea Manconi, and Daniel Farinotti
Nat. Hazards Earth Syst. Sci., 25, 2045–2073, https://doi.org/10.5194/nhess-25-2045-2025, https://doi.org/10.5194/nhess-25-2045-2025, 2025
Short summary
Short summary
We studied eight glacier-adjacent landslides in Alaska and found that slope movement increased at four sites as the glacier retreated past the landslide area. Movement at other sites may be due to heavy precipitation or increased glacier thinning, and two sites showed little to no motion. We suggest that landslides near waterbodies may be especially vulnerable to acceleration, which we guess is due to faster retreat rates of water-terminating glaciers and changing water flow in the slope.
Inés Dussaillant, Romain Hugonnet, Matthias Huss, Etienne Berthier, Jacqueline Bannwart, Frank Paul, and Michael Zemp
Earth Syst. Sci. Data, 17, 1977–2006, https://doi.org/10.5194/essd-17-1977-2025, https://doi.org/10.5194/essd-17-1977-2025, 2025
Short summary
Short summary
Our research observes glacier mass changes worldwide from 1976 to 2024, revealing an alarming increase in melt, especially in the last decade and the record year of 2023. By combining field and satellite observations, we provide annual mass changes for all glaciers in the world, showing significant contributions to global sea level rise. This work underscores the need for ongoing local monitoring and global climate action to mitigate the effects of glacier loss and its broader environmental impacts.
Kaian Shahateet, Johannes J. Fürst, Francisco Navarro, Thorsten Seehaus, Daniel Farinotti, and Matthias Braun
The Cryosphere, 19, 1577–1597, https://doi.org/10.5194/tc-19-1577-2025, https://doi.org/10.5194/tc-19-1577-2025, 2025
Short summary
Short summary
In the present work, we provide a new ice thickness reconstruction of the Antarctic Peninsula Ice Sheet north of 70º S using inversion modeling. This model consists of two steps: the first uses basic assumptions of the rheology of the glacier, and the second uses mass conservation to improve the reconstruction where the assumptions made previously are expected to fail. Validation with independent data showed that our reconstruction improved compared to other reconstructions that are available.
Finn Wimberly, Lizz Ultee, Lilian Schuster, Matthias Huss, David R. Rounce, Fabien Maussion, Sloan Coats, Jonathan Mackay, and Erik Holmgren
The Cryosphere, 19, 1491–1511, https://doi.org/10.5194/tc-19-1491-2025, https://doi.org/10.5194/tc-19-1491-2025, 2025
Short summary
Short summary
Glacier models have historically been used to understand glacier melt’s contribution to sea level rise. The capacity to project seasonal glacier runoff is a relatively recent development for these models. In this study we provide the first model intercomparison of runoff projections for the glacier evolution models capable of simulating future runoff globally. We compare model projections from 2000 to 2100 for all major river basins larger than 3000 km2 with over 30 km2 of initial glacier cover.
Janneke van Ginkel, Fabian Walter, Fabian Lindner, Miroslav Hallo, Matthias Huss, and Donat Fäh
The Cryosphere, 19, 1469–1490, https://doi.org/10.5194/tc-19-1469-2025, https://doi.org/10.5194/tc-19-1469-2025, 2025
Short summary
Short summary
This study on Glacier de la Plaine Morte in Switzerland employs various passive seismic analysis methods to identify complex hydraulic behaviours at the ice–bedrock interface. In 4 months of seismic records, we detect spatio-temporal variations in the glacier's basal interface, following the drainage of an ice-marginal lake. We identify a low-velocity layer, whose properties are determined using modelling techniques. This low-velocity layer results from temporary water storage subglacially.
Kamilla Hauknes Sjursen, Jordi Bolibar, Marijn van der Meer, Liss Marie Andreassen, Julian Peter Biesheuvel, Thorben Dunse, Matthias Huss, Fabien Maussion, David R. Rounce, and Brandon Tober
EGUsphere, https://doi.org/10.5194/egusphere-2025-1206, https://doi.org/10.5194/egusphere-2025-1206, 2025
Short summary
Short summary
Understanding glacier mass changes is crucial for assessing freshwater availability in many regions of the world. We present the Mass Balance Machine, a machine learning model that learns from sparse measurements of glacier mass change to make predictions on unmonitored glaciers. Using data from Norway, we show that the model provides accurate estimates of mass changes at different spatiotemporal scales. Our findings show that machine learning can be a valuable tool to improve such predictions.
Marit van Tiel, Matthias Huss, Massimiliano Zappa, Tobias Jonas, and Daniel Farinotti
EGUsphere, https://doi.org/10.5194/egusphere-2025-404, https://doi.org/10.5194/egusphere-2025-404, 2025
Short summary
Short summary
The summer of 2022 was extremely warm and dry in Europe, severely impacting water availability. We calculated water balance anomalies for 88 glacierized catchments in Switzerland, showing that glaciers played a crucial role in alleviating the drought situation by melting at record rates, partially compensating for the lack of rain and snowmelt. By comparing 2022 with past extreme years, we show that while glacier meltwater remains essential during droughts, its contribution is declining.
Marijn van der Meer, Harry Zekollari, Matthias Huss, Jordi Bolibar, Kamilla Hauknes Sjursen, and Daniel Farinotti
The Cryosphere, 19, 805–826, https://doi.org/10.5194/tc-19-805-2025, https://doi.org/10.5194/tc-19-805-2025, 2025
Short summary
Short summary
Glacier retreat poses big challenges, making understanding how climate affects glaciers vital. But glacier measurements worldwide are limited. We created a simple machine-learning model called miniML-MB, which estimates annual changes in glacier mass in the Swiss Alps. As input, miniML-MB uses two climate variables: average temperature (May–Aug) and total precipitation (Oct–Feb). Our model can accurately predict glacier mass from 1961 to 2021 but struggles for extreme years (2022 and 2023).
Laura Gabriel, Marian Hertrich, Christophe Ogier, Mike Müller-Petke, Raphael Moser, Hansruedi Maurer, and Daniel Farinotti
EGUsphere, https://doi.org/10.5194/egusphere-2024-3741, https://doi.org/10.5194/egusphere-2024-3741, 2025
Short summary
Short summary
Surface nuclear magnetic resonance (SNMR) is a geophysical technique directly sensitive to liquid water. We expand the limited applications of SNMR on glaciers by detecting water within Rhonegletscher, Switzerland. By carefully processing the data to reduce noise, we identified signals indicating a water layer near the base of the glacier, surrounded by ice with low water content. Our findings, validated by radar measurements, show SNMR's potential and limitations in studying water in glaciers.
Alexandra von der Esch, Matthias Huss, Marit van Tiel, Justine Berg, and Daniel Farinotti
EGUsphere, https://doi.org/10.5194/egusphere-2024-3965, https://doi.org/10.5194/egusphere-2024-3965, 2025
Short summary
Short summary
Glaciers are vital water sources, especially in alpine regions. Using the Glacier Evolution Runoff Model (GERM), we examined how forcing data and model resolution impact glacio-hydrological model results. We find that precipitation biases greatly affect results, and coarse resolutions miss critical small-scale details. This highlights the trade-offs between computational efficiency and model accuracy, emphasizing the need for high-resolution data and precise calibration for reliable predictions.
Mette K. Gillespie, Liss M. Andreassen, Matthias Huss, Simon de Villiers, Kamilla H. Sjursen, Jostein Aasen, Jostein Bakke, Jan M. Cederstrøm, Hallgeir Elvehøy, Bjarne Kjøllmoen, Even Loe, Marte Meland, Kjetil Melvold, Sigurd D. Nerhus, Torgeir O. Røthe, Eivind W. N. Støren, Kåre Øst, and Jacob C. Yde
Earth Syst. Sci. Data, 16, 5799–5825, https://doi.org/10.5194/essd-16-5799-2024, https://doi.org/10.5194/essd-16-5799-2024, 2024
Short summary
Short summary
We present an extensive ice thickness dataset from Jostedalsbreen ice cap that will serve as a baseline for future studies of regional climate-induced change. Results show that Jostedalsbreen currently (~2020) has a maximum ice thickness of ~630 m, a mean ice thickness of 154 ± 22 m and an ice volume of 70.6 ±10.2 km3. Ice of less than 50 m thickness covers two narrow regions of Jostedalsbreen, and the ice cap is likely to separate into three parts in a warming climate.
Harry Zekollari, Matthias Huss, Lilian Schuster, Fabien Maussion, David R. Rounce, Rodrigo Aguayo, Nicolas Champollion, Loris Compagno, Romain Hugonnet, Ben Marzeion, Seyedhamidreza Mojtabavi, and Daniel Farinotti
The Cryosphere, 18, 5045–5066, https://doi.org/10.5194/tc-18-5045-2024, https://doi.org/10.5194/tc-18-5045-2024, 2024
Short summary
Short summary
Glaciers are major contributors to sea-level rise and act as key water resources. Here, we model the global evolution of glaciers under the latest generation of climate scenarios. We show that the type of observations used for model calibration can strongly affect the projections at the local scale. Our newly projected 21st century global mass loss is higher than the current community estimate as reported in the latest Intergovernmental Panel on Climate Change (IPCC) report.
Bastien Ruols, Johanna Klahold, Daniel Farinotti, and James Irving
EGUsphere, https://doi.org/10.5194/egusphere-2024-3074, https://doi.org/10.5194/egusphere-2024-3074, 2024
Short summary
Short summary
We demonstrate the use of a drone-based ground-penetrating radar (GPR) system to gather high-resolution, high-density 4D data over a near-terminus glacier collapse feature. We monitor the growth of an air cavity and the evolution of the subglacial drainage system, providing new insights into the dynamics of collapse events. This work highlights potential future applications of drone-based GPR for monitoring glaciers, in particular in regions which are inaccessible with surface-based methods.
Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang
The Cryosphere, 18, 3195–3230, https://doi.org/10.5194/tc-18-3195-2024, https://doi.org/10.5194/tc-18-3195-2024, 2024
Short summary
Short summary
Satellites have made it possible to observe glacier elevation changes from all around the world. In the present study, we compared the results produced from two different types of satellite data between different research groups and against validation measurements from aeroplanes. We found a large spread between individual results but showed that the group ensemble can be used to reliably estimate glacier elevation changes and related errors from satellite data.
Jérôme Lopez-Saez, Christophe Corona, Lenka Slamova, Matthias Huss, Valérie Daux, Kurt Nicolussi, and Markus Stoffel
Clim. Past, 20, 1251–1267, https://doi.org/10.5194/cp-20-1251-2024, https://doi.org/10.5194/cp-20-1251-2024, 2024
Short summary
Short summary
Glaciers in the European Alps have been retreating since the 1850s. Monitoring glacier mass balance is vital for understanding global changes, but only a few glaciers have long-term data. This study aims to reconstruct the mass balance of the Silvretta Glacier in the Swiss Alps using stable isotopes and tree ring proxies. Results indicate increased glacier mass until the 19th century, followed by a sharp decline after the Little Ice Age with accelerated losses due to anthropogenic warming.
Lander Van Tricht, Harry Zekollari, Matthias Huss, Daniel Farinotti, and Philippe Huybrechts
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-87, https://doi.org/10.5194/tc-2023-87, 2023
Manuscript not accepted for further review
Short summary
Short summary
Detailed 3D models can be applied for well-studied glaciers, whereas simplified approaches are used for regional/global assessments. We conducted a comparison of six Tien Shan glaciers employing different models and investigated the impact of in-situ measurements. Our results reveal that the choice of mass balance and ice flow model as well as calibration have minimal impact on the projected volume. The initial ice thickness exerts the greatest influence on the future remaining ice volume.
Christian Sommer, Johannes J. Fürst, Matthias Huss, and Matthias H. Braun
The Cryosphere, 17, 2285–2303, https://doi.org/10.5194/tc-17-2285-2023, https://doi.org/10.5194/tc-17-2285-2023, 2023
Short summary
Short summary
Knowledge on the volume of glaciers is important to project future runoff. Here, we present a novel approach to reconstruct the regional ice thickness distribution from easily available remote-sensing data. We show that past ice thickness, derived from spaceborne glacier area and elevation datasets, can constrain the estimated ice thickness. Based on the unique glaciological database of the European Alps, the approach will be most beneficial in regions without direct thickness measurements.
Aaron Cremona, Matthias Huss, Johannes Marian Landmann, Joël Borner, and Daniel Farinotti
The Cryosphere, 17, 1895–1912, https://doi.org/10.5194/tc-17-1895-2023, https://doi.org/10.5194/tc-17-1895-2023, 2023
Short summary
Short summary
Summer heat waves have a substantial impact on glacier melt as emphasized by the extreme summer of 2022. This study presents a novel approach for detecting extreme glacier melt events at the regional scale based on the combination of automatically retrieved point mass balance observations and modelling approaches. The in-depth analysis of summer 2022 evidences the strong correspondence between heat waves and extreme melt events and demonstrates their significance for seasonal melt.
Matteo Guidicelli, Matthias Huss, Marco Gabella, and Nadine Salzmann
The Cryosphere, 17, 977–1002, https://doi.org/10.5194/tc-17-977-2023, https://doi.org/10.5194/tc-17-977-2023, 2023
Short summary
Short summary
Spatio-temporal reconstruction of winter glacier mass balance is important for assessing long-term impacts of climate change. However, high-altitude regions significantly lack reliable observations, which is limiting the calibration of glaciological and hydrological models. We aim at improving knowledge on the spatio-temporal variations in winter glacier mass balance by exploring the combination of data from reanalyses and direct snow accumulation observations on glaciers with machine learning.
Fabian Walter, Elias Hodel, Erik S. Mannerfelt, Kristen Cook, Michael Dietze, Livia Estermann, Michaela Wenner, Daniel Farinotti, Martin Fengler, Lukas Hammerschmidt, Flavia Hänsli, Jacob Hirschberg, Brian McArdell, and Peter Molnar
Nat. Hazards Earth Syst. Sci., 22, 4011–4018, https://doi.org/10.5194/nhess-22-4011-2022, https://doi.org/10.5194/nhess-22-4011-2022, 2022
Short summary
Short summary
Debris flows are dangerous sediment–water mixtures in steep terrain. Their formation takes place in poorly accessible terrain where instrumentation cannot be installed. Here we propose to monitor such source terrain with an autonomous drone for mapping sediments which were left behind by debris flows or may contribute to future events. Short flight intervals elucidate changes of such sediments, providing important information for landscape evolution and the likelihood of future debris flows.
Pau Wiersma, Jerom Aerts, Harry Zekollari, Markus Hrachowitz, Niels Drost, Matthias Huss, Edwin H. Sutanudjaja, and Rolf Hut
Hydrol. Earth Syst. Sci., 26, 5971–5986, https://doi.org/10.5194/hess-26-5971-2022, https://doi.org/10.5194/hess-26-5971-2022, 2022
Short summary
Short summary
We test whether coupling a global glacier model (GloGEM) with a global hydrological model (PCR-GLOBWB 2) leads to a more realistic glacier representation and to improved basin runoff simulations across 25 large-scale basins. The coupling does lead to improved glacier representation, mainly by accounting for glacier flow and net glacier mass loss, and to improved basin runoff simulations, mostly in strongly glacier-influenced basins, which is where the coupling has the most impact.
Erik Schytt Mannerfelt, Amaury Dehecq, Romain Hugonnet, Elias Hodel, Matthias Huss, Andreas Bauder, and Daniel Farinotti
The Cryosphere, 16, 3249–3268, https://doi.org/10.5194/tc-16-3249-2022, https://doi.org/10.5194/tc-16-3249-2022, 2022
Short summary
Short summary
How glaciers have responded to climate change over the last 20 years is well-known, but earlier data are much more scarce. We change this in Switzerland by using 22 000 photographs taken from mountain tops between the world wars and find a halving of Swiss glacier volume since 1931. This was done through new automated processing techniques that we created. The data are interesting for more than just glaciers, such as mapping forest changes, landslides, and human impacts on the terrain.
Lea Geibel, Matthias Huss, Claudia Kurzböck, Elias Hodel, Andreas Bauder, and Daniel Farinotti
Earth Syst. Sci. Data, 14, 3293–3312, https://doi.org/10.5194/essd-14-3293-2022, https://doi.org/10.5194/essd-14-3293-2022, 2022
Short summary
Short summary
Glacier monitoring in Switzerland started in the 19th century, providing exceptional data series documenting snow accumulation and ice melt. Raw point observations of surface mass balance have, however, never been systematically compiled so far, including complete metadata. Here, we present an extensive dataset with more than 60 000 point observations of surface mass balance covering 60 Swiss glaciers and almost 140 years, promoting a better understanding of the drivers of recent glacier change.
Loris Compagno, Matthias Huss, Evan Stewart Miles, Michael James McCarthy, Harry Zekollari, Amaury Dehecq, Francesca Pellicciotti, and Daniel Farinotti
The Cryosphere, 16, 1697–1718, https://doi.org/10.5194/tc-16-1697-2022, https://doi.org/10.5194/tc-16-1697-2022, 2022
Short summary
Short summary
We present a new approach for modelling debris area and thickness evolution. We implement the module into a combined mass-balance ice-flow model, and we apply it using different climate scenarios to project the future evolution of all glaciers in High Mountain Asia. We show that glacier geometry, volume, and flow velocity evolve differently when modelling explicitly debris cover compared to glacier evolution without the debris-cover module, demonstrating the importance of accounting for debris.
Christophe Ogier, Mauro A. Werder, Matthias Huss, Isabelle Kull, David Hodel, and Daniel Farinotti
The Cryosphere, 15, 5133–5150, https://doi.org/10.5194/tc-15-5133-2021, https://doi.org/10.5194/tc-15-5133-2021, 2021
Short summary
Short summary
Glacier-dammed lakes are prone to draining rapidly when the ice dam breaks and constitute a serious threat to populations downstream. Such a lake drainage can proceed through an open-air channel at the glacier surface. In this study, we present what we believe to be the most complete dataset to date of an ice-dammed lake drainage through such an open-air channel. We provide new insights for future glacier-dammed lake drainage modelling studies and hazard assessments.
Johannes Marian Landmann, Hans Rudolf Künsch, Matthias Huss, Christophe Ogier, Markus Kalisch, and Daniel Farinotti
The Cryosphere, 15, 5017–5040, https://doi.org/10.5194/tc-15-5017-2021, https://doi.org/10.5194/tc-15-5017-2021, 2021
Short summary
Short summary
In this study, we (1) acquire real-time information on point glacier mass balance with autonomous real-time cameras and (2) assimilate these observations into a mass balance model ensemble driven by meteorological input. For doing so, we use a customized particle filter that we designed for the specific purposes of our study. We find melt rates of up to 0.12 m water equivalent per day and show that our assimilation method has a higher performance than reference mass balance models.
Hannah R. Field, William H. Armstrong, and Matthias Huss
The Cryosphere, 15, 3255–3278, https://doi.org/10.5194/tc-15-3255-2021, https://doi.org/10.5194/tc-15-3255-2021, 2021
Short summary
Short summary
The growth of a glacier lake alters the hydrology, ecology, and glaciology of its surrounding region. We investigate modern glacier lake area change across northwestern North America using repeat satellite imagery. Broadly, we find that lakes downstream from glaciers grew, while lakes dammed by glaciers shrunk. Our results suggest that the shape of the landscape surrounding a glacier lake plays a larger role in determining how quickly a lake changes than climatic or glaciologic factors.
Loris Compagno, Sarah Eggs, Matthias Huss, Harry Zekollari, and Daniel Farinotti
The Cryosphere, 15, 2593–2599, https://doi.org/10.5194/tc-15-2593-2021, https://doi.org/10.5194/tc-15-2593-2021, 2021
Short summary
Short summary
Recently, discussions have focused on the difference in limiting the increase in global average temperatures to below 1.0, 1.5, or 2.0 °C compared to preindustrial levels. Here, we assess the impacts that such different scenarios would have on both the future evolution of glaciers in the European Alps and the water resources they provide. Our results show that the different temperature targets have important implications for the changes predicted until 2100.
Rebecca Gugerli, Matteo Guidicelli, Marco Gabella, Matthias Huss, and Nadine Salzmann
Adv. Sci. Res., 18, 7–20, https://doi.org/10.5194/asr-18-7-2021, https://doi.org/10.5194/asr-18-7-2021, 2021
Short summary
Short summary
To obtain reliable snowfall estimates in high mountain remains a challenge. This study uses daily snow water equivalent (SWE) estimates by a cosmic ray sensor on two Swiss glaciers to assess three
readily-available high-quality precipitation products. We find a large bias between in situ SWE and snowfall, which differs among the precipitation products, the two sites, the winter seasons and in situ meteorological conditions. All products have great potential for various applications in the Alps.
Ethan Welty, Michael Zemp, Francisco Navarro, Matthias Huss, Johannes J. Fürst, Isabelle Gärtner-Roer, Johannes Landmann, Horst Machguth, Kathrin Naegeli, Liss M. Andreassen, Daniel Farinotti, Huilin Li, and GlaThiDa Contributors
Earth Syst. Sci. Data, 12, 3039–3055, https://doi.org/10.5194/essd-12-3039-2020, https://doi.org/10.5194/essd-12-3039-2020, 2020
Short summary
Short summary
Knowing the thickness of glacier ice is critical for predicting the rate of glacier loss and the myriad downstream impacts. To facilitate forecasts of future change, we have added 3 million measurements to our worldwide database of glacier thickness: 14 % of global glacier area is now within 1 km of a thickness measurement (up from 6 %). To make it easier to update and monitor the quality of our database, we have used automated tools to check and track changes to the data over time.
Cited articles
Alley, R. B., Lawson, D. E., Larson, G. J., Evenson, E. B., and Baker, G. S.:
Stabilizing feedbacks in glacier-bed erosion, Nature, 424, 758–760,
2003.
Anacona, P. I., Kinney, J., Schaefer, M., Harrison, S., Wilson, R., Segovia,
A., Mazzorana, B., Guerra, F., Farías, D., Reynolds, J. M., and
Glasser, N. F.: Glacier protection laws: Potential conflicts in managing
glacial hazards and adapting to climate change, Ambio, 47, 835–845, 2018.
Antoniazza, G. and Lane, S. N.: Sediment yield over glacial cycles: A
conceptual model, Progress in Physical Geography: Earth and Environment,
45, 842–865, 2021.
Ballantyne, C. K.: Paraglacial geomorphology, Quaternary Sci. Rev.,
21, 1935–2017, 2002
Benn, D. I. and Evans, D. J.: Glaciers and Glaciation, 2nd ed, Hodder
Education, London, 802 p., ISBN 9780340905791, 2010.
Bogen, J., Xu, M., and Kennie, P.: The impact of pro-glacial lakes on
downstream sediment delivery in Norway, Earth Surf. Proc. Land., 40, 942–952, 2015.
Bolch, T., Peters, J., Yegorov, A., Pradhan, B., Buchroithner, M. and Blagoveshchensky, V.: Identification of potentially dangerous glacial lakes in the northern Tien Shan, Nat Hazards 59, 1691–1714, https://doi.org/10.1007/s11069-011-9860-2, 2011.
Brunner, M. I., Gurung, A. B., Zappa, M., Zekollari, H., Farinotti, D., and
Stähli, M.: Present and future water scarcity in Switzerland: Potential
for alleviation through reservoirs and lakes, Sci. Total
Environ., 666, 1033–1047, 2019.
Buckel, J., Otto, J. C., Prasicek, G., and Keuschnig, M.: Glacial lakes in
Austria – Distribution and formation since the Little Ice Age, Global
Planet. Change, 164, 39–51, 2018.
Carrivick, J. and Tweed, F. S.: Proglacial lakes: character, behaviour and
geological importance, Quaternary Sci. Rev., 78, 34–52, 2013.
Carrivick, J. and Tweed, F. S.: Deglaciation controls on sediment
yield: Towards capturing spatio-temporal variability, Earth-Sci. Rev.,
221, 103809, https://doi.org/10.1016/j.earscirev.2021.103809, 2021.
Čiamporová-Zaťovičová, Z., and Čiampor Jr, F.:
Alpine lakes and ponds – a promising source of high genetic diversity in
metapopulations of aquatic insects, Inland waters, 7, 109–117, https://doi.org/10.1080/20442041.2017.1294361, 2017.
Colonia, D., Torres, J., Haeberli, W., Schauwecker, S., Braendle, E.,
Giraldez, C., and Gochachin, A.: Compiling an inventory of glacier-bed
overdeepenings and potential new lakes in de-glaciating areas of the
Peruvian Andes: Approach, first results, and perspectives for adaptation to
climate change, Water, 9, 336, https://doi.org/10.3390/w9050336, 2017.
Compagno, L., Eggs, S., Huss, M., Zekollari, H., and Farinotti, D.: Brief communication: Do 1.0, 1.5, or 2.0 ∘C matter for the future evolution of Alpine glaciers?, The Cryosphere, 15, 2593–2599, https://doi.org/10.5194/tc-15-2593-2021, 2021.
Cook, S. J. and Swift, D. A.: Subglacial basins: Their origin and
importance in glacial systems and landscapes, Earth-Sci. Rev., 115,
332–372, https://doi.org/10.1016/j.earscirev.2012.09.009, 2012.
Costa, A., Anghileri, D., and Molnar, P.: Hydroclimatic control on suspended sediment dynamics of a regulated Alpine catchment: a conceptual approach, Hydrol. Earth Syst. Sci., 22, 3421–3434, https://doi.org/10.5194/hess-22-3421-2018, 2018.
Delaney, I., Bauder, A., Werder, M. A., and Farinotti, D.: Regional and
annual variability in subglacial sediment transport by water for two
glaciers in the Swiss Alps, Front. Earth Sci., 6, 175, https://doi.org/10.3389/feart.2018.00175, 2018a.
Delaney, I., Bauder, A., Huss, M., and Weidmann, Y.: Proglacial erosion
rates and processes in a glacierized catchment in the Swiss Alps, Earth Surf. Proc. Land., 43, 765–778, https://doi.org/10.1002/esp.4239, 2018b.
Drenkhan, F., Guardamino, L., Huggel, C., and Frey, H.: Current and future
glacier and lake assessment in the deglaciating Vilcanota-Urubamba basin,
Peruvian Andes, Global Planet. Change, 169, 105–118, https://doi.org/10.1016/j.gloplacha.2018.07.005, 2018.
Ehrbar, D., Schmocker, L., Vetsch, D. F., and Boes, R. M.: Hydropower
potential in the periglacial environment of Switzerland under climate
change, Sustainability, 10, 2794, https://doi.org/10.3390/su10082794, 2018.
Emmer, A., Vilímek, V., Klimeš, J., and Cochachin, A.: Glacier
retreat, lakes development and associated natural hazards in Cordilera
Blanca, Peru, in: Landslides in cold regions in the context of climate change, edited by: Shan W., Guo Y., Wang F., Marui H., Strom A., Environ. Sci. Eng., Springer, Cham, 231–252, https://doi.org/10.1007/978-3-319-00867-7_17, 2014.
Emmer, A., Merkl, S., and Mergili, M.: Spatiotemporal patterns of
high-mountain lakes and related hazards in western Austria, Geomorphology,
246, 602–616, 2015.
Emmer, A., Klimeš, J., Mergili, M., Vilímek, V., and Cochachin,
A.: 882 lakes of the Cordillera Blanca: An inventory, classification,
evolution and assessment of susceptibility to outburst floods, Catena, 147,
269–279, 2016.
Esri Inc: ArcGis Pro (Version 2.7.1), Hydrology Toolset: Fill (Spatial
Analyst), Esri Inc. [software],
https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview, last
access: 27 June 2022.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Farinotti, D., Pistocchi, A., and Huss, M.: From dwindling ice to headwater
lakes: could dams replace glaciers in the European Alps?, Environ.
Res. Lett., 11, 054022, https://doi.org/10.1088/1748-9326/11/5/054022, 2016.
Farinotti, D., Brinkerhoff, D. J., Clarke, G. K. C., Fürst, J. J., Frey, H., Gantayat, P., Gillet-Chaulet, F., Girard, C., Huss, M., Leclercq, P. W., Linsbauer, A., Machguth, H., Martin, C., Maussion, F., Morlighem, M., Mosbeux, C., Pandit, A., Portmann, A., Rabatel, A., Ramsankaran, R., Reerink, T. J., Sanchez, O., Stentoft, P. A., Singh Kumari, S., van Pelt, W. J. J., Anderson, B., Benham, T., Binder, D., Dowdeswell, J. A., Fischer, A., Helfricht, K., Kutuzov, S., Lavrentiev, I., McNabb, R., Gudmundsson, G. H., Li, H., and Andreassen, L. M.: How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison eXperiment, The Cryosphere, 11, 949–970, https://doi.org/10.5194/tc-11-949-2017, 2017.
Farinotti, D., Round, V., Huss, M., Compagno, L., and Zekollari, H.: Large
hydropower and water-storage potential in future glacier free-basins,
Nature, 575, 341–344, 2019.
Farinotti, D., Brinkerhoff, D., Fuerst, J., Gantayat, P., Gillet-Chaulet,
F., Huss, M., Leclercq, P. W., Linsbauer, A., Machguth, H., Martin, C.,
Maussion, F., Morlighem, M., Mosbeux, C., Pandit, A., Portmann, A., Rabael,
A., Ramsakaran, R., Reerink, T. J., Robo, E., Rouges, E., Tamre, E., van
Pelt, W. J., Werder, M. A., Azam, M. F., Li, H., and Andreassen, L. M.:
Results from the Ice Thickness Models Intercomparison eXperiment phase 2,
Front. Earth Sci., 8, 484, https://doi.org/10.3389/feart.2020.571923, 2021.
Frey, H., Haeberli, W., Linsbauer, A., Huggel, C., and Paul, F.: A multi-level strategy for anticipating future glacier lake formation and associated hazard potentials, Nat. Hazards Earth Syst. Sci., 10, 339–352, https://doi.org/10.5194/nhess-10-339-2010, 2010.
Galluccio, A.: I nuovi laghi proglaciali lombardi, Terra Glacialis, 1,
133–151, 1998.
Gardelle, J., Arnaud, Y., and Berthier, E.: Contrasted evolution of glacial
lakes along the Hindu Kush Himalaya mountain range between 1990 and 2009,
Global Planet. Change, 75, 47–55, 2011.
Geilhausen, M., Morche, D., Otto, J. C., and Schrott, L.: Sediment
discharge from the proglacial zone of a retreating Alpine glacier,
Zeitschrift für Geomorphologie, 57, 29–53, 2013.
Gharehchahi, S., James, W. H., Bhardwaj, A., Jensen, J. L., Sam, L.,
Ballinger, T. J., and Butler, D. R.: Glacier ice thickness estimation and
future lake formation in Swiss southwestern Alps – The upper Rhône
catchment: A VOLTA application, Remote Sens., 12, 3443, 2020.
Grab, M., Mattea, E., Bauder, A., Huss, M., Rabenstein, L., Hodel, E., E;
Linsbauer, A., Langhammer, L., Schmid, L., Church, G., Hellmann, G.,
Délèze, K., Schaer, P., Lathion, P., Farinotti, D., and Maurer, H.:
Ice thickness distribution and glacier bed topography of Switzerland based
on ground penetrating radar, J. Glaciol., 67, 1074–1092, 2021.
Haeberli, W. and Drenkhan, F.: Future lake development in deglaciating
mountain ranges, Oxford Research Encyclopedia of Natural Hazard Science, Oxford University Press, 1–45, https://doi.org/10.1093/acrefore/9780199389407.013.361, 2022.
Haeberli, W., Alean, J. C., Müller, P., and Funk, M.: Assessing risks
from glacier hazards in high mountain regions: some experiences in the Swiss
Alps, Ann. Glaciol., 13, 96–102, 1989.
Haeberli, W., Buetler, M., Huggel, C., Friedli, T. L., Schaub, Y., and
Schleiss, A. J.: New lakes in deglaciating high-mountain regions –
opportunities and risks, Clim. Change, 139, 201–214, 2016.
Haeberli, W., Schaub, Y., and Huggel, C.: Increasing risks related to
landslides from degrading permafrost into new lakes in de-glaciating
mountain ranges, Geomorphology, 293, 405–417, 2017.
Hartmeyer, I., Delleske, R., Keuschnig, M., Krautblatter, M., Lang, A., Schrott, L., and Otto, J.-C.: Current glacier recession causes significant rockfall increase: the immediate paraglacial response of deglaciating cirque walls, Earth Surf. Dynam., 8, 729–751, https://doi.org/10.5194/esurf-8-729-2020, 2020.
Herman, F., Beyssac, O.,
Brughelli, M., Lane, S. N., Leprince, S., Adatte, T., Lin, J. Y. Y., Avouac,
J., and Cox, S. C.: Erosion by an Alpine glacier, Science,
350, 193–195, 2015.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgreen P., Dick D.,
Diamantakis M., Dragani R., Flemming, J., Forbes, R., Fuentes, M., Geer, A.,
Haimberger, L., Healy, S., J., Hogan, R. J., Hólm, E., Janisková,M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.N.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, 2020.
Hinderer, M., Kastowski, M., Kamelger, A., Bartolini, A., and Schlunegger,
A.: River loads and modern denudation of the Alps – A review, Earth-Sci. Rev., 118, 11–44, 2013.
Hock, R., Rasul, G., Adler, C., Cáceres, B., Gruber S., Hirabayashi, Y.,
Jackson M., Kääb, A., Kang, S., Kutuzov, S., Milner A., Mulau. O.,
Morin S., Orlove B., and Steltzer H.: High mountain areas, in: IPCC Special
Report on the ocean and cryosphere in a changing climate, edited by:
Pörtner, H. O., Roberts, D. C., Masson-Delmotte, V.,
Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegriìa, A.,
Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., World
Meteorological Organization, Geneva, Switzerland, https://www.ipcc.ch/srocc/ (last access: 13 July 2022), 2019.
Hooke, R. L.: Positive feedbacks associated with erosion of glacial cirques
and overdeepenings, Geol. Soc. Am. Bull., 103, 1104–1108, 1991.
Huggel, C., Kääb, A., Haeberli, W., Teysseire, P., and
Paul, F.: Remote sensing based assessment of hazards from glacier
lake outbursts: a case study in the Swiss Alps, Can. Geotech. J., 39, 316–330, 2002.
Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L.,
Farinotti, D., Huss, M., Dussaillant, I., Brun, F., and Kääb, A.:
Accelerated global glacier mass loss in the early twenty-first century,
Nature, 592, 726–731, 2021.
Huss, M. and Farinotti, D.: Distributed ice thickness and volume of all
glaciers around the globe, J. Geophys. Res.-Earth Surf.,
117, F04010, https://doi.org/10.1029/2012JF002523, 2012.
Huss, M. and Hock, R.: A new model for global glacier change and sea-level
rise, Front. Earth Sci. 3, 54, https://doi.org/10.3389/feart.2015.00054, 2015.
Huss, M. and Hock, R.: Global-scale hydrological response to future
glacier mass loss, Nat. Clim. Change, 8, 135–140, 2018.
Huss, M., Jouvet, G., Farinotti, D., and Bauder, A.: Future high-mountain hydrology: a new parameterization of glacier retreat, Hydrol. Earth Syst. Sci., 14, 815–829, https://doi.org/10.5194/hess-14-815-2010, 2010.
Iken, A. and Bindschadler, R. A.: Combined measurements of subglacial
water pressure and surface velocity of Findelengletscher, Switzerland:
conclusions about drainage system and sliding mechanism, J. Glaciol., 32, 101–119, 1986.
IPBES: Global assessment report on biodiversity and ecosystem
services of the Intergovernmental Science-Policy Platform on Biodiversity
and Ecosystem Services (IPBES), edited by: Brondizio, E. S., Settele, J., Díaz, S., and Ngo, H. T., IPBES secretariat, Bonn,
Germany, 1148, https://doi.org/10.5281/zenodo.3831673, 2019.
Kapitsa, V., Shahgedanova, M., Machguth, H., Severskiy, I., and Medeu, A.: Assessment of evolution and risks of glacier lake outbursts in the Djungarskiy Alatau, Central Asia, using Landsat imagery and glacier bed topography modelling, Nat. Hazards Earth Syst. Sci., 17, 1837–1856, https://doi.org/10.5194/nhess-17-1837-2017, 2017.
Kellner, E.: Social acceptance of a multi-purpose reservoir in a recently
deglaciated landscape in the Swiss Alps, Sustainabilty, 11, 3819, https://doi.org/10.3390/su11143819, 2019.
Kellner, E.: The controversial debate on the role of water reservoirs in
reducing water scarcity, WiRes-Water, 8, e1514, https://doi.org/10.1002/wat2.1514, 2021.
Kellner, E. and Brunner, M. I.: Reservoir governance in world's water
towers needs to anticipate multi-purpose use, Earths Future, 9,
e2020EF001643, https://doi.org/10.1029/2020EF001643, 2021.
Komori, J.: Recent expansions of glacial lakes in the Bhutan Himalayas,
Quatern. Int., 184, 177–186, 2008.
Lane, S. M., Bakker, M., Gabbud, C., Micheletti, N., and Saugy, J. N.:
Sediment export, transient landscape response and catchment-scale
connectivity following rapid climate warming and Alpine glacier recession,
Geomorphology, 277, 210–227, 2017.
Langhammer, L., Grab, M., Bauder, A., and Maurer, H.: Glacier thickness estimations of alpine glaciers using data and modeling constraints, The Cryosphere, 13, 2189–2202, https://doi.org/10.5194/tc-13-2189-2019, 2019a.
Langhammer, L., Rabenstein, L., Schmid, L., Bauder, A., Grab, M., Schaer,
P., and Maurer, H.: Glacier bed surveying with helicopter-borne
dual-polarization ground-penetrating radar, J. Glaciol., 65,
123–135, 2019b.
Li, D., Lu, X., Overeem, I., Walling, D. E., Syvitski, J., Kettner, A. J.,
Bookhagen, B., Zhou, Y., and Zhang, T.: Exceptional increases in fluvial
sediment fluxes in a warmer and wetter High Mountain Asia, Science,
374, 599–603, 2021.
Linsbauer, A., Paul, F., and Haeberli, W.: Modeling glacier thickness
distribution and bed topography over entire mountain ranges with GlabTop:
Application of a fast and robust approach. J. Geophys. Res.-Earth Surf., 117, F00307, https://doi.org/10.1029/2011JF002313, 2012.
Linsbauer, A., Frey, H., Haeberli, W., Machgut, H., Azam, M. F., and Allen,
S.: Modelling glacier-bed overdeepenings and possible future lakes for the
glaciers in the Himalaya – Karakoram region, Ann. Glaciol., 57,
119–130, 2016.
Linsbauer, A., Huss, M., Hodel, E., Bauder, A., Fischer, M., Weidmann, Y.,
and Schmassmann E.: The new Swiss Glacier Inventory SGI2016: a detailed
cartographic representation of Swiss glacier extent and supraglacial
debris-cover, Front. Earth Sci., 9, 774, https://doi.org/10.3389/feart.2021.704189, 2021.
MacGregor, K. R., Anderson, R. S., and Waddington, E. D.: Numerical
modeling of glacial erosion and headwall processes in alpine valleys,
Geomorphology, 103, 189–204, 2009.
Magnin, F., Haeberli, W., Linsbauer, A., Deline, P., and Ravanel, L.:
Estimating glacier-bed overdeepenings as possible sites of future lakes in
the de-glaciating Mont Blanc massif (Western European Alps), Geomorphology,
350, 106913, https://doi.org/10.1016/j.geomorph.2019.106913, 2020.
Marzeion, B., Kaser, G., Maussion, F., and Champollion, N.: Limited
influence of climate change mitigation on short-term glacier mass loss,
Nat. Clim. Change, 8, 305–308, 2018.
Marzeion, B., Hock, R., Anderson, B., Bliss, A., Champollion, N., Fujita,
K., Huss, M., Immerzeel, W. W., Kraaijenbrink, P., Malles, J. H., Maussion,
F., Radić, V., Rounce, D. R., Sakai, A., Shannon, S., van de Wal, R.,
and Zekollari, H.: Partitioning the uncertainty of ensemble projections of
global glacier mass change, Earths Future, 8, https://doi.org/10.1029/2019EF001470, e2019EF001470, 2020.
Meinshausen, M., Nicholls, Z. R. J., Lewis, J., Gidden, M. J., Vogel, E., Freund, M., Beyerle, U., Gessner, C., Nauels, A., Bauer, N., Canadell, J. G., Daniel, J. S., John, A., Krummel, P. B., Luderer, G., Meinshausen, N., Montzka, S. A., Rayner, P. J., Reimann, S., Smith, S. J., van den Berg, M., Velders, G. J. M., Vollmer, M. K., and Wang, R. H. J.: The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500, Geosci. Model Dev., 13, 3571–3605, https://doi.org/10.5194/gmd-13-3571-2020, 2020.
Micheletti, N. and Lane, S. N.: Water yield and sediment export in small,
partially glaciated Alpine watersheds in a warming climate, Water Resour.
Res., 52, 4924–4943, 2016.
Mölg, N., Huggel, C., Herold, T., Storck, F., Allen, S., Haeberli, W.,
Schaub, Y., and Odermatt, D.: Inventory and evolution of glacial lakes
since the Little Ice Age: lessons from the case of Switzerland, Earth Surf. Proc. Land., 46, 2551–2564, 2021.
NELAK: Neue Seen als Folge des Gletscherschwundes im Hochgebirge – Chancen
und Risiken, Formation des nouveux lacs suite au recul des glaciers en haute
montagne – chances et risques, Forschungsbericht NFP 61, edited by: Haeberli, W.,
Bütler, M., Huggel, C., Müller, H. and Schleiss, A.,
vdf Hochschulverlag AG at ETH Zurich, Zurich, Switzerland, 308 p., https://doi.org/10.3218/3534-6, 2013.
Orlove, B., Wiegandt, E., and Luckmann, B. H.: Darkening peaks: Glacier
Retreat, Science, and Society, University of California Press, 296 p., ISBN 9780520253056, 2008.
Otto, J.-C.: Proglacial lakes in high mountain environments, in: Geomorphology of Proglacial Systems, Geography of the
Physical Environment, edited by: Heckmann, T., Morche, D., Springer Nature Switzerland, 231–247, https://doi.org/10.1007/978-3-319-94184-4_14, 2019.
Otto, J.-C., Helfricht, K., Prasicek, G., Binder, D., and Keuschnig, M.:
Testing the performance of ice thickness models to estimate the formation of
potential future glacial lakes in Austria, Earth Surf. Proc. Land., 47, 723–741, 2022.
Paul, F.: The new Swiss glacier inventory 2000: Application of remote
sensing and GIS, PhD thesis, Schriftenreihe Physische Geographie, University
of Zurich, Zurich, Switzerland, https://doi.org/10.5167/uzh-163148, 2007.
Petrov, M. A., Sabitov, T. Y., Tomashevskaya, I. G., Glazirin, G. E.,
Chernomorets, S. S., Savernyuk, E. A., Tutubalina, O. V., Petrakov, D. A.,
Sokolov, L. S., Dokukin, M. D., Mountrakis, G., Ruiz-Villanueva, V., and
Stoffel, M.: Glacial lake inventory and lake outburst potential in
Uzbekistan, Sci. Total Environ., 592, 228–242, 2017.
Purdie, H.: Glacier retreat and tourism: Insights from New Zealand, Mt.
Res. Dev., 33, 463–472, 2013.
Rutishauser, A., Maurer, H., and Bauder, A.: Helicopter-borne
ground-penetrating radar investigations on temperate alpine glaciers: A
comparison of different systems and their abilities for bedrock mapping,
Geophysics, 81, WA119–WA129, 2016.
Salerno, F., Gambelli, S., Viviano, G., Thakuri, S., Guyennon, N., D'Agata,
C., Diolauti, G., Smiraglia, C., Stefani, F., Bocchioloa, D., and Tartari,
G.: High alpine ponds shift upwards as average temperatures increase: A case
study of the Ortles–Cevedale mountain group (Southern Alps, Italy) over the
last 50 years, Global Planet. Change, 120, 81–91, 2014.
Sanders, J. W., Cuffey, K. M., Moore, J. R., Macgregor, K. R., and
Kavanaugh, J. L.: Periglacial weathering and headwall erosion in cirque
glacier bergschrunds, Geology, 40, 779–782, 2012.
Shugar, D. H., Burr, A., Haritashaya, U., Kargel, J. S., Watson, C. S.,
Kennedy, M. C., Bevington, A. R., Betts, R. A., Harrison, S., and
Strattmann, K.: Rapid worldwide growth of glacier lakes since 1990, Nat. Clim. Change, 10, 939–945, 2020.
Steffen, T., Huss, M., Estermann, R., Hodel, E., and Farinotti, D.: Volume, evolution and sedimentation of future glacier lakes in Switzerland over the 21st century – dataset, ETHZ [data set], https://doi.org/10.3929/ethz-b-000554650, 2022.
Swift, D. A., Tallentire, G. D., Farinotti, D., Cook, S. J., Higson, W. J., and
Bryant, R. G.: The hydrology of glacier-bed overdeepenings: Sediment
transport mechanics, drainage system morphology, and geomorphological
implications, Earth Surf. Proc. Land., 46, 2264–2278, 2021.
Swisstopo: Bundesamt für Landestopografie swisstopo, swissALTI3D – Das
hochaufgelöste Terrainmodell der Schweiz, Ausgabebericht, https://www.swisstopo.admin.ch/de/geodata/height/alti3d.html#dokumente (last access: 13 July 2022), 2019.
Swisstopo: Bundesamt für Landestopografie swisstopo Luftbilder, Karten
der Schweiz – Schweizerische Eidgenossenschaft – https://map.geo.admin.ch, last
access: 27 June 2022.
Tiberti, R., Buscaglia, F., Callieri, C., Regora, M., Tartari, G., and
Sommaruga, R.: Food Web complexity of high mountain lakes is largely
affected by glacial retreat, Ecosystems, 23, 1093–1116, 2019.
Veh, G., Korup, O., Roessner, S., and Walz, A.: Detecting Himalayan glacial
lake outburst floods from Landsat time series, Remote Sens. Environ., 207, 84–97, 2018.
Veh, G., Korup, O., von Specht, S., Roessner, S., and Walz, A.: Unchanged
frequency of moraine-dammed glacial lake outburst floods in the Himalaya,
Nat. Clim. Change, 9, 379–383, 2019.
Viani, C., Giardino, M., Huggel, C., Perotti, L., and Mortara, G.: An
overview of glacier lakes in the Western Italian Alps from 1927 to 2014
based on multiple data sources (historical maps, orthophotos and reports of
the glaciological surveys), Geogr. Fis. Din. Quat., 39, 203–214, 2016.
Viani, C., Machguth, H., Huggel, C., Godio, A., Franco, D., Perotti, L.,
and Giardino M.: Potential future lakes from continued glacier shrinkage in
the Aosta Valley Region (Western Alps, Italy), Geomorphology, 355, 107068, https://doi.org/10.1016/j.geomorph.2020.107068, 2020.
Volpi, E., Di Lazzaro, M., Bertola, M., Viglione, A., and Fiori, A.:
Reservoir effects on flood peak discharge at the catchment scale, Water
Resour. Res., 54, 9623–9636, 2018.
Wang, X., Guo, X., Yang, C., Liu, Q., Wei, J., Zhang, Y., Liu, S., Zhang, Y., Jiang, Z., and Tang, Z.: Glacial lake inventory of high-mountain Asia in 1990 and 2018 derived from Landsat images, Earth Syst. Sci. Data, 12, 2169–2182, https://doi.org/10.5194/essd-12-2169-2020, 2020.
Welling, J. T., Árnason, Þ., and Ólafsdottír, R.: Glacier
tourism: a scoping review, Tourism Geographies, 17, 635–662, 2015.
Welty, E., Zemp, M., Navarro, F., Huss, M., Fürst, J. J., Gärtner-Roer, I., Landmann, J., Machguth, H., Naegeli, K., Andreassen, L. M., Farinotti, D., Li, H., and GlaThiDa Contributors: Worldwide version-controlled database of glacier thickness observations, Earth Syst. Sci. Data, 12, 3039–3055, https://doi.org/10.5194/essd-12-3039-2020, 2020.
Zekollari, H., Huss, M., and Farinotti, D.: Modelling the future evolution of glaciers in the European Alps under the EURO-CORDEX RCM ensemble, The Cryosphere, 13, 1125–1146, https://doi.org/10.5194/tc-13-1125-2019, 2019.
Zekollari, H., Huss, M., and Farinotti, D.: On the imbalance and response
time of glaciers in the European Alps, Geophys. Res. Lett., 47,
e2019GL085578, https://doi.org/10.1029/2019GL085578, 2020.
Zhang, G., Yao, T., Xie, H., Wang, W., and Yang, W.: An inventory of
glacial lakes in the Third Pole region and their changes in response to
global warming, Global Planet. Change, 131, 148–157, 2015.
Zhang, T., Wang, W., Gao, T., An, B., and Yao, T.: An integrative method
for identifying potentially dangerous glacial lakes in the Himalayas,
Sci. Total Environ., 806, 150442, https://doi.org/10.1016/j.scitotenv.2021.150442, 2022.
Zheng, G., Allen, S. K., Bao, A., Ballesteros-Cánovas, J. A., Huss, M.,
Zhang, G., Li, J., Jiang, L., Chen, W., and Stoffel, M.: Increasing risk of
glacial lake outburst floods from future Third Pole deglaciation, Nat. Clim. Change, 11, 411–417, 2021.
Short summary
Climate change is rapidly altering high-alpine landscapes. The formation of new lakes in areas becoming ice free due to glacier retreat is one of the many consequences of this process. Here, we provide an estimate for the number, size, time of emergence, and sediment infill of future glacier lakes that will emerge in the Swiss Alps. We estimate that up to ~ 680 potential lakes could form over the course of the 21st century, with the potential to hold a total water volume of up to ~ 1.16 km3.
Climate change is rapidly altering high-alpine landscapes. The formation of new lakes in areas...