Articles | Volume 11, issue 3
https://doi.org/10.5194/esurf-11-383-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-11-383-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evolution of an Alpine proglacial river during 7 decades of deglaciation
Livia Piermattei
CORRESPONDING AUTHOR
Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), 8903 Birmensdorf, Switzerland
Department of Geosciences, University of Oslo, 0371 Oslo, Norway
Physical Geography, Catholic University of Eichstätt-Ingolstadt,
85072 Eichstätt, Germany
Tobias Heckmann
Physical Geography, Catholic University of Eichstätt-Ingolstadt,
85072 Eichstätt, Germany
Sarah Betz-Nutz
Physical Geography, Catholic University of Eichstätt-Ingolstadt,
85072 Eichstätt, Germany
Moritz Altmann
Physical Geography, Catholic University of Eichstätt-Ingolstadt,
85072 Eichstätt, Germany
Jakob Rom
Physical Geography, Catholic University of Eichstätt-Ingolstadt,
85072 Eichstätt, Germany
Fabian Fleischer
Physical Geography, Catholic University of Eichstätt-Ingolstadt,
85072 Eichstätt, Germany
Manuel Stark
Physical Geography, Catholic University of Eichstätt-Ingolstadt,
85072 Eichstätt, Germany
Florian Haas
Physical Geography, Catholic University of Eichstätt-Ingolstadt,
85072 Eichstätt, Germany
Camillo Ressl
Department of Geodesy and Geoinformation, TU Wien, 1040 Vienna, Austria
Michael H. Wimmer
Department of Geodesy and Geoinformation, TU Wien, 1040 Vienna, Austria
Federal Office of Metrology and Surveying (BEV), 1020 Vienna, Austria
Norbert Pfeifer
Department of Geodesy and Geoinformation, TU Wien, 1040 Vienna, Austria
Michael Becht
Physical Geography, Catholic University of Eichstätt-Ingolstadt,
85072 Eichstätt, Germany
Related authors
Moritz Altmann, Madlene Pfeiffer, Florian Haas, Jakob Rom, Fabian Fleischer, Tobias Heckmann, Livia Piermattei, Michael Wimmer, Lukas Braun, Manuel Stark, Sarah Betz-Nutz, and Michael Becht
Earth Surf. Dynam., 12, 399–431, https://doi.org/10.5194/esurf-12-399-2024, https://doi.org/10.5194/esurf-12-399-2024, 2024
Short summary
Short summary
We show a long-term erosion monitoring of several sections on Little Ice Age lateral moraines with derived sediment yield from historical and current digital elevation modelling (DEM)-based differences. The first study period shows a clearly higher range of variability of sediment yield within the sites than the later periods. In most cases, a decreasing trend of geomorphic activity was observed.
Katharina Ramskogler, Bettina Knoflach, Bernhard Elsner, Brigitta Erschbamer, Florian Haas, Tobias Heckmann, Florentin Hofmeister, Livia Piermattei, Camillo Ressl, Svenja Trautmann, Michael H. Wimmer, Clemens Geitner, Johann Stötter, and Erich Tasser
Biogeosciences, 20, 2919–2939, https://doi.org/10.5194/bg-20-2919-2023, https://doi.org/10.5194/bg-20-2919-2023, 2023
Short summary
Short summary
Primary succession in proglacial areas depends on complex driving forces. To concretise the complex effects and interaction processes, 39 known explanatory variables assigned to seven spheres were analysed via principal component analysis and generalised additive models. Key results show that in addition to time- and elevation-dependent factors, also disturbances alter vegetation development. The results are useful for debates on vegetation development in a warming climate.
Benjamin Wild, Johannes Jungfleisch, and Norbert Pfeifer
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-9-2025, 1607–1614, https://doi.org/10.5194/isprs-archives-XLVIII-M-9-2025-1607-2025, https://doi.org/10.5194/isprs-archives-XLVIII-M-9-2025-1607-2025, 2025
Michael Grömer, Benjamin Wild, Camillo Ressl, Johannes Otepka, and Gottfried Mandlburger
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W10-2025, 95–100, https://doi.org/10.5194/isprs-archives-XLVIII-2-W10-2025-95-2025, https://doi.org/10.5194/isprs-archives-XLVIII-2-W10-2025-95-2025, 2025
Florian Pöppl, Andrea Spitzer, Andreas Ullrich, and Norbert Pfeifer
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W4-2025, 109–114, https://doi.org/10.5194/isprs-archives-XLVIII-1-W4-2025-109-2025, https://doi.org/10.5194/isprs-archives-XLVIII-1-W4-2025-109-2025, 2025
Martin Wieser, Geert Verhoeven, Benjamin Wild, and Norbert Pfeifer
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W8-2024, 463–470, https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-463-2024, https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-463-2024, 2024
Thirawat Bannakulpiphat, Wilfried Karel, Camillo Ressl, and Norbert Pfeifer
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W7-2024, 17–24, https://doi.org/10.5194/isprs-archives-XLVIII-2-W7-2024-17-2024, https://doi.org/10.5194/isprs-archives-XLVIII-2-W7-2024-17-2024, 2024
Günter Blöschl, Andreas Buttinger-Kreuzhuber, Daniel Cornel, Julia Eisl, Michael Hofer, Markus Hollaus, Zsolt Horváth, Jürgen Komma, Artem Konev, Juraj Parajka, Norbert Pfeifer, Andreas Reithofer, José Salinas, Peter Valent, Roman Výleta, Jürgen Waser, Michael H. Wimmer, and Heinz Stiefelmeyer
Nat. Hazards Earth Syst. Sci., 24, 2071–2091, https://doi.org/10.5194/nhess-24-2071-2024, https://doi.org/10.5194/nhess-24-2071-2024, 2024
Short summary
Short summary
A methodology of regional flood hazard mapping is proposed, based on data in Austria, which combines automatic methods with manual interventions to maximise efficiency and to obtain estimation accuracy similar to that of local studies. Flood discharge records from 781 stations are used to estimate flood hazard patterns of a given return period at a resolution of 2 m over a total stream length of 38 000 km. The hazard maps are used for civil protection, risk awareness and insurance purposes.
Reuma Arav, Camillo Ressl, Robert Weiss, Thomas Artz, and Gottfried Mandlburger
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-2024, 9–16, https://doi.org/10.5194/isprs-archives-XLVIII-2-2024-9-2024, https://doi.org/10.5194/isprs-archives-XLVIII-2-2024-9-2024, 2024
Moritz Altmann, Madlene Pfeiffer, Florian Haas, Jakob Rom, Fabian Fleischer, Tobias Heckmann, Livia Piermattei, Michael Wimmer, Lukas Braun, Manuel Stark, Sarah Betz-Nutz, and Michael Becht
Earth Surf. Dynam., 12, 399–431, https://doi.org/10.5194/esurf-12-399-2024, https://doi.org/10.5194/esurf-12-399-2024, 2024
Short summary
Short summary
We show a long-term erosion monitoring of several sections on Little Ice Age lateral moraines with derived sediment yield from historical and current digital elevation modelling (DEM)-based differences. The first study period shows a clearly higher range of variability of sediment yield within the sites than the later periods. In most cases, a decreasing trend of geomorphic activity was observed.
F. Pöppl, G. Mandlburger, and N. Pfeifer
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W3-2023, 161–166, https://doi.org/10.5194/isprs-archives-XLVIII-1-W3-2023-161-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W3-2023-161-2023, 2023
Katharina Ramskogler, Bettina Knoflach, Bernhard Elsner, Brigitta Erschbamer, Florian Haas, Tobias Heckmann, Florentin Hofmeister, Livia Piermattei, Camillo Ressl, Svenja Trautmann, Michael H. Wimmer, Clemens Geitner, Johann Stötter, and Erich Tasser
Biogeosciences, 20, 2919–2939, https://doi.org/10.5194/bg-20-2919-2023, https://doi.org/10.5194/bg-20-2919-2023, 2023
Short summary
Short summary
Primary succession in proglacial areas depends on complex driving forces. To concretise the complex effects and interaction processes, 39 known explanatory variables assigned to seven spheres were analysed via principal component analysis and generalised additive models. Key results show that in addition to time- and elevation-dependent factors, also disturbances alter vegetation development. The results are useful for debates on vegetation development in a warming climate.
B. Wild, G. Verhoeven, and N. Pfeifer
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-M-1-2023, 285–292, https://doi.org/10.5194/isprs-annals-X-M-1-2023-285-2023, https://doi.org/10.5194/isprs-annals-X-M-1-2023-285-2023, 2023
I. Cortesi, A. Masiero, N. Pfeifer, and G. Tucci
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W1-2023, 101–106, https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-101-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-101-2023, 2023
F. Pöppl, H. Teufelsbauer, A. Ullrich, and N. Pfeifer
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W1-2023, 403–410, https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-403-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-403-2023, 2023
Sarah Betz-Nutz, Tobias Heckmann, Florian Haas, and Michael Becht
Earth Surf. Dynam., 11, 203–226, https://doi.org/10.5194/esurf-11-203-2023, https://doi.org/10.5194/esurf-11-203-2023, 2023
Short summary
Short summary
The geomorphic activity of LIA lateral moraines is of high interest due to its implications for the sediment fluxes and hazards within proglacial areas. We derived multitemporal models from historical aerial images and recent drone images to investigate the morphodynamics on moraine slopes over time. We found that the highest erosion rates occur on the steepest moraine slopes, which stay active for decades, and that the slope angle explains morphodynamics better than the time since deglaciation.
Jakob Rom, Florian Haas, Tobias Heckmann, Moritz Altmann, Fabian Fleischer, Camillo Ressl, Sarah Betz-Nutz, and Michael Becht
Nat. Hazards Earth Syst. Sci., 23, 601–622, https://doi.org/10.5194/nhess-23-601-2023, https://doi.org/10.5194/nhess-23-601-2023, 2023
Short summary
Short summary
In this study, an area-wide slope-type debris flow record has been established for Horlachtal, Austria, since 1947 based on historical and recent remote sensing data. Spatial and temporal analyses show variations in debris flow activity in space and time in a high-alpine region. The results can contribute to a better understanding of past slope-type debris flow dynamics in the context of extreme precipitation events and their possible future development.
N. Homainejad, S. Zlatanova, S. M. E. Sepasgozar, and N. Pfeifer
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-4-W2-2022, 113–119, https://doi.org/10.5194/isprs-annals-X-4-W2-2022-113-2022, https://doi.org/10.5194/isprs-annals-X-4-W2-2022-113-2022, 2022
R. Arav, F. Pöppl, and N. Pfeifer
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2022, 95–102, https://doi.org/10.5194/isprs-annals-V-2-2022-95-2022, https://doi.org/10.5194/isprs-annals-V-2-2022-95-2022, 2022
N. Homainejad, S. Zlatanova, and N. Pfeifer
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-3-2022, 697–704, https://doi.org/10.5194/isprs-annals-V-3-2022-697-2022, https://doi.org/10.5194/isprs-annals-V-3-2022-697-2022, 2022
G. Verhoeven, B. Wild, J. Schlegel, M. Wieser, N. Pfeifer, S. Wogrin, L. Eysn, M. Carloni, B. Koschiček-Krombholz, A. Molada-Tebar, J. Otepka-Schremmer, C. Ressl, M. Trognitz, and A. Watzinger
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-2-W1-2022, 513–520, https://doi.org/10.5194/isprs-archives-XLVI-2-W1-2022-513-2022, https://doi.org/10.5194/isprs-archives-XLVI-2-W1-2022-513-2022, 2022
Fabian Fleischer, Florian Haas, Livia Piermattei, Madlene Pfeiffer, Tobias Heckmann, Moritz Altmann, Jakob Rom, Manuel Stark, Michael H. Wimmer, Norbert Pfeifer, and Michael Becht
The Cryosphere, 15, 5345–5369, https://doi.org/10.5194/tc-15-5345-2021, https://doi.org/10.5194/tc-15-5345-2021, 2021
Short summary
Short summary
We investigate the long-term (1953–2017) morphodynamic changes in rock glaciers in Kaunertal valley, Austria. Using a combination of historical aerial photographs and laser scanning data, we derive information on flow velocities and surface elevation changes. We observe a loss of volume and an acceleration from the late 1990s onwards. We explain this by changes in the meteorological forcing. Individual rock glaciers react to these changes to varying degrees.
A. Iglseder, M. Bruggisser, A. Dostálová, N. Pfeifer, S. Schlaffer, W. Wagner, and M. Hollaus
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 567–574, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-567-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-567-2021, 2021
J. Otepka, G. Mandlburger, W. Karel, B. Wöhrer, C. Ressl, and N. Pfeifer
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2021, 35–42, https://doi.org/10.5194/isprs-annals-V-2-2021-35-2021, https://doi.org/10.5194/isprs-annals-V-2-2021-35-2021, 2021
Kerstin Wegner, Florian Haas, Tobias Heckmann, Anne Mangeney, Virginie Durand, Nicolas Villeneuve, Philippe Kowalski, Aline Peltier, and Michael Becht
Nat. Hazards Earth Syst. Sci., 21, 1159–1177, https://doi.org/10.5194/nhess-21-1159-2021, https://doi.org/10.5194/nhess-21-1159-2021, 2021
Short summary
Short summary
In mountainous regions rockfall is a common geomorphic process. We selected four study sites that feature different rock types. High-resolution terrestrial laser scanning data were acquired to measure the block size and block shape (axial ratio) of rockfall particles on the scree deposits. Laser scanning data were also used to characterize the morphology of these landforms. Our results show that hill slope and rock particle properties govern rock particle runout in a complex manner.
Cited articles
Altmann, M., Piermattei, L., Haas, F., Heckmann, T., Fleischer, F., Rom, J.,
Betz-Nutz, S., Knoflach, B., Müller, S., Ramskogler, K., Pfeiffer, M.,
Hofmeister, F., Ressl, C., and Becht, M.: Long-Term Changes of
Morphodynamics on Little Ice Age Lateral Moraines and the Resulting Sediment
Transfer into Mountain Streams in the Upper Kauner Valley, Austria, Water,
12, 3375, https://doi.org/10.3390/w12123375, 2020.
Anderson, S. W.: Uncertainty in quantitative analyses of topographic change:
error propagation and the role of thresholding, Earth Surf. Proc. Land., 44, 1015–1033, https://doi.org/10.1002/esp.4551, 2019.
Anderson, S. W. and Shean, D.: Spatial and temporal controls on proglacial
erosion rates: A comparison of four basins on Mount Rainier, 1960 to 2017,
Earth Surf. Proc. Land., 47, 596–617, https://doi.org/10.1002/esp.5274, 2022.
Antoniazza, G., Nicollier, T., Boss, S., Mettra, F., Badoux, A., Schaefli,
B., Rickenmann, D., and Lane, S. N.: Hydrological Drivers of Bedload
Transport in an Alpine Watershed, Water Resour. Res., 58, e2021WR030663, https://doi.org/10.1029/2021WR030663, 2022.
Ashworth, P. J. and Ferguson, R. I.: Interrelationships of Channel Processes, Changes and Sediments in a Proglacial Braided River, Geogr. Ann. A, 68, 361–371, https://doi.org/10.1080/04353676.1986.11880186, 1986.
Baewert, H. and Morche, D.: Coarse sediment dynamics in a proglacial fluvial
system (Fagge River, Tyrol), Geomorphology, 218, 88–97,
https://doi.org/10.1016/j.geomorph.2013.10.021, 2014.
Bakker, M. and Lane, S. N.: Archival photogrammetric analysis of
river–floodplain systems using Structure from Motion (SfM) methods, Earth Surf. Proc. Land., 42, 1274–1286, https://doi.org/10.1002/esp.4085, 2017.
Beniston, M.: Mountain Weather and Climate: A General Overview and a Focus
on Climatic Change in the Alps, Hydrobiologia, 562, 3–16,
https://doi.org/10.1007/s10750-005-1802-0, 2006.
Bertalan, L., Eltner, A., Maddock, I., and Pizarro, A.: Chapter 10 - Monitoring river channel dynamics by Unmanned Aerial Systems, in: Unmanned Aerial Systems for Monitoring Soil, Vegetation, and Riverine Environments Elsevier, 271–292, https://doi.org/10.1016/B978-0-323-85283-8.00004-7, 2023.
Betz, S., Croce, V., and Becht, M.: Investigating morphodynamics on Little
Ice Age lateral moraines in the Italian Alps using archival aerial
photogrammetry and airborne LiDAR data, Z. Geomorphol., 62, 231–247, https://doi.org/10.1127/zfg/2019/0629, 2019.
Beylich, A. A. and Laute, K.: Sediment sources, spatiotemporal variability
and rates of fluvial bedload transport in glacier-connected steep mountain
valleys in western Norway (Erdalen and Bødalen drainage basins),
Geomorphology, 228, 552–567, https://doi.org/10.1016/j.geomorph.2014.10.018, 2015.
Buter, A., Heckmann, T., Filisetti, L., Savi, S., Mao, L., Gems, B., and
Comiti, F.: Effects of catchment characteristics and hydro-meteorological
scenarios on sediment connectivity in glacierised catchments, Geomorphology,
402, 108128, https://doi.org/10.1016/j.geomorph.2022.108128, 2022.
Calle, M., Calle, J., Alho, P., and Benito, G.: Inferring sediment transfers
and functional connectivity of rivers from repeat topographic surveys, Earth Surf. Proc. Land., 45, 681–693, https://doi.org/10.1002/esp.4765, 2020.
Carrivick, J. L. and Heckmann, T.: Short-term geomorphological evolution of
proglacial systems, Geomorphology, 287, 3–28,
https://doi.org/10.1016/j.geomorph.2017.01.037, 2017.
Carrivick, J. L. and Tweed, F. S.: Deglaciation controls on sediment yield: Towards capturing spatio-temporal variability, Earth-Sci. Rev., 221, 103809, https://doi.org/10.1016/j.earscirev.2021.103809, 2021.
Carrivick, J. L., Geilhausen, M., Warburton, J., Dickson, N. E., Carver, S.
J., Evans, A. J., and Brown, L. E.: Contemporary geomorphological activity
throughout the proglacial area of an alpine catchment, Geomorphology, 188,
83–95, https://doi.org/10.1016/j.geomorph.2012.03.029, 2013.
Carrivick, J. L., Heckmann, T., Turner, A., and Fischer, M.: An assessment
of landform composition and functioning with the first proglacial systems
dataset of the central European Alps, Geomorphology, 321, 117–128,
https://doi.org/10.1016/j.geomorph.2018.08.030, 2018.
Cavalli, M., Trevisani, S., Comiti, F., and Marchi, L.: Geomorphometric
assessment of spatial sediment connectivity in small Alpine catchments,
Geomorphology, 188, 31–41, https://doi.org/10.1016/j.geomorph.2012.05.007, 2013.
Cienciala, P., Nelson, A. D., Haas, A. D., and Xu, Z.: Lateral geomorphic
connectivity in a fluvial landscape system: Unraveling the role of
confinement, biogeomorphic interactions, and glacial legacies,
Geomorphology, 354, 107036, https://doi.org/10.1016/j.geomorph.2020.107036, 2020.
Comiti, F., Da Canal, M., Surian, N., Mao, L., Picco, L., and Lenzi, M. A.:
Channel adjustments and vegetation cover dynamics in a large gravel bed
river over the last 200years, Geomorphology, 125, 147–159,
https://doi.org/10.1016/j.geomorph.2010.09.011, 2011.
Cook, K. L., Andermann, C., Gimbert, F., Adhikari, B. R., and Hovius, N.: Glacial lake outburst floods as drivers of fluvial erosion in the Himalaya, Science, 362, 53–57, https://doi.org/10.1126/science.aat4981, 2018.
Dehecq, A., Gardner, A. S., Alexandrov, O., McMichael, S., Hugonnet, R.,
Shean, D., and Marty, M.: Automated processing of declassified KH-9 Hexagon
satellite images for global elevation change analysis since the 1970s,
Frontiers in Earth Science, 8, 566802, https://doi.org/10.3389/feart.2020.566802, 2020.
Delaney, I., Bauder, A., Huss, M., and Weidmann, Y.: Proglacial erosion rates
and processes in a glacierized catchment in the Swiss Alps, Earth Surf. Proc. Land., 43, 765–778, 2018.
Dietrich, J. T.: Bathymetric Structure-from-Motion: extracting shallow
stream bathymetry from multi-view stereo photogrammetry, Earth Surf. Proc. Land., 42, 355–364, https://doi.org/10.1002/esp.4060, 2017.
Fischer, A., Patzelt, G., and Kinzl, H.: Length changes of Austrian glaciers 1969-2016. Institut für Interdisziplinäre Gebirgsforschung der Österreichischen Akademie der Wissenschaften, Innsbruck, PANGAEA [data
set], https://doi.org/10.1594/PANGAEA.821823, 2016.
Ghuffar, S., Bolch, T., Rupnik, E., and Bhattacharya, A.: A Pipeline for
Automated Processing of Declassified Corona KH-4 (1962–1972) Stereo Imagery, IEEE T. Geosci. Remote, 60, 1–14, https://doi.org/10.1109/TGRS.2022.3200151, 2022.
Fryirs, K. and Brierley, G.: Practical applications of River Styles
Framework as a tool for catchment-wide river management: a case study from
Bega Catchment New South Wales, MacQuirie University, Auckland, NZ, ISBN 1 74138 153 3, https://riverstyles.com/wp-content/uploads/2019/05/Bega-ch-1.pdf (last access: 30 April 2023), 2005.
Fryirs, K. A.: River sensitivity: a lost foundation concept in fluvial
geomorphology, Earth Surf. Proc. Land., 42, 55–70, https://doi.org/10.1002/esp.3940, 2017.
Groh, T. and Blöthe, J. H.: Rock Glacier Kinematics in the Kaunertal,
Ötztal Alps, Austria, Geosciences, 9, 373, https://doi.org/10.3390/geosciences9090373, 2019.
Gross, G.: Der Flachenverlust der Gletscher in Osterreich 1850-1920-1969, Zeitschrift fur Gletscherkunde und Glazialgeologie, 23, 131–141, 1987.
Groß, G. and Patzelt, G.: The Austrian Glacier inventory for the Little
Ice Age maximum (GI LIA) in ArcGIS (shapefile) format, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.844987, 2015.
Gurnell, A. M., Edwards, P. J., Petts, G. E., and Ward, J. V.: A conceptual
model for alpine proglacial river channel evolution under changing climatic
conditions, CATENA, 38, 223–242, https://doi.org/10.1016/S0341-8162(99)00069-7, 2000.
Haeberli, W., Oerlemans, J., and Zemp, M.: The future of alpine glaciers and
beyond, in: Oxford Research Encyclopedia of Climate Science, https://doi.org/10.1093/acrefore/9780190228620.013.769, 2019.
Heckmann, T. and Schwanghart, W.: Geomorphic coupling and sediment connectivity in an alpine catchment – Exploring sediment cascades using graph theory, Geomorphology, 182, 89–103, https://doi.org/10.1016/j.geomorph.2012.10.033, 2013.
Heckmann, T., Hilger, L., Vehling, L., and Becht, M.: Integrating field
measurements, a geomorphological map and stochastic modelling to estimate
the spatially distributed rockfall sediment budget of the Upper Kaunertal,
Austrian Central Alps, Geomorphology, 260, 16–31,
https://doi.org/10.1016/j.geomorph.2015.07.003, 2016.
Hilger, L., Dusik, J.-M., Heckmann, T., Haas, F., Glira, P., Pfeifer, N.,
Vehling, L., Rohn, J., Morche, D., Baewert, H., Stocker-Waldhuber, M., Kuhn,
M., and Becht, M.: A Sediment Budget of the Upper Kaunertal, in:
Geomorphology of Proglacial Systems: Landform and Sediment Dynamics in
Recently Deglaciated Alpine Landscapes, edited by: Heckmann, T. and Morche,
D., Springer International Publishing, Cham, 289–312,
https://doi.org/10.1007/978-3-319-94184-4_17, 2019.
Hock, R., Rasul, G., Adler, C., Cáceres, B., Gruber, S., Hirabayashi,
Y., Jackson, M., Kääb, A., Kang, S., Kutuzov, S. and Milner, A.:
Chapter 2 - High mountain areas, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 131–202, https://doi.org/10.1017/9781009157964.004, 2019.
Höhle, J. and Höhle, M.: Accuracy assessment of digital elevation
models by means of robust statistical methods, ISPRS J. Photogramm., 64, 398–406, https://doi.org/10.1016/j.isprsjprs.2009.02.003, 2009.
Huss, M. and Hock, R.: Global-scale hydrological response to future glacier
mass loss, Nat. Clim. Change, 8, 135–140, https://doi.org/10.1038/s41558-017-0049-x, 2018.
Hussain, M. and Mahmud, I.: pyMannKendall: a python package for non
parametric Mann Kendall family of trend tests, Journal of Open Source
Software, 4, 1556, https://doi.org/10.21105/joss.01556, 2019.
Kendall, M. G.: Rank Correlation Methods, Oxford University Press, New York, NY, 1975.
Knight, J. and Harrison, S.: Transience in cascading paraglacial systems,
Land Degrad. Dev., 29, 1991–2001, https://doi.org/10.1002/ldr.2994, 2018.
Knuth, F., Shean, D., Bhushan, S., Schwat, E., Alexandrov, O., McNeil, C.,
Dehecq, A., Florentine, C., and O'Neel, S.: Historical Structure from Motion
(HSfM): Automated processing of historical aerial photographs for long-term
topographic change analysis. Remote Sens. Environ., 285, 113379,
https://doi.org/10.1016/j.rse.2022.113379, 2023.
Lane, S. N. and Nienow, P. W.: Decadal‐scale climate forcing of alpine glacial hydrological systems, Water Resour. Res., 55, 2478–2492, https://doi.org/10.1029/2018WR024206, 2019.
Lane, S. N., Bakker, M., Gabbud, C., Micheletti, N., and Saugy, J. N.: Sediment export, transient landscape response and catchment-scale connectivity following rapid climate warming and Alpine glacier recession, Geomorphology, 277, 210–227, https://doi.org/10.1016/j.geomorph.2016.02.015, 2017.
Lane, S. N., Gentile, A., and Goldenschue, L.: Combining UAV-Based SfM-MVS
Photogrammetry with Conventional Monitoring to Set Environmental Flows:
Modifying Dam Flushing Flows to Improve Alpine Stream Habitat, Remote
Sens.-Basel, 12, 3868, https://doi.org/10.3390/rs12233868, 2020.
Leggat, M. S., Owens, P. N., Stott, T. A., Forrester, B. J., Déry, S.
J., and Menounos, B.: Hydro-meteorological drivers and sources of suspended
sediment flux in the pro-glacial zone of the retreating Castle Creek Glacier, Cariboo Mountains, British Columbia, Canada, Earth Surf. Proc. Land., 40, 1542–1559, https://doi.org/10.1002/esp.3755, 2015.
Leyland, J., Hackney, C. R., Darby, S. E., Parsons, D. R., Best, J. L.,
Nicholas, A. P., Aalto, R., and Lague, D.: Extreme flood-driven fluvial bank
erosion and sediment loads: direct process measurements using integrated
Mobile Laser Scanning (MLS) and hydro-acoustic techniques, Earth Surf. Proc. Land., 42, 334–346, https://doi.org/10.1002/esp.4078, 2017.
Liébault, F. and Piégay, H.: Causes of 20th century channel narrowing in mountain and piedmont rivers of southeastern France, Earth Surf. Proc. Land., 27, 425–444, https://doi.org/10.1002/esp.328, 2002.
Llena, M., Vericat, D., Martínez-Casasnovas, J. A., and Smith, M. W.: Geomorphic adjustments to multi-scale disturbances in a mountain river: A
century of observations, CATENA, 192, 104584, https://doi.org/10.1016/j.catena.2020.104584, 2020.
Mann, H. B.: Nonparametric tests against trend, Econometrica, 13, 245–259,
https://doi.org/10.2307/1907187, 1945.
Mao, L., Cavalli, M., Comiti, F., Marchi, L., Lenzi, M. A., and Arattano, M.: Sediment transfer processes in two Alpine catchments of contrasting
morphological settings, J. Hydrol., 364, 88–98, https://doi.org/10.1016/j.jhydrol.2008.10.021, 2009.
Marchese, E., Scorpio, V., Fuller, I., McColl, S., and Comiti, F.:
Morphological changes in Alpine rivers following the end of the Little Ice
Age, Geomorphology, 295, 811–826, https://doi.org/10.1016/j.geomorph.2017.07.018, 2017.
Marren, P. M. and Toomath, S. C.: Channel pattern of proglacial rivers:
topographic forcing due to glacier retreat, Earth Surf. Proc. Land., 39, 943–951, https://doi.org/10.1002/esp.3545, 2014.
Maurer, J. and Rupper, S.: Tapping into the Hexagon spy imagery database: A
new automated pipeline for geomorphic change detection, ISPRS J. Photogramm., 108, 113-127, https://doi.org/10.1016/j.isprsjprs.2015.06.008, 2015.
Micheletti, N., Lane, S. N., and Chandler, J. H.: Application of archival
aerial photogrammetry to quantify climate forcing of alpine landscapes, The
Photogramm. Rec., 30, 143–165, https://doi.org/10.1111/phor.12099, 2015.
Milan, D. J., Heritage, G. L., and Hetherington, D.: Application of a 3D
laser scanner in the assessment of erosion and deposition volumes and
channel change in a proglacial river, Earth Surf. Proc. Land., 32, 1657–1674, https://doi.org/10.1002/esp.1592, 2007.
O'Farrell, C. R., Heimsath, A. M., Lawson, D. E., Jorgensen, L. M., Evenson,
E. B., Larson, G., and Denner, J.: Quantifying periglacial erosion: insights
on a glacial sediment budget, Matanuska Glacier, Alaska, Earth Surf. Proc. Land., 34, 2008–2022, https://doi.org/10.1002/esp.1885, 2009.
Orwin, J. F. and Smart, C. C.: Short-term spatial and temporal patterns of
suspended sediment transfer in proglacial channels, small River Glacier,
Canada, Hydrol. Process., 18, 1521–1542, https://doi.org/10.1002/hyp.1402, 2004.
Pfeifer, N., Mandlburger, G., Otepka, J., and Karel, W.: OPALS – A framework
for Airborne Laser Scanning data analysis, Comput. Environ. Urban, 45, 125–136, https://doi.org/10.1016/j.compenvurbsys.2013.11.002, 2014.
Rickenmann, D. and Koschni, A.: Sediment loads due to fluvial transport and
debris flows during the 2005 flood events in Switzerland, Hydrol. Process., 24, 993–1007, https://doi.org/10.1002/hyp.7536, 2010.
Savi, S., Buter, A., Heckmann, T., Theule, J., Mao, L., and Comiti, F.:
Multi-temporal analysis of morphological changes in an Alpine proglacial
area and their effect on sediment transfer, CATENA, 220, 106701, https://doi.org/10.1016/j.catena.2022.106701, 2023.
Schaefli, B., Manso, P., Fischer, M., Huss, M., and Farinotti, D.: The role of glacier retreat for Swiss hydropower production, Renew. Energ., 132, 615–627, https://doi.org/10.1016/j.renene.2018.07.104, 2019.
Schiefer, E. and Gilbert, R.: Reconstructing morphometric change in a
proglacial landscape using historical aerial photography and automated DEM
generation, Geomorphology, 88, 167–178, https://doi.org/10.1016/j.geomorph.2006.11.003, 2007.
Schöber, J. and Hofer, B.: The Sediment Budget of the Glacial Streams in
the Catchment Area of the Gepatsch Reservoir in the Ötztal Alps in the
Period 1965–2015*, in: Twenty-Sixth International Congress on Large Dams/Vingt-Sixième Congrès International des Grands Barrages, CRC Press, ISBN 9780429465086, 2018.
Scorpio, V., Cavalli, M., Steger, S., Crema, S., Marra, F., Zaramella, M.,
Borga, M., Marchi, L., and Comiti, F.: Storm characteristics dictate sediment
dynamics and geomorphic changes in mountain channels: A case study in the
Italian Alps, Geomorphology, 403, 108173, https://doi.org/10.1016/j.geomorph.2022.108173, 2022.
SEHAG consortium: SEHAG – SEnsitivity of High Alpine Geosystems to climate change since c. 1850, SEHAG consortium, https://sehag.ku.de/, last access: 30 April 2023.
Stark, M., Rom, J., Haas, F., Piermattei, L., Fleischer, F., Altmann, M., and
Becht, M.: Long-term assessment of terrain changes and calculation of
erosion rates in an alpine catchment based on SfM-MVS processing of historical aerial images. How camera information and processing strategy
affect quantitative analysis, Journal of Geomorphology, 1, 43–77, https://doi.org/10.1127/jgeomorphology/2022/0755, 2022.
Starkel, L.: Change in the frequency of extreme events as the indicator of
climatic change in the Holocene (in fluvial systems), Quatern. Int., 91, 25–32, https://doi.org/10.1016/S1040-6182(01)00099-4, 2002.
Turley, M., Hassan, M. A., and Slaymaker, O.: Quantifying sediment
connectivity: Moving toward a holistic assessment through a mixed methods
approach, Earth Surf. Proc. Land., 46, 2501–2519, https://doi.org/10.1002/esp.5191, 2021.
Vericat, D., Wheaton, J. M., and Brasington, J.: Revisiting the Morpho-logical Approach: Opportunities and Challenges with Repeat High‐Resolution Topography, in: Gravel‐bed rivers: Processes and disasters, 1st edn., edited by: Tsutsumi D. and Laronne J. B., John Wiley and Sons, Ltd. Chichester, UK, 121–158, https://doi.org/10.1002/9781118971437.ch5, 2017.
Wainwright, J., Turnbull, L., Ibrahim, T. G., Lexartza-Artza, I., Thornton,
S. F., and Brazier, R. E.: Linking environmental regimes, space and time:
Interpretations of structural and functional connectivity, Geomorphology,
126, 387–404, https://doi.org/10.1016/j.geomorph.2010.07.027, 2011.
WGMS: Global Glacier Change Bulletin No. 4 (2018-2019), edited by: Zemp, M., Nussbaumer, S. U., Gärtner-Roer, I., Bannwart, J., Paul, F., and Hoelzle, M., ISC (WDS)/IUGG (IACS)/UNEP/UNESCO/WMO, World Glacier Monitoring Service, Zurich, Switzerland, 278 pp., based on database version https://doi.org/10.5904/wgms-fog-2021-05, 2021.
Zemp, M., Kääb, A., Hoelzle, M., and Haeberli, W.: GIS-based
modelling of glacial sediment balance, Z. Geomorphol., 138, 113–129, https://doi.org/10.5167/uzh-40580, 2005.
Zemp, M., Paul, F., Hoelzle, M., and Haeberli, W.: Glacier fluctuations in the European Alps 1850–2000: an overview and spatiotemporal analysis of available data, in: The darkening peaks: Glacial retreat in scientific and social context, edited by: Orlove, B., Wiegandt, E., and Luckman, B. H., University of California Press, 152–167, ISBN: 9780520253056, 2008.
Zhang, T., Li, D., East, A. E., Walling, D. E., Lane, S., Overeem, I., Beylich, A. A., Koppes, M., and Lu, X.: Warming-driven erosion and sediment transport in cold regions, Nature Reviews Earth & Environment, 3, 832–851, https://doi.org/10.1038/s43017-022-00362-0, 2022.
Short summary
Alpine rivers have experienced strong changes over the last century. In the present study, we explore the potential of historical multi-temporal elevation models, combined with recent topographic data, to quantify 66 years (from 1953 to 2019) of river changes in the glacier forefield of an Alpine catchment. Thereby, we quantify the changes in the river form as well as the related sediment erosion and deposition.
Alpine rivers have experienced strong changes over the last century. In the present study, we...