Articles | Volume 11, issue 3
https://doi.org/10.5194/esurf-11-511-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-11-511-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Feedbacks between the formation of secondary minerals and the infiltration of fluids into the regolith of granitic rocks in different climatic zones (Chilean Coastal Cordillera)
Ferdinand J. Hampl
CORRESPONDING AUTHOR
Department of Applied Geochemistry, Technische Universität Berlin,
Ernst-Reuter-Platz 1, 10587 Berlin, Germany
Ferry Schiperski
Department of Applied Geochemistry, Technische Universität Berlin,
Ernst-Reuter-Platz 1, 10587 Berlin, Germany
Christopher Schwerdhelm
Geomicrobiology Group, Eberhard Karl University of Tübingen,
Schnarrenbergstrasse 94–96, 72076 Tübingen, Germany
Nicole Stroncik
Earth Surface Geochemistry, GFZ German Research Centre for
Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Casey Bryce
School of Earth Sciences, University of Bristol, Wills Memorial
Building, Queens Road, Bristol BS8 1RJ, United Kingdom
Friedhelm von Blanckenburg
Earth Surface Geochemistry, GFZ German Research Centre for
Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Institute of Geological Sciences, Freie Universität
Berlin, Malteserstrasse 74–100, 12249 Berlin, Germany
Thomas Neumann
Department of Applied Geochemistry, Technische Universität Berlin,
Ernst-Reuter-Platz 1, 10587 Berlin, Germany
Related authors
No articles found.
Rahmantara Trichandi, Klaus Bauer, Trond Ryberg, Benjamin Heit, Jaime Araya Vargas, Friedhelm von Blanckenburg, and Charlotte M. Krawczyk
Earth Surf. Dynam., 12, 747–763, https://doi.org/10.5194/esurf-12-747-2024, https://doi.org/10.5194/esurf-12-747-2024, 2024
Short summary
Short summary
This study investigates subsurface weathering zones, revealing their structure through shear wave velocity variations. The research focuses on the arid climate of Pan de Azúcar National Park, Chile, using seismic ambient noise recordings to construct pseudo-3D models. The resulting models show the subsurface structure, including granite gradients and mafic dike intrusions. Comparison with other sites emphasizes the intricate relationship between climate, geology, and weathering depth.
Daniel A. Frick, Rainer Remus, Michael Sommer, Jürgen Augustin, Danuta Kaczorek, and Friedhelm von Blanckenburg
Biogeosciences, 17, 6475–6490, https://doi.org/10.5194/bg-17-6475-2020, https://doi.org/10.5194/bg-17-6475-2020, 2020
Short summary
Short summary
Silicon is taken up by some plants to increase structural stability and to develop stress resistance and is rejected by others. To explore the underlying mechanisms, we used the stable isotopes of silicon that shift in their relative abundance depending on the biochemical transformation involved. On species with a rejective (tomato, mustard) and active (wheat) uptake mechanism, grown in hydroculture, we found that the transport of silicic acid is controlled by the precipitation of biogenic opal.
Travis Clow, Jane K. Willenbring, Mirjam Schaller, Joel D. Blum, Marcus Christl, Peter W. Kubik, and Friedhelm von Blanckenburg
Geochronology, 2, 411–423, https://doi.org/10.5194/gchron-2-411-2020, https://doi.org/10.5194/gchron-2-411-2020, 2020
Short summary
Short summary
Meteoric beryllium-10 concentrations in soil profiles have great capacity to quantify Earth surface processes, such as erosion rates and landform ages. However, determining these requires an accurate estimate of the delivery rate of this isotope to local sites. Here, we present a new method to constrain the long-term delivery rate to an eroding western US site, compare it against existing delivery rate estimates (revealing considerable disagreement between methods), and suggest best practices.
Ralf A. Oeser and Friedhelm von Blanckenburg
Biogeosciences, 17, 4883–4917, https://doi.org/10.5194/bg-17-4883-2020, https://doi.org/10.5194/bg-17-4883-2020, 2020
Short summary
Short summary
We present a novel strategy to decipher the relative impact of biogenic and abiotic drivers of weathering. We parameterized the nutrient fluxes in four ecosystems along a climate and vegetation gradient situated on the Chilean Coastal Cordillera. We investigated how nutrient demand by plants drives weathering. We found that the increase in biomass nutrient demand is accommodated by faster nutrient recycling rather than an increase in the weathering–release rates.
Renee van Dongen, Dirk Scherler, Hella Wittmann, and Friedhelm von Blanckenburg
Earth Surf. Dynam., 7, 393–410, https://doi.org/10.5194/esurf-7-393-2019, https://doi.org/10.5194/esurf-7-393-2019, 2019
Short summary
Short summary
The concentration of cosmogenic 10Be is typically measured in the sand fraction of river sediment to estimate catchment-average erosion rates. Using the sand fraction in catchments where the 10Be concentrations differ per grain size could potentially result in biased erosion rates. In this study we investigated the occurrence and causes of grain size-dependent 10Be concentrations and identified the types of catchments which are sensitive to biased catchment-average erosion rates.
Jean L. Dixon, Friedhelm von Blanckenburg, Kurt Stüwe, and Marcus Christl
Earth Surf. Dynam., 4, 895–909, https://doi.org/10.5194/esurf-4-895-2016, https://doi.org/10.5194/esurf-4-895-2016, 2016
Short summary
Short summary
We quantify the glacial legacy of Holocene erosion at the eastern edge of the European Alps and add insight to the debate on drivers of Alpine erosion. We present the first data explicitly comparing 10Be-based erosion rates in previously glaciated and non-glaciated basins (n = 26). Erosion rates vary 5-fold across the region, correlating with local topography and glacial history. Our approach and unique study site allow us to isolate the role of glacial topographic legacies from other controls.
S. Emmanuel, J. A. Schuessler, J. Vinther, A. Matthews, and F. von Blanckenburg
Biogeosciences, 11, 5493–5502, https://doi.org/10.5194/bg-11-5493-2014, https://doi.org/10.5194/bg-11-5493-2014, 2014
Related subject area
Chemical: Chemical weathering
Mineral surface area in deep weathering profiles reveals the interrelationship of iron oxidation and silicate weathering
The effect of lithology on the relationship between denudation rate and chemical weathering pathways – evidence from the eastern Tibetan Plateau
Aging of basalt volcanic systems and decreasing CO2 consumption by weathering
Impact of different fertilizers on carbonate weathering in a typical karst area, Southwest China: a field column experiment
Impact of sediment–seawater cation exchange on Himalayan chemical weathering fluxes
Short Communication: Evidence for non-Gaussian distribution of rock weathering rates
Beth A. Fisher, Kyungsoo Yoo, Anthony K. Aufdenkampe, Edward A. Nater, Joshua M. Feinberg, and Jonathan E. Nyquist
Earth Surf. Dynam., 11, 51–69, https://doi.org/10.5194/esurf-11-51-2023, https://doi.org/10.5194/esurf-11-51-2023, 2023
Short summary
Short summary
We measured the surface area of minerals in two 21 m cores from soil to bedrock to test hypotheses on the formation of the surface area of weathered rock. A sharp increase in high-surface-area secondary minerals extended from 3 m to the ground surface. Half the total surface area was from corroded iron minerals, which form in the presence of oxygen, even though corroded iron comprised less than 0.1 % of the rock. Element removal by rock dissolution started at 7 m but did not form new minerals.
Aaron Bufe, Kristen L. Cook, Albert Galy, Hella Wittmann, and Niels Hovius
Earth Surf. Dynam., 10, 513–530, https://doi.org/10.5194/esurf-10-513-2022, https://doi.org/10.5194/esurf-10-513-2022, 2022
Short summary
Short summary
Erosion modulates Earth's carbon cycle by exposing a variety of lithologies to chemical weathering. We measured water chemistry in streams on the eastern Tibetan Plateau that drain either metasedimentary or granitoid rocks. With increasing erosion, weathering shifts from being a CO2 sink to being a CO2 source for both lithologies. However, metasedimentary rocks typically weather 2–10 times faster than granitoids, with implications for the role of lithology in modulating the carbon cycle.
Janine Börker, Jens Hartmann, Gibran Romero-Mujalli, and Gaojun Li
Earth Surf. Dynam., 7, 191–197, https://doi.org/10.5194/esurf-7-191-2019, https://doi.org/10.5194/esurf-7-191-2019, 2019
Chao Song, Changli Liu, Guilin Han, and Congqiang Liu
Earth Surf. Dynam., 5, 605–616, https://doi.org/10.5194/esurf-5-605-2017, https://doi.org/10.5194/esurf-5-605-2017, 2017
Maarten Lupker, Christian France-Lanord, and Bruno Lartiges
Earth Surf. Dynam., 4, 675–684, https://doi.org/10.5194/esurf-4-675-2016, https://doi.org/10.5194/esurf-4-675-2016, 2016
Short summary
Short summary
Rivers export the products of continental weathering to the oceans. It is important to accurately constrain these fluxes to better understand global biogeochemical cycles. The riverine export of major cation species in particular contributes to regulate the long-term carbon cycle. In this work we quantify some additional fluxes to the ocean that may occur when solid sediments react with seawater in estuaries. These fluxes have been only poorly constrained so far.
S. Emmanuel
Earth Surf. Dynam., 3, 441–445, https://doi.org/10.5194/esurf-3-441-2015, https://doi.org/10.5194/esurf-3-441-2015, 2015
Short summary
Short summary
This study shows that the weathering rates of limestone, determined from of an ancient eroded edifice, can exhibit highly non-Gaussian behavior. Moreover, the asymmetric long-tailed curve was found to have similar characteristics to those of rate distributions measured on microscopic regions of limestone surfaces in laboratory experiments. Such similar behavior could reflect analogous chemical and mechanical weathering mechanisms operating over a range of spatial and temporal scales.
Cited articles
Anderson, S., Dietrich, W., and Brimhall, G.: Weathering profiles,
mass-balance analysis, and rates of solute loss: Linkages between weathering
and erosion in a small, steep catchment, Geol. Soc. Am. Bull., 114,
1143–1158, https://doi.org/10.1130/0016-7606(2002)114<1143:WPMBAA>2.0.CO;2, 2002.
Anovitz, L. M., Cheshire, M. C., Hermann, R. P., Gu, X., Sheets, J. M.,
Brantley, S. L., Cole, D. R., Ilton, E. S., Mildner, D. F. R., Gagnon, C.,
Allard, L. F., and Littrell, K. C.: Oxidation and associated pore structure
modification during experimental alteration of granite, Geochim. Cosmochim.
Ac., 292, 532–556, https://doi.org/10.1016/j.gca.2020.08.016, 2021.
Bandstra, J. Z., Buss, H. L., Campen, R. K., Liermann, L. J., Moore, J.,
Hausrath, E. M., Navarre-Sitchler, A. K., Jang, J.-H., and Brantley, S. L.:
Compilation of mineral dissolution rates, in: Kinetics of Water-Rock
Interaction, edited by: Brantley, S. L., Kubicki, J. D., and White, A. F.,
Springer New York, 737–823, https://doi.org/10.1007/978-0-387-73563-4,
2008.
Bazilevskaya, E., Lebedeva, M., Pavich, M., Rother, G., Parkinson, D. Y.,
Cole, D., and Brantley, S. L.: Where fast weathering creates thin regolith
and slow weathering creates thick regolith, Earth Surf. Proc. Land., 38,
847–858, https://doi.org/10.1002/esp.3369, 2013.
Bazilevskaya, E., Rother, G., Mildner, D. F., Pavich, M., Cole, D., Bhatt,
M. P., Jin, L., Steefel, C. I., and Brantley, S. L.: How Oxidation and
Dissolution in Diabase and Granite Control Porosity during Weathering, Soil
Sci. Soc. Am. J., 79, 55–73, https://doi.org/10.2136/sssaj2014.04.0135,
2015.
Behrens, R., Bouchez, J., Schuessler, J. A., Dultz, S., Hewawasam, T., and
von Blanckenburg, F.: Mineralogical transformations set slow weathering
rates in low-porosity metamorphic bedrock on mountain slopes in a tropical
climate, Chem. Geol., 411, 283–298,
https://doi.org/10.1016/j.chemgeo.2015.07.008, 2015.
Behrens, R., Wirth, R., and von Blanckenburg, F.: Rate limitations of
nano-scale weathering front advance in the slow-eroding Sri Lankan
Highlands, Geochim. Cosmochim. Ac., 311, 174–197,
https://doi.org/10.1016/j.gca.2021.06.003, 2021.
Bernhard, N., Moskwa, L.-M., Schmidt, K., Oeser, R. A., Aburto, F., Bader,
M. Y., Baumann, K., von Blanckenburg, F., Boy, J., van den Brink, L.,
Brucker, E., Büdel, B., Canessa, R., Dippold, M. A., Ehlers, T. A.,
Fuentes, J. P., Godoy, R., Jung, P., Karsten, U., Köster, M., Kuzyakov,
Y., Leinweber, P., Neidhardt, H., Matus, F., Mueller, C. W., Oelmann, Y.,
Oses, R., Osses, P., Paulino, L., Samolov, E., Schaller, M., Schmid, M.,
Spielvogel, S., Spohn, M., Stock, S., Stroncik, N., Tielbörger, K.,
Übernickel, K., Scholten, T., Seguel, O., Wagner, D., and Kühn, P.:
Pedogenic and microbial interrelations to regional climate and local
topography: New insights from a climate gradient (arid to humid) along the
Coastal Cordillera of Chile, CATENA, 170, 335–355,
https://doi.org/10.1016/j.catena.2018.06.018, 2018.
Buss, H. L., Sak, P. B., Webb, S. M., and Brantley, S. L.: Weathering of the
Rio Blanco quartz diorite, Luquillo mountains, Puerto Rico: coupling
oxidation, dissolution, and fracturing, Geochim. Cosmochim. Ac., 72,
4488–4507, https://doi.org/10.1016/j.gca.2008.06.020, 2008.
Chesworth, W., Camps Arbestain, M., Macías, F., Spaargaren, O., Spaargaren, O., Mualem, Y., Morel-Seytoux, H. J., Horwath, W. R., Almendros, G., Chesworth, W., Grossl, P. R., Sparks, D. L., Spaargaren, O., Fairbridge, R. W., Singer, A., Eswaran, H., Micheli, E., Spaargaren, O., Huang, P. M., and Singer, A.: Clay Mineral Formation, in: Encyclopedia of Soil
Science, Encyclopedia of Earth Sciences Series, edited by: Chesworth, W.,
Springer, Dordrecht, Figure C51, https://doi.org/10.1007/978-1-4020-3995-9_108, 2008.
Dawson, T. E., Hahm, W. J., and Crutchfield-Peters, K.: Digging deeper: what
the critical zone perspective adds to the study of plant ecophysiology, New
Phytol., 226, 666–671, https://doi.org/10.1111/nph.16410, 2020.
Deckart, K., Hervé, F., Fanning, C., Ramírez, V., Calderón, M.,
and Godoy, E.: U-Pb Geochronology and Hf-O Isotopes of zircons from the
Pennsylvanian Coastal Batholith, South-Central Chile, Andean Geol., 41,
49–82, https://doi.org/10.5027/andgeoV41n1-a03, 2013.
Drever, J. I.: The effect of land plants on weathering rates of silicate
minerals, Geochim. Cosmochim. Ac., 58, 2325–2332,
https://doi.org/10.1016/0016-7037(94)90013-2, 1994.
Dunn, J. R. and Hudec, P. P.: Water, Clay and Rock Soundness, Ohio J. Sci.,
66, 153–168, 1966.
Ferraris, F.: Hoja Los Angeles – Angol, Escala: 1:250 000, Carta
Geológica de Chile N∘ 5 (Preliminar), Instituto de
Investigaciones Geológicas, OCLC number: 1024799672, 1979.
Ferré, E., Michelsen, K., Ernst, W., Boyd, J., and Cañón-Tapia,
E.: Vertical zonation of the Barcroft granodiorite, White Mountains,
California: Implications for magmatic processes, Am. Mineral., 97,
1049–1059, https://doi.org/10.2138/am.2012.4013, 2012.
Fimmen, R., Richter, D., Vasudevan, D., Williams, M., and West, L.:
Rhizogenic Fe-C redox cycling: A hypothetical biogeochemical mechanism that
drives crustal weathering in upland soils, Biogeochemistry, 87, 127–141,
https://doi.org/10.1007/s10533-007-9172-5, 2008.
Fletcher, R. C., Buss, H. L., and Brantley, S. L.: A spheroidal weathering
model coupling porewater chemistry to soil thicknesses during steady-state
denudation, Earth Planet. Sc. Lett., 244, 444–457,
https://doi.org/10.1016/j.epsl.2006.01.055, 2006.
Gana, P., Wall, R., and Gutiérrez, A.: Mapa geológico del área
de Valparaiso-Curacavi, Región de Valparaiso y Región Metropolitana,
Mapas Geológicos, N∘ 1, Escala 1:100 000, Servicio Nacional de
Geologia y Mineria (Chile), OCLC number: 43901854, 1996.
Gerrits, R., Pokharel, R., Breitenbach, R., Radnik, J., Feldmann, I.,
Schuessler, J. A., von Blanckenburg, F., Gorbushina, A. A., and Schott, J.:
How the rock-inhabiting fungus K. petricola A95 enhances olivine dissolution
through attachment, Geochim. Cosmochim. Ac., 282, 76–97,
https://doi.org/10.1016/j.gca.2020.05.010, 2020.
Gerrits, R., Wirth, R., Schreiber, A., Feldmann, I., Knabe, N., Schott, J.,
Benning, L. G., and Gorbushina, A. A.: High-resolution imaging of fungal
biofilm-induced olivine weathering, Chem. Geol., 559, 119902,
https://doi.org/10.1016/j.chemgeo.2020.119902, 2021.
Glodny, J., Echtler, H., Collao, S., Ardiles, M., Buron, P., and Figueroa,
O.: Differential Late Paleozoic active margin evolution in South-Central
Chile (37–40∘ S) – the Lanalhue Fault Zone, J. S.
Am. Earth Sci., 26, 397–411, https://doi.org/10.1016/j.jsames.2008.06.001,
2008a.
Glodny, J., Gräfe, K., Echtler, H., and Rosenau, M.: Mesozoic to
Quaternary continental margin dynamics in south-central Chile
(36–42∘ S): The apatite and zircon fission track perspective,
Int. J. Earth Sci., 97, 1271–1291,
https://doi.org/10.1007/s00531-007-0203-1, 2008b.
Goodfellow, B. W., Hilley, G. E., Webb, S. M., Sklar, L. S., Moon, S., and
Olson, C. A.: The chemical, mechanical, and hydrological evolution of
weathering granitoid, J. Geophys. Res.-Earth, 121, 1410–1435,
https://doi.org/10.1002/2016JF003822, 2016.
Hampl, F. J., Schiperski, F., Byrne, J. M., Schwerdhelm, C., Kappler, A.,
Bryce, C., von Blanckenburg, F., and Neumann, T.: The role of iron-bearing
minerals for the deep weathering of a hydrothermally altered plutonic rock
in semi-arid climate (Chilean Coastal Cordillera), Chem. Geol., 604, 120922,
https://doi.org/10.1016/j.chemgeo.2022.120922, 2022a.
Hampl, F. J., Schiperski, F., Schwerdhelm, C., Stroncik, N., Bryce, C., von
Blanckenburg, F., and Neumann, T.: Mineralogical and geochemical data of two
weathering profiles in a Mediterranean and a humid climate region of the
Chilean Coastal Cordillera, GFZ Data Services [data set],
https://doi.org/10.5880/fidgeo.2022.035, 2022b.
Hayes, N. R., Buss, H. L., Moore, O. W., Krám, P., and Pancost, R. D.:
Controls on granitic weathering fronts in contrasting climates, Chem. Geol.,
535, 119450, https://doi.org/10.1016/j.chemgeo.2019.119450, 2020.
Hellmann, R., Wirth, R., Daval, D., Barnes, J.-P., Penisson, J.-M.,
Tisserand, D., Epicier, T., Florin, B., and Hervig, R. L.: Unifying natural
and laboratory chemical weathering with interfacial
dissolution–reprecipitation: A study based on the nanometer-scale chemistry
of fluid–silicate interfaces, Chem. Geol., 294–295, 203–216,
https://doi.org/10.1016/j.chemgeo.2011.12.002, 2012.
Hervé, F.: Petrology of the crystalline basement of the Nahuelbuta
Mountains, southcentral Chile, in: Comparative Studies on the Geology of the
Circum-Pacific Orogenic Belt in Japan and Chile, edited by: Ishikawa, T.
and Aguirre, I., Japan Society for the Promotion of Science, Tokyo, 1–51,
1977.
Holbrook, S., Marcon, V., Bacon, A., Brantley, S., Carr, B., Flinchum, B.,
Richter, D., and Riebe, C.: Links between physical and chemical weathering
inferred from a 65-m-deep borehole through Earth's critical zone, Sci.
Rep.-UK, 9, 4495, https://doi.org/10.1038/s41598-019-40819-9, 2019.
Holmgren, G. G. S.: A Rapid Citrate-Dithionite Extractable Iron Procedure,
Soil Sci. Soc. Am. J., 31, 210–211,
https://doi.org/10.2136/sssaj1967.03615995003100020020x, 1967.
Hynek, S., Comas, X., and Brantley, S. L.: The effect of fractures on
weathering of igneous and volcaniclastic sedimentary rocks in the Puerto
Rican tropical rain forest, Proced. Earth Plan. Sc., 17, 972–975,
https://doi.org/10.1016/j.proeps.2017.01.001, 2017.
Israeli, Y., Salhov, E., and Emmanuel, S.: Impact of textural patterns on
modeled rock weathering rates and size distribution of weathered grains,
Earth Surf. Proc. Land., 46, 1177–1187, https://doi.org/10.1002/esp.5093,
2021.
Jiménez-González, I., Rodríguez-Navarro, C., and Scherer, G.
W.: Role of clay minerals in the physicomechanical deterioration of
sandstone, J. Geophys. Res., 113, F02021,
https://doi.org/10.1029/2007JF000845, 2008.
Jobbágy, E. G. and Jackson, R. B.: The uplift of soil nutrients by
plants: biogeochemical consequences across scales, Ecology, 85, 2380–2389,
https://doi.org/10.1890/03-0245, 2004.
Kim, H., Stinchcomb, G., and Brantley, S.: Feedbacks among O2 and
CO2 in deep soil gas, oxidation of ferrous minerals, and fractures: A
hypothesis for steady-state regolith thickness, Earth Planet. Sc. Lett.,
460, 29–40, https://doi.org/10.1016/j.epsl.2016.12.003, 2017.
Kogure, T. and Banfield, J. F.: New insights into the mechanism for
chloritization of biotite using polytype analysis, Am. Mineral., 85,
1202–1208, https://doi.org/10.2138/am-2000-8-913, 2000.
Krone, L. V., Hampl, F. J., Schwerdhelm, C., Bryce, C., Ganzert, L., Kitte,
A., Übernickel, K., Dielforder, A., Aldaz, S., Oses-Pedraza, R., Perez,
J. P. H., Sanchez-Alfaro, P., Wagner, D., Weckmann, U., and von
Blanckenburg, F.: Deep weathering in the semi-arid Coastal Cordillera,
Chile, Sci. Rep.-UK, 11, 13057, https://doi.org/10.1038/s41598-021-90267-7,
2021.
Lawrence, C., Harden, J., and Maher, K.: Modeling the influence of organic
acids on soil weathering, Geochim. Cosmochim. Ac., 139, 487–507,
https://doi.org/10.1016/j.gca.2014.05.003, 2014.
Lebedeva, M. I. and Brantley, S. L.: Exploring an “ideal hill”: how
lithology and transport mechanisms affect the possibility of a steady state
during weathering and erosion, Earth Surf. Proc. Land., 45, 652–665,
https://doi.org/10.1002/esp.4762, 2020.
Lebedeva, M. I., Fletcher, R. C., Balashov, V. N., and Brantley, S. L.: A
reactive diffusion model describing transformation of bedrock to saprolite,
Chem. Geol., 244, 624–645, https://doi.org/10.1016/j.chemgeo.2007.07.008,
2007.
Lohse, K. A. and Dietrich, W. E.: Contrasting effects of soil development
on hydrological properties and flow paths, Water Resour. Res., 41, W12419,
https://doi.org/10.1029/2004WR003403, 2005.
Lucas, Y.: The Role of Plants in Controlling Rates and Products of
Weathering: Importance of Biological Pumping, Annu. Rev. Earth Pl. Sc., 29,
135–163, https://doi.org/10.1146/annurev.earth.29.1.135, 2001.
Luebert, F. and Pliscoff, P.: Sinópsis bioclimática y vegetacional
de Chile, Editorial Universitaria, Santiago de Chile, ISBN 956-11-1832-7,
2006.
Maher, K.: The dependence of chemical weathering rates on fluid residence
time, Earth Planet. Sc. Lett., 294, 101–110, https://doi.org/10.1016/j.epsl.2010.03.010,
2010.
McKeague, J. A. and Day, J. H.: Dithionite- and oxalate-extractable Fe and
Al as aids in differentiating various classes of soils, Can. J. Soil Sci.,
46, 13–22, https://doi.org/10.4141/cjss66-003, 1966.
Melnick, D.: Rise of the central Andean coast by earthquakes straddling the
Moho, Nat. Geosci., 9, 401–407, https://doi.org/10.1038/ngeo2683, 2016.
Molnar, P., Anderson, R. S., and Anderson, S. P.: Tectonics, fracturing of
rock, and erosion, J. Geophys. Res., 112, F03014,
https://doi.org/10.1029/2005JF000433, 2007.
Nadan, B. J. and Engelder, T.: Microcracks in New England granitoids: A
record of thermoelastic relaxation during exhumation of intracontinental
crust, Geol. Soc. Am. Bull., 121, 80–99, https://doi.org/10.1130/b26202.1,
2009.
Napieralski, S. A., Buss, H. L., Brantley, S. L., Lee, S., Xu, H., and
Roden, E. E.: Microbial chemolithotrophy mediates oxidative weathering of
granitic bedrock, P. Natl. Acad. Sci. USA, 116, 26394–26401,
https://doi.org/10.1073/pnas.1909970117, 2019.
Nascimento, D. L., Abrahão, A., Lambers, H., Teodoro, G. S., Ladeira, F.
S. B., de Britto Costa, P., Oliveira, R. S., and de Farias, C. H. B.:
Biogeomorphological evolution of rocky hillslopes driven by roots in campos
rupestres, Brazil, Geomorphology, 395, 107985,
https://doi.org/10.1016/j.geomorph.2021.107985, 2021.
Navarre-Sitchler, A., Brantley, S. L., and Rother, G.: How Porosity
Increases During Incipient Weathering of Crystalline Silicate Rocks, Rev.
Mineral. Geochem., 80, 331–354, https://doi.org/10.2138/rmg.2015.80.10,
2015.
Nesbitt, H. and Young, G.: Early Proterozoic climates and plate motions
inferred from major element chemistry of lutites, Nature, 299, 715–717,
https://doi.org/10.1038/299715a0, 1982.
Oeser, R. A., Stroncik, N, Moskwa, L.-M., Bernhard, N., Schaller, M.,
Canessa, R., van den Brink, L., Köster, M., Brucker, E., Stock, S.,
Fuentes, J. P., Godoy, R., Matus, F. J., Oses Pedraza, R., Osses McIntyre,
P., Paulino, L., Seguel, O., Bader, M. Y., Boy, J., Dippold, M. A., Ehlers,
T. A., Kühn, P., Kuzyakov, Y., Leinweber, P., Scholten, T., Spielvogel,
S., Spohn, M., Übernickel, K., Tielbörger, K., Wagner, D., and von
Blanckenburg, F.: Chemistry and microbiology of the Critical Zone along a
steep climate and vegetation gradient in the Chilean Coastal Cordillera,
CATENA, 170, 183–203, https://doi.org/10.1016/j.catena.2018.06.002, 2018.
Oeser, R. A. and von Blanckenburg, F.: Do degree and rate of silicate weathering depend on plant productivity?, Biogeosciences, 17, 4883–4917, https://doi.org/10.5194/bg-17-4883-2020, 2020.
Pawlik, Ł., Phillips, J. D., and Šamonil, P.: Roots, rock, and
regolith: Biomechanical and biochemical weathering by trees and its impact
on hillslopes – A critical literature review, Earth-Sci. Rev., 159,
142–159, https://doi.org/10.1016/j.earscirev.2016.06.002, 2016.
Perez, J. R., Banwart, St. A., and Puigdomenech, I.: The kinetics of
O2(aq) reduction by structural ferrous iron in naturally occurring
ferrous silicate minerals, Appl. Geochem., 20, 2003–2016,
https://doi.org/10.1016/j.apgeochem.2005.07.001, 2005.
Reis, F. D. A. A. and Brantley, S. L.: The impact of depth-dependent water
content on steady state weathering and eroding systems, Geochim. Cosmochim.
Acta, 244, 40–55, https://doi.org/10.1016/j.gca.2018.09.028, 2019.
Rempe, D. M. and Dietrich, W. E.: A bottom-up control on fresh-bedrock
topography under landscapes, P. Natl. Acad. Sci. USA, 111, 6576–6581,
https://doi.org/10.1073/pnas.1404763111, 2014.
Rennert, T.: Wet-chemical extractions to characterise pedogenic Al and Fe
species – a critical review, Soil Res., 57, 1–16,
https://doi.org/10.1071/SR18299, 2019.
Riebe, C. S., Kirchner, J. W., and Finkel, R. C.: Long-term rates of
chemical weathering and physical erosion from cosmogenic nuclides and
geochemical mass balance, Geochim. Cosmochim. Ac., 67, 4411–4427,
https://doi.org/10.1016/S0016-7037(03)00382-X, 2003.
Røyne, A., Jamtveit, B., Mathiesen, J., and Malthe-Sørenssen, A.:
Controls on rock weathering rates by reaction-induced hierarchical
fracturing, Earth Planet. Sc. Lett., 275, 364–369,
https://doi.org/10.1016/j.epsl.2008.08.035, 2008.
Schaller, M. and Ehlers, T. A.: Comparison of soil production, chemical weathering, and physical erosion rates along a climate and ecological gradient (Chile) to global observations, Earth Surf. Dynam., 10, 131–150, https://doi.org/10.5194/esurf-10-131-2022, 2022.
Scheibe, A., Sierra, C. A., and Spohn, M.: Recently fixed carbon fuels microbial activity several meters below the soil surface, Biogeosciences, 20, 827–838, https://doi.org/10.5194/bg-20-827-2023, 2023.
Schneider, C. A., Rasband, W. S., and Eliceiri, K. W.: NIH Image to ImageJ:
25 years of image analysis, Nat. Methods, 9, 671–675,
https://doi.org/10.1038/nmeth.2089, 2012.
Schoonejans, J., Vanacker, V., Opfergelt, S., Ameijeiras-Mariño, Y., and
Christl, M.: Kinetically limited weathering at low denudation rates in
semiarid climatic conditions. J. Geophys. Res.-Earth., 121, 336–350,
https://doi.org/10.1002/2015JF003626, 2016.
Schwertmann, U.: Differenzierung der Eisenoxide des Bodens durch Extraktion
mit Ammoniumoxalat-Lösung, Zeitschrift für Pflanz.,
Düngung, Bodenkunde, 105,
194–202, https://doi.org/10.1002/jpln.3591050303, 1964.
St. Clair, J., Moon, S., Holbrook, W. S., Perron, J. T., Riebe, C. S.,
Martel, S. J., Carr, B., Harman, C., Singha, K., and Richter, D.:
Geophysical imaging reveals topographic stress control of bedrock
weathering, Science, 350, 534–538,
https://doi.org/10.1126/science.aab2210, 2015.
Steefel, C. I. and van Cappellen, P.: A new kinetic approach to modeling
water-rock interaction: The role of nucleation, precursors, and Ostwald
ripening, Geochim. Cosmochim. Ac., 54, 2657–2677,
https://doi.org/10.1016/0016-7037(90)90003-4, 1990.
Steenken, A., Rabbia, O., and Hernández, L.: The Emplacement of the
Nahuelbuta Batholith in an Active Continental Margin (Central Chile), XVIII
Congreso Peruano de Geología, Lima, Peru, 16–19 October 2016, 2016.
Stinchcomb, G. E., Kim, H., Hasenmueller, E. A., Sullivan, P. L., Sak, P.
B., and Brantley, S. L.: Relating soil gas to weathering using rock and
regolith geochemistry, Am. J. Sci., 318, 727–763,
https://doi.org/10.2475/07.2018.01, 2018.
Übernickel, K., Ehlers, T. A., Ershadi, M. R., Paulino, L., Fuentes
Espoz, J.-P., Maldonado, A., Oses-Pedraza, R., and von Blanckenburg, F.:
Time series of meteorological station data in the EarthShape study areas in
the Coastal Cordillera, Chile, GFZ Data Services [data set],
https://doi.org/10.5880/fidgeo.2020.043, 2020.
van Dongen, R., Scherler, D., Wittmann, H., and von Blanckenburg, F.: Cosmogenic 10Be in river sediment: where grain size matters and why, Earth Surf. Dynam., 7, 393–410, https://doi.org/10.5194/esurf-7-393-2019, 2019.
Vázquez, M., Ramírez, S., Morata, D., Reich, M., Braun, J.-J., and
Carretier, S.: Regolith production and chemical weathering of granitic rocks
in central Chile, Chem. Geol., 446, 87–98,
https://doi.org/10.1016/j.chemgeo.2016.09.023, 2016.
Werner, C., Schmid, M., Ehlers, T. A., Fuentes-Espoz, J. P., Steinkamp, J., Forrest, M., Liakka, J., Maldonado, A., and Hickler, T.: Effect of changing vegetation and precipitation on denudation – Part 1: Predicted vegetation composition and cover over the last 21 thousand years along the Coastal Cordillera of Chile, Earth Surf. Dynam., 6, 829–858, https://doi.org/10.5194/esurf-6-829-2018, 2018.
White, A. F. and Yee, A.: Aqueous oxidation-reduction kinetics associated
with coupled electron transfer from iron-containing silicates at
25∘ C, Geochim. Cosmochim. Ac., 49, 1263–1275,
https://doi.org/10.1016/0016-7037(85)90015-8, 1985.
Wilson, M. J.: Weathering of the primary rock-forming minerals: processes,
products and rates, Clay Miner., 39, 233–266,
https://doi.org/10.1180/0009855043930133, 2004.
Short summary
We investigated the mineral content and geochemical composition of the upper 6 m of regolith, formed by weathering of granitic rocks in Mediterranean and humid climate zones. We found that the development of the upper regolith in the Mediterranean climate is controlled by secondary minerals which cause fracturing and thus facilitate fluid infiltration to depth. The upper regolith in the humid climate is controlled by secondary minerals that cause a reduction of fluid infiltration to depth.
We investigated the mineral content and geochemical composition of the upper 6 m of regolith,...