Articles | Volume 11, issue 3
https://doi.org/10.5194/esurf-11-511-2023
https://doi.org/10.5194/esurf-11-511-2023
Research article
 | 
22 Jun 2023
Research article |  | 22 Jun 2023

Feedbacks between the formation of secondary minerals and the infiltration of fluids into the regolith of granitic rocks in different climatic zones (Chilean Coastal Cordillera)

Ferdinand J. Hampl, Ferry Schiperski, Christopher Schwerdhelm, Nicole Stroncik, Casey Bryce, Friedhelm von Blanckenburg, and Thomas Neumann

Related authors

3D shear wave velocity imaging of the subsurface structure of granite rocks in the arid climate of Pan de Azúcar, Chile, revealed by Bayesian inversion of HVSR curves
Rahmantara Trichandi, Klaus Bauer, Trond Ryberg, Benjamin Heit, Jaime Araya Vargas, Friedhelm von Blanckenburg, and Charlotte M. Krawczyk
EGUsphere, https://doi.org/10.5194/egusphere-2023-1813,https://doi.org/10.5194/egusphere-2023-1813, 2023
Short summary
Silicon uptake and isotope fractionation dynamics by crop species
Daniel A. Frick, Rainer Remus, Michael Sommer, Jürgen Augustin, Danuta Kaczorek, and Friedhelm von Blanckenburg
Biogeosciences, 17, 6475–6490, https://doi.org/10.5194/bg-17-6475-2020,https://doi.org/10.5194/bg-17-6475-2020, 2020
Short summary
Calibrating a long-term meteoric 10Be delivery rate into eroding western US glacial deposits by comparing meteoric and in situ produced 10Be depth profiles
Travis Clow, Jane K. Willenbring, Mirjam Schaller, Joel D. Blum, Marcus Christl, Peter W. Kubik, and Friedhelm von Blanckenburg
Geochronology, 2, 411–423, https://doi.org/10.5194/gchron-2-411-2020,https://doi.org/10.5194/gchron-2-411-2020, 2020
Short summary
Do degree and rate of silicate weathering depend on plant productivity?
Ralf A. Oeser and Friedhelm von Blanckenburg
Biogeosciences, 17, 4883–4917, https://doi.org/10.5194/bg-17-4883-2020,https://doi.org/10.5194/bg-17-4883-2020, 2020
Short summary
Cosmogenic 10Be in river sediment: where grain size matters and why
Renee van Dongen, Dirk Scherler, Hella Wittmann, and Friedhelm von Blanckenburg
Earth Surf. Dynam., 7, 393–410, https://doi.org/10.5194/esurf-7-393-2019,https://doi.org/10.5194/esurf-7-393-2019, 2019
Short summary

Related subject area

Chemical: Chemical weathering
Mineral surface area in deep weathering profiles reveals the interrelationship of iron oxidation and silicate weathering
Beth A. Fisher, Kyungsoo Yoo, Anthony K. Aufdenkampe, Edward A. Nater, Joshua M. Feinberg, and Jonathan E. Nyquist
Earth Surf. Dynam., 11, 51–69, https://doi.org/10.5194/esurf-11-51-2023,https://doi.org/10.5194/esurf-11-51-2023, 2023
Short summary
The effect of lithology on the relationship between denudation rate and chemical weathering pathways – evidence from the eastern Tibetan Plateau
Aaron Bufe, Kristen L. Cook, Albert Galy, Hella Wittmann, and Niels Hovius
Earth Surf. Dynam., 10, 513–530, https://doi.org/10.5194/esurf-10-513-2022,https://doi.org/10.5194/esurf-10-513-2022, 2022
Short summary
Aging of basalt volcanic systems and decreasing CO2 consumption by weathering
Janine Börker, Jens Hartmann, Gibran Romero-Mujalli, and Gaojun Li
Earth Surf. Dynam., 7, 191–197, https://doi.org/10.5194/esurf-7-191-2019,https://doi.org/10.5194/esurf-7-191-2019, 2019
Impact of different fertilizers on carbonate weathering in a typical karst area, Southwest China: a field column experiment
Chao Song, Changli Liu, Guilin Han, and Congqiang Liu
Earth Surf. Dynam., 5, 605–616, https://doi.org/10.5194/esurf-5-605-2017,https://doi.org/10.5194/esurf-5-605-2017, 2017
Impact of sediment–seawater cation exchange on Himalayan chemical weathering fluxes
Maarten Lupker, Christian France-Lanord, and Bruno Lartiges
Earth Surf. Dynam., 4, 675–684, https://doi.org/10.5194/esurf-4-675-2016,https://doi.org/10.5194/esurf-4-675-2016, 2016
Short summary

Cited articles

Anderson, S., Dietrich, W., and Brimhall, G.: Weathering profiles, mass-balance analysis, and rates of solute loss: Linkages between weathering and erosion in a small, steep catchment, Geol. Soc. Am. Bull., 114, 1143–1158, https://doi.org/10.1130/0016-7606(2002)114<1143:WPMBAA>2.0.CO;2, 2002. 
Anovitz, L. M., Cheshire, M. C., Hermann, R. P., Gu, X., Sheets, J. M., Brantley, S. L., Cole, D. R., Ilton, E. S., Mildner, D. F. R., Gagnon, C., Allard, L. F., and Littrell, K. C.: Oxidation and associated pore structure modification during experimental alteration of granite, Geochim. Cosmochim. Ac., 292, 532–556, https://doi.org/10.1016/j.gca.2020.08.016, 2021. 
Bandstra, J. Z., Buss, H. L., Campen, R. K., Liermann, L. J., Moore, J., Hausrath, E. M., Navarre-Sitchler, A. K., Jang, J.-H., and Brantley, S. L.: Compilation of mineral dissolution rates, in: Kinetics of Water-Rock Interaction, edited by: Brantley, S. L., Kubicki, J. D., and White, A. F., Springer New York, 737–823, https://doi.org/10.1007/978-0-387-73563-4, 2008. 
Bazilevskaya, E., Lebedeva, M., Pavich, M., Rother, G., Parkinson, D. Y., Cole, D., and Brantley, S. L.: Where fast weathering creates thin regolith and slow weathering creates thick regolith, Earth Surf. Proc. Land., 38, 847–858, https://doi.org/10.1002/esp.3369, 2013. 
Bazilevskaya, E., Rother, G., Mildner, D. F., Pavich, M., Cole, D., Bhatt, M. P., Jin, L., Steefel, C. I., and Brantley, S. L.: How Oxidation and Dissolution in Diabase and Granite Control Porosity during Weathering, Soil Sci. Soc. Am. J., 79, 55–73, https://doi.org/10.2136/sssaj2014.04.0135, 2015. 
Download
Short summary
We investigated the mineral content and geochemical composition of the upper 6 m of regolith, formed by weathering of granitic rocks in Mediterranean and humid climate zones. We found that the development of the upper regolith in the Mediterranean climate is controlled by secondary minerals which cause fracturing and thus facilitate fluid infiltration to depth. The upper regolith in the humid climate is controlled by secondary minerals that cause a reduction of fluid infiltration to depth.