Articles | Volume 11, issue 4
https://doi.org/10.5194/esurf-11-681-2023
https://doi.org/10.5194/esurf-11-681-2023
Research article
 | 
27 Jul 2023
Research article |  | 27 Jul 2023

Development of a machine learning model for river bed load

Hossein Hosseiny, Claire C. Masteller, Jedidiah E. Dale, and Colin B. Phillips

Related authors

Leveraging a time-series event separation method to untangle time-varying hydrologic controls influence on wildfire disturbed streamflow
Haley A. Canham, Belize A. Lane, Colin B. Phillips, and Brendan P. Murphy
EGUsphere, https://doi.org/10.5194/egusphere-2023-2875,https://doi.org/10.5194/egusphere-2023-2875, 2024
Short summary

Related subject area

Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Quantifying the migration rate of drainage divides from high-resolution topographic data
Chao Zhou, Xibin Tan, Yiduo Liu, and Feng Shi
Earth Surf. Dynam., 12, 433–448, https://doi.org/10.5194/esurf-12-433-2024,https://doi.org/10.5194/esurf-12-433-2024, 2024
Short summary
Long-term monitoring (1953–2019) of geomorphologically active sections of Little Ice Age lateral moraines in the context of changing meteorological conditions
Moritz Altmann, Madlene Pfeiffer, Florian Haas, Jakob Rom, Fabian Fleischer, Tobias Heckmann, Livia Piermattei, Michael Wimmer, Lukas Braun, Manuel Stark, Sarah Betz-Nutz, and Michael Becht
Earth Surf. Dynam., 12, 399–431, https://doi.org/10.5194/esurf-12-399-2024,https://doi.org/10.5194/esurf-12-399-2024, 2024
Short summary
Coevolving edge rounding and shape of glacial erratics: the case of Shap granite, UK
Paul A. Carling
Earth Surf. Dynam., 12, 381–397, https://doi.org/10.5194/esurf-12-381-2024,https://doi.org/10.5194/esurf-12-381-2024, 2024
Short summary
Dimensionless argument: a narrow grain size range near 2 mm plays a special role in river sediment transport and morphodynamics
Gary Parker, Chenge An, Michael P. Lamb, Marcelo H. Garcia, Elizabeth H. Dingle, and Jeremy G. Venditti
Earth Surf. Dynam., 12, 367–380, https://doi.org/10.5194/esurf-12-367-2024,https://doi.org/10.5194/esurf-12-367-2024, 2024
Short summary
Path length and sediment transport estimation from DEMs of difference: a signal processing approach
Lindsay Marie Capito, Enrico Pandrin, Walter Bertoldi, Nicola Surian, and Simone Bizzi
Earth Surf. Dynam., 12, 321–345, https://doi.org/10.5194/esurf-12-321-2024,https://doi.org/10.5194/esurf-12-321-2024, 2024
Short summary

Cited articles

Ancey, C.: Stochastic modeling in sediment dynamics: Exner equation for planar bed incipient bed load transport conditions, J. Geophys. Res.-Earth, 115, 1–21, https://doi.org/10.1029/2009jf001260, 2010. 
Asheghi, R. and Hosseini, S. A.: Prediction of bed load sediments using different artificial neural network models, Front. Struct. Civ. Eng., 14, 374–386, https://doi.org/10.1007/s11709-019-0600-0, 2020. 
Ashida, K. and Michiue, M.: Hydraulic Resistance of Flow in an Alluvia Bed and Bed Load Transport Rate, Proc. JSCE, 206, 59–69, https://doi.org/10.2208/jscej1969.1972.206_59 1972 (in Japanese). 
Barry, J. J., Buffington, J. M., and King, J. G.: A general power equation for predicting bed load transport rates in gravel bed rivers, Water Resour. Res., 40, 1–22, https://doi.org/10.1029/2004WR003190, 2004. 
Barry, J. J., Buffington, J. M., Goodwin, P., King, J. G., and Emmett, W. W.: Performance of Bed-Load Transport Equations Relative to Geomorphic Significance: Predicting Effective Discharge and Its Transport Rate, Hydraul. Eng., 134, 601–615, 2008. 
Download
Short summary
It is of great importance to engineers and geomorphologists to predict the rate of bed load in rivers. In this contribution, we used a large dataset of measured data and developed an artificial neural network (ANN), a machine learning algorithm, for bed load prediction. The ANN model predicted the bed load flux close to measured values and better than the ones obtained from four standard bed load models with varying degrees of complexity.