Articles | Volume 11, issue 4
https://doi.org/10.5194/esurf-11-681-2023
https://doi.org/10.5194/esurf-11-681-2023
Research article
 | 
27 Jul 2023
Research article |  | 27 Jul 2023

Development of a machine learning model for river bed load

Hossein Hosseiny, Claire C. Masteller, Jedidiah E. Dale, and Colin B. Phillips

Related authors

Leveraging a time-series event separation method to disentangle time-varying hydrologic controls on streamflow – application to wildfire-affected catchments
Haley A. Canham, Belize Lane, Colin B. Phillips, and Brendan P. Murphy
Hydrol. Earth Syst. Sci., 29, 27–43, https://doi.org/10.5194/hess-29-27-2025,https://doi.org/10.5194/hess-29-27-2025, 2025
Short summary
Modeling memory in gravel-bed rivers: A flow history-dependent relation for evolving thresholds of motion
Claire C. Masteller, Joel P. L. Johnson, Dieter Rickenmann, and Jens M. Turowski
EGUsphere, https://doi.org/10.5194/egusphere-2024-3250,https://doi.org/10.5194/egusphere-2024-3250, 2024
This preprint is open for discussion and under review for Earth Surface Dynamics (ESurf).
Short summary
Multiple modes of shoreline change along the Alaskan Beaufort Sea observed using ICESat-2 altimetry and satellite imagery
Marnie B. Bryant, Adrian A. Borsa, Claire C. Masteller, Roger J. Michaelides, Matthew R. Siegfried, Adam P. Young, and Eric J. Anderson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1656,https://doi.org/10.5194/egusphere-2024-1656, 2024
Short summary

Related subject area

Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Examination of analytical shear stress predictions for coastal dune evolution
Orie Cecil, Nicholas Cohn, Matthew Farthing, Sourav Dutta, and Andrew Trautz
Earth Surf. Dynam., 13, 1–22, https://doi.org/10.5194/esurf-13-1-2025,https://doi.org/10.5194/esurf-13-1-2025, 2025
Short summary
Post-fire evolution of ravel transport regimes in the Diablo Range, CA
Hayden L. Jacobson, Danica L. Roth, Gabriel Walton, Margaret Zimmer, and Kerri Johnson
Earth Surf. Dynam., 12, 1415–1446, https://doi.org/10.5194/esurf-12-1415-2024,https://doi.org/10.5194/esurf-12-1415-2024, 2024
Short summary
Landscape response to tectonic deformation and cyclic climate change since ca. 800 ka in the southern central Andes
Elizabeth N. Orr, Taylor F. Schildgen, Stefanie Tofelde, Hella Wittmann, and Ricardo N. Alonso
Earth Surf. Dynam., 12, 1391–1413, https://doi.org/10.5194/esurf-12-1391-2024,https://doi.org/10.5194/esurf-12-1391-2024, 2024
Short summary
The Aare main overdeepening on the northern margin of the European Alps: basins, riegels, and slot canyons
Fritz Schlunegger, Edi Kissling, Dimitri Tibo Bandou, Guilhem Amin Douillet, David Mair, Urs Marti, Regina Reber, Patrick Schläfli, and Michael Alfred Schwenk
Earth Surf. Dynam., 12, 1371–1389, https://doi.org/10.5194/esurf-12-1371-2024,https://doi.org/10.5194/esurf-12-1371-2024, 2024
Short summary
A simple model for faceted topographies at normal faults based on an extended stream-power law
Stefan Hergarten
Earth Surf. Dynam., 12, 1315–1327, https://doi.org/10.5194/esurf-12-1315-2024,https://doi.org/10.5194/esurf-12-1315-2024, 2024
Short summary

Cited articles

Ancey, C.: Stochastic modeling in sediment dynamics: Exner equation for planar bed incipient bed load transport conditions, J. Geophys. Res.-Earth, 115, 1–21, https://doi.org/10.1029/2009jf001260, 2010. 
Asheghi, R. and Hosseini, S. A.: Prediction of bed load sediments using different artificial neural network models, Front. Struct. Civ. Eng., 14, 374–386, https://doi.org/10.1007/s11709-019-0600-0, 2020. 
Ashida, K. and Michiue, M.: Hydraulic Resistance of Flow in an Alluvia Bed and Bed Load Transport Rate, Proc. JSCE, 206, 59–69, https://doi.org/10.2208/jscej1969.1972.206_59 1972 (in Japanese). 
Barry, J. J., Buffington, J. M., and King, J. G.: A general power equation for predicting bed load transport rates in gravel bed rivers, Water Resour. Res., 40, 1–22, https://doi.org/10.1029/2004WR003190, 2004. 
Barry, J. J., Buffington, J. M., Goodwin, P., King, J. G., and Emmett, W. W.: Performance of Bed-Load Transport Equations Relative to Geomorphic Significance: Predicting Effective Discharge and Its Transport Rate, Hydraul. Eng., 134, 601–615, 2008. 
Download
Short summary
It is of great importance to engineers and geomorphologists to predict the rate of bed load in rivers. In this contribution, we used a large dataset of measured data and developed an artificial neural network (ANN), a machine learning algorithm, for bed load prediction. The ANN model predicted the bed load flux close to measured values and better than the ones obtained from four standard bed load models with varying degrees of complexity.