Articles | Volume 11, issue 4
https://doi.org/10.5194/esurf-11-681-2023
https://doi.org/10.5194/esurf-11-681-2023
Research article
 | 
27 Jul 2023
Research article |  | 27 Jul 2023

Development of a machine learning model for river bed load

Hossein Hosseiny, Claire C. Masteller, Jedidiah E. Dale, and Colin B. Phillips

Related authors

Modeling memory in gravel-bed rivers: a flow-history-dependent relation for evolving thresholds of motion
Claire C. Masteller, Joel P. L. Johnson, Dieter Rickenmann, and Jens M. Turowski
Earth Surf. Dynam., 13, 593–605, https://doi.org/10.5194/esurf-13-593-2025,https://doi.org/10.5194/esurf-13-593-2025, 2025
Short summary
Multiple modes of shoreline change along the Alaskan Beaufort Sea observed using ICESat-2 altimetry and satellite imagery
Marnie B. Bryant, Adrian A. Borsa, Eric J. Anderson, Claire C. Masteller, Roger J. Michaelides, Matthew R. Siegfried, and Adam P. Young
The Cryosphere, 19, 1825–1847, https://doi.org/10.5194/tc-19-1825-2025,https://doi.org/10.5194/tc-19-1825-2025, 2025
Short summary
Leveraging a time-series event separation method to disentangle time-varying hydrologic controls on streamflow – application to wildfire-affected catchments
Haley A. Canham, Belize Lane, Colin B. Phillips, and Brendan P. Murphy
Hydrol. Earth Syst. Sci., 29, 27–43, https://doi.org/10.5194/hess-29-27-2025,https://doi.org/10.5194/hess-29-27-2025, 2025
Short summary

Related subject area

Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Surface grain-size mapping of braided channels from SfM photogrammetry
Loïs Ribet, Frédéric Liébault, Laurent Borgniet, Michaël Deschâtres, and Gabriel Melun
Earth Surf. Dynam., 13, 607–627, https://doi.org/10.5194/esurf-13-607-2025,https://doi.org/10.5194/esurf-13-607-2025, 2025
Short summary
Spatiotemporal denudation rates of the Swabian Alb escarpment (southwestern Germany) dominated by anthropogenic impact, lithology, and base-level lowering
Mirjam Schaller, Daniel Peifer, Alexander B. Neely, Thomas Bernard, Christoph Glotzbach, Alexander R. Beer, and Todd A. Ehlers
Earth Surf. Dynam., 13, 571–591, https://doi.org/10.5194/esurf-13-571-2025,https://doi.org/10.5194/esurf-13-571-2025, 2025
Short summary
Short communication: Learning how landscapes evolve with neural operators
Gareth G. Roberts
Earth Surf. Dynam., 13, 563–570, https://doi.org/10.5194/esurf-13-563-2025,https://doi.org/10.5194/esurf-13-563-2025, 2025
Short summary
Sediment aggradation rates in Himalayan rivers revealed through the InSAR differential residual topographic phase
Jingqiu Huang and Hugh D. Sinclair
Earth Surf. Dynam., 13, 531–547, https://doi.org/10.5194/esurf-13-531-2025,https://doi.org/10.5194/esurf-13-531-2025, 2025
Short summary
The glacial paleolandscapes of Southern Africa: the legacy of the Late Paleozoic Ice Age
Pierre Dietrich, François Guillocheau, Guilhem A. Douillet, Neil P. Griffis, Guillaume Baby, Daniel P. Le Héron, Laurie Barrier, Maximilien Mathian, Isabel P. Montañez, Cécile Robin, Thomas Gyomlai, Christoph Kettler, and Axel Hofmann
Earth Surf. Dynam., 13, 495–529, https://doi.org/10.5194/esurf-13-495-2025,https://doi.org/10.5194/esurf-13-495-2025, 2025
Short summary

Cited articles

Ancey, C.: Stochastic modeling in sediment dynamics: Exner equation for planar bed incipient bed load transport conditions, J. Geophys. Res.-Earth, 115, 1–21, https://doi.org/10.1029/2009jf001260, 2010. 
Asheghi, R. and Hosseini, S. A.: Prediction of bed load sediments using different artificial neural network models, Front. Struct. Civ. Eng., 14, 374–386, https://doi.org/10.1007/s11709-019-0600-0, 2020. 
Ashida, K. and Michiue, M.: Hydraulic Resistance of Flow in an Alluvia Bed and Bed Load Transport Rate, Proc. JSCE, 206, 59–69, https://doi.org/10.2208/jscej1969.1972.206_59 1972 (in Japanese). 
Barry, J. J., Buffington, J. M., and King, J. G.: A general power equation for predicting bed load transport rates in gravel bed rivers, Water Resour. Res., 40, 1–22, https://doi.org/10.1029/2004WR003190, 2004. 
Barry, J. J., Buffington, J. M., Goodwin, P., King, J. G., and Emmett, W. W.: Performance of Bed-Load Transport Equations Relative to Geomorphic Significance: Predicting Effective Discharge and Its Transport Rate, Hydraul. Eng., 134, 601–615, 2008. 
Download
Short summary
It is of great importance to engineers and geomorphologists to predict the rate of bed load in rivers. In this contribution, we used a large dataset of measured data and developed an artificial neural network (ANN), a machine learning algorithm, for bed load prediction. The ANN model predicted the bed load flux close to measured values and better than the ones obtained from four standard bed load models with varying degrees of complexity.
Share