Articles | Volume 11, issue 4
https://doi.org/10.5194/esurf-11-681-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-11-681-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Development of a machine learning model for river bed load
Hossein Hosseiny
Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
Jedidiah E. Dale
Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
Colin B. Phillips
Department of Civil and Environmental Engineering, Utah State
University, Logan, UT 84322, USA
Related authors
No articles found.
Jedidiah E. Dale, Sophie Dorosin, José A. Constantine, and Claire C. Masteller
EGUsphere, https://doi.org/10.5194/egusphere-2025-3962, https://doi.org/10.5194/egusphere-2025-3962, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Frequent, low-intensity urban pluvial flooding is notoriously difficult to detect and monitor. This study introduces a novel, low-cost approach using computer vision to integrate time-lapse photos with lidar data to estimate water levels and flood extents. Applied to two case study flood events and validated against a two-dimensional flood model, this method shows how community-centered, adaptable monitoring systems can capture spatiotemporal flood dynamics often missed by traditional methods.
Claire C. Masteller, Joel P. L. Johnson, Dieter Rickenmann, and Jens M. Turowski
Earth Surf. Dynam., 13, 593–605, https://doi.org/10.5194/esurf-13-593-2025, https://doi.org/10.5194/esurf-13-593-2025, 2025
Short summary
Short summary
This paper presents a novel model that predicts how gravel riverbeds may evolve in response to differences in the frequency and severity of flood events. We test our model using a 23-year-long record of river flow and gravel transport from the Swiss Prealps. We find that our model reliably captures yearly patterns in gravel transport in this setting. Our new model is a major advance towards better predictions of river erosion that account for the flood history of a gravel-bed river.
Marnie B. Bryant, Adrian A. Borsa, Eric J. Anderson, Claire C. Masteller, Roger J. Michaelides, Matthew R. Siegfried, and Adam P. Young
The Cryosphere, 19, 1825–1847, https://doi.org/10.5194/tc-19-1825-2025, https://doi.org/10.5194/tc-19-1825-2025, 2025
Short summary
Short summary
We measure shoreline change across a 7 km stretch of coastline on the Alaskan Beaufort Sea coast between 2019 and 2022 using multispectral imagery from Planet and satellite altimetry from ICESat-2. We find that shoreline change rates are high and variable and that different shoreline types show distinct patterns of change in shoreline position and topography. We discuss how the observed changes may be driven by both time-varying ocean and air conditions and spatial variations in morphology.
Haley A. Canham, Belize Lane, Colin B. Phillips, and Brendan P. Murphy
Hydrol. Earth Syst. Sci., 29, 27–43, https://doi.org/10.5194/hess-29-27-2025, https://doi.org/10.5194/hess-29-27-2025, 2025
Short summary
Short summary
The influence of watershed disturbances has proved challenging to disentangle from natural streamflow variability. This study evaluates the influence of time-varying hydrologic controls on rainfall–runoff in undisturbed and wildfire-disturbed watersheds using a novel time-series event separation method. Across watersheds, water year type and season influenced rainfall–runoff patterns. Accounting for these controls enabled clearer isolation of wildfire effects.
Cited articles
Ancey, C.: Stochastic modeling in sediment dynamics: Exner equation for
planar bed incipient bed load transport conditions, J. Geophys. Res.-Earth, 115, 1–21, https://doi.org/10.1029/2009jf001260, 2010.
Asheghi, R. and Hosseini, S. A.: Prediction of bed load sediments using
different artificial neural network models, Front. Struct. Civ. Eng., 14, 374–386, https://doi.org/10.1007/s11709-019-0600-0, 2020.
Ashida, K. and Michiue, M.: Hydraulic Resistance of Flow in an Alluvia Bed
and Bed Load Transport Rate, Proc. JSCE, 206, 59–69, https://doi.org/10.2208/jscej1969.1972.206_59 1972 (in Japanese).
Barry, J. J., Buffington, J. M., and King, J. G.: A general power equation
for predicting bed load transport rates in gravel bed rivers, Water Resour. Res., 40, 1–22, https://doi.org/10.1029/2004WR003190, 2004.
Barry, J. J., Buffington, J. M., Goodwin, P., King, J. G., and Emmett, W. W.: Performance of Bed-Load Transport Equations Relative to Geomorphic Significance: Predicting Effective Discharge and Its Transport Rate, Hydraul. Eng., 134, 601–615, 2008.
Beer, A. R. and Turowski, J. M.: From process to centuries: Upscaling field-calibrated models of fluvial bedrock erosion, Geophys. Res. Lett., 48, 093415, https://doi.org/10.1029/2021GL093415, 2021.
Bhattacharya, B., Price, R. K., and Solomatine, D. P.: Machine Learning
Approach To Modeling Sediment Transport, J. Hydraul. Eng., 133, 776–793, https://doi.org/10.1061/(ASCE)0733-9429(2007)133:4(440), 2007.
Brownlie, W. R.: Compilation of alluvial channel data: Laboratory and field, W. M. Keck Laboratory of Hydraulics and Water Resources Report, 43B, California Institute of Technology, https://resolver.caltech.edu/CaltechKHR:KH-R-43B (last access: 25 Aprril 2022), 1981.
Buffington, J. M. and Montgomery, D. R.: A systematic analysis of eight
decades of incipient motion studies, with special reference to gravel-bedded
rivers, Water Resour. Res., 33, 1993–2029, https://doi.org/10.1029/96WR03190, 1997.
Bui, V. H., Bui, M. D., and Rutschmann, P.: Combination of Discrete Element
Method and Artificial Neural Network for Predicting Porosity of Gravel-Bed
River, Water, 11, 1461, https://doi.org/10.3390/w11071461, 2019.
Bunte, K. and Abt, S. R.: Effect of sampling time on measured gravel bed load transport rates in a coarse-bedded stream, Water Resour. Res., 41, W11405, https://doi.org/10.1029/2004WR003880, 2005.
Chollet, F.: Keras, Keras [code], https://keras.io/
(last access: 25 April 2022), 2015.
Church, M., Hassan, M. A., and Wolcott, J. F.: Stabilizing self-organized
structures in gravel-bed stream channels: Field and experimental observations, Water Resour. Res., 34, 3169–3179, https://doi.org/10.1029/98WR00484, 1998.
Cohen, S., Syvitski, J., Ashley, T., Lammers, R., Fekete, B., and Li, H.-Y.:
Spatial trends and drivers of bedload and suspended sediment fluxes in global rivers, Water Resour. Res., 58, 2021 031583, https://doi.org/10.1029/2021WR031583, 2022.
Deal, E., Venditti, J. G., Benavides, S. J., Bradley, R., Zhang, Q., Kamrin,
K., and Perron, J. T.: Grain shape effects in bed load sediment transport,
Nature, 613, 298–302, https://doi.org/10.1038/s41586-022-05564-6, 2023.
Dietrich, W. E., Kirchner, J. W., Ikeda, H., and Iseya, F.: Sediment supply and the development of the coarse surface layer in gravel-bedded rivers, Nature, 340, 215–217, https://doi.org/10.1038/340215a0, 1989.
Dovoedo, Y. H. and Chakraborti, S.: Outlier detection for multivariate
skew-normal data: A comparative study, Stat. Comput. Simul., 83, 773–783, https://doi.org/10.1080/00949655.2011.636364, 2013.
Dunne, K. B. J. and Jerolmack, D. J.: What sets river width?, Sci. Adv., 6, 1–9, https://doi.org/10.1126/sciadv.abc1505, 2020.
East, A. E., Pess, G. R., Bountry, J. A., Magirl, C. S., Ritchie, A. C., and
Logan, J. B.: Large-scale dam removal on the Elwha River, Geomorphology, 228, 765–786, https://doi.org/10.1016/j.geomorph.2014.08.028, 2015.
Einstein, A. H.: The Bed-Load Function for Sediment Transportation in Open
Channel Flows, Technical Bulletin, Soil Conservation Series, US Dept. of Agriculture, https://naldc.nal.usda.gov/catalog/43419 (last access: 25 April 2022), 1950.
Einstein, H. A.: Bed load transport as a probability problem, in: Sedimentation: 746 Symposium to Honor Professor H. A. Einstein, 1972 (translation from 747 German of H. A. Einstein doctoral thesis), Originally presented to Federal Institute of Technology, Zurich, Switzerland, C1–C105, https://lib.ugent.be/catalog/rug01:002054080 (last access: 25 April 2022), 1937.
Ferdowsi, B., Ortiz, C. P., Houssais, M., and Jerolmack, D. J.: River-bed
armouring as a granular segregation phenomenon, Nat. Commun., 8, 1363, https://doi.org/10.1038/s41467-017-01681-3, 2017.
Furbish, D. J., Ball, A. E., and Schmeeckle, M. W.: A probabilistic description of the bed load sediment flux: 4. Fickian diffusion at low
transport rates, J. Geophys. Res.-Earth, 117, F03034, https://doi.org/10.1029/2012JF002356, 2012.
Garcia, M. H. (Ed.): Sedimentation Engineering: Processes, Measurements,
Modeling, and Practice, ASCE, Reston, Virginia, https://doi.org/10.1061/9780784408148.ch02, 2007.
Geron, A.: Hands-on Machine Learning with Scikit-Learn, Keras & TensorFlow, in: 2nd Edn., O'Reilly, Sebastopol, Canada, 2019.
Gilbert, G. K.: The transportation of debris by running water, US Geological Survey Professional Paper 86, US Geological Survey, 263 pp., https://doi.org/10.3133/pp86, 1914.
Goldstein, E. B., Coco, G., and Plant, N. G.: Corresponding Author, Earth-Sci. Rev., 194, 97–108, https://doi.org/10.1016/j.earscirev.2019.04.022, 2019.
Gomez, B. and Church, M.: An assessment of bed load sediment transport formulae for gravel bed rivers, Water Resour. Res., 25, 1161–1186,
https://doi.org/10.1029/WR025i006p01161, 1989.
Gomez, B. and Soar, P. J.: Bedload transport: beyond intractability, Roy. Soc. Open Sci., 9, 211932, https://doi.org/10.1098/rsos.211932, 2022.
Gomez, B., Soar, P. J., and Downs, P. W.: Good vibrations: Big data impact
bedload research, Earth Surf. Proc. Land., 47, 129–142, https://doi.org/10.1002/esp.5304, 2022.
Han, H. and Morrison, R. R.: Data-driven approaches for runoff prediction using distributed data, Stoch. Env. Res. Risk A., 36, 2153–2171, https://doi.org/10.1007/s00477-021-01993-3, 2022.
Hassani, A., Azapagic, A., and Shokri, N.: Global predictions of primary
soil salinization under changing climate in the 21st century, Nat. Commun., 12, 1–17, https://doi.org/10.1038/s41467-021-26907-3, 2021.
Haykin, S.: Kalman Filters, in: Kalman Filtering and Neural Networks, John Wiley & Sons, Ltd, 1–21, https://doi.org/10.1002/0471221546.ch1, 2001.
Haykin, S.: Neural Networks and Learning Machines, Third Edition, Pearson Education, Inc., McMaster University, Hamilton, ISBN 0131471392, 2009.
Hinton, D., Hotchkiss, R., and Ames, D. P.: Comprehensive and Quality-Controlled Bedload Transport Database, J. Hydraul. Eng., 143, 06016024, https://doi.org/10.1061/(asce)hy.1943-7900.0001221, 2017.
Hosseiny, H.: A Deep Learning Model for Predicting River Flood Depth and
Extent, Environ. Model. Softw., 145, 105186, https://doi.org/10.1016/j.envsoft.2021.105186, 2021.
Hosseiny, H., Nazari, F., Smith, V., and Nataraj, C.: A Framework for Modeling Flood Depth Using a Hybrid of Hydraulics and Machine Learning, Sci. Rep., 10, 1–14, https://doi.org/10.1038/s41598-020-65232-5, 2020.
Hosseiny, H., Masteller, C. C., Dale, J. E., and Phillips, C. B.: Development of a machine learning model for river bedload – Data, Model, and Scripts (Version 1), Zenodo [data set], https://doi.org/10.5281/zenodo.7641313, 2023.
Houssais, M., Ortiz, C. P., Durian, D. J., and Jerolmack, D. J.: Onset of
sediment transport is a continuous transition driven by fluid shear and
granular creep, Nat. Commun. 6, 6527, https://doi.org/10.1038/ncomms7527, 2015.
Hsu, K., Gupta, H. V., and Sorooshian, S.: Artificial Neural Network Modeling of the Rainfall-Runoff Process, Water Resour. Res., 31, 2517–2530,
https://doi.org/10.1029/95WR01955, 1995a.
Kennedy, D., Lakonishok, J., and Shaw, W. H.: Accommodating Outliers and
Nonlinearity in Decision Models, J. Account. Audit. Financ., 7, 161–190, https://doi.org/10.1177/0148558X9200700205, 1992.
King, J. G., Emmett, W. W., Whiting, P. J., Kenworthy, R. P., and Barry, J.
J.: Sediment Transport Data and Related Information for Selected Coarse-Bed
Streams and Rivers in Idaho, Gen. Tech. Rep. RMRS-GTR-131. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 26 pp., https://doi.org/10.2737/RMRS-GTR-131 2004.
Kitsikoudis, V., Sidiropoulos, E., and Hrissanthou, V.: Assessment of sediment transport approaches for sand-bed rivers by means of machine learning, Hydrolog. Sci. J., 60, 1566–1586, https://doi.org/10.1080/02626667.2014.909599, 2015.
Lai, C. Y., Kingslake, J., Wearing, M. G., Chen, P. H. C., Gentine, P., and
Li, H.: Vulnerability of Antarctica's ice shelves to meltwater-driven
fracture, Nature, 584, 574–578, https://doi.org/10.1038/s41586-020-2627-8, 2020.
Lajeunesse, E., Malverti, L., and Charru, F.: Bed load transport in turbulent flow at the grain scale: Experiments and modeling, J. Geophys. Res.-Earth, 115, F04001, https://doi.org/10.1029/2009JF001628, 2010.
Lammers, R. W. and Bledsoe, B. P.: Parsimonious sediment transport equations
based on Bagnold's stream power approach, Earth Surf. Proc. Land., 43, 242–258, 2018.
Leopold, L. B., Bagnold, R. A., Wolman, M. G., and Brush Jr., L. M.: Flow
resistance in sinuous or irregular channels, in: Geological Survey Professional Paper, Geological Survey, Washington, DC, https://doi.org/10.3133/pp282D, 1960.
Li, H.-Y., Tan, Z., Ma, H., Zhu, Z., Abeshu, G. W., Zhu, S., Cohen, S., Zhou, T., Xu, D., and Leung, L. R.: A new large-scale suspended sediment model and its application over the United States, Hydrol. Earth Syst. Sci., 26, 665–688, https://doi.org/10.5194/hess-26-665-2022, 2022.
Marquis, G. A. and Roy, A. G.: Using multiple bed load measurements: Toward
the identification of bed dilation and contraction in gravel-bed rivers, J. Geophys. Res.-Earth, 117, F01014, https://doi.org/10.1029/2011JF002120, 2012.
Masteller, C. C. and Finnegan, N. J.: Interplay between grain protrusion and
sediment entrainment in an experimental flume, J. Geophys. Res.-Earth, 122, 274–289, https://doi.org/10.1002/2016JF003943, 2017.
Masteller, C. C., Finnegan, N. J., Turowski, J. M., Yager, E. M., and Rickenmann, D.: History-Dependent Threshold for Motion Revealed by Continuous Bedload Transport Measurements in a Steep Mountain Stream, Geophys. Res. Lett., 46, 2583–2591, https://doi.org/10.1029/2018GL081325, 2019.
Meyer-Peter, E. and Müller, R.: Formulas for Bed-Load transport, in: appendix 2, IAHSR 2nd meeting, Stockholm, https://repository.tudelft.nl/islandora/object/uuid:4fda9b61-be28-4703-ab06-43cdc2a21bd7?collection=research (last access: 25 April 2022), 1948.
Monsalve, A. and Yager, E. M.: Bed Surface Adjustments to Spatially Variable
Flow in Low Relative Submergence Regimes: Bed Surface Adjustments in LRS,
Water Resour. Res., 53, 9350–9367, https://doi.org/10.1002/2017WR020845, 2017.
Monsalve, A., Yager, E. M., Turowski, J. M., and Rickenmann, D.: A probabilistic formulation of bed load transport to include spatial variability of flow and surface grain size distributions, Water Resour. Res.,
52, 3579–3598, https://doi.org/10.1002/2015WR017694, 2016.
Mueller, E. R., Pitlick, J., and Nelson, J. M.: Variation in the reference
Shields stress for bed load transport in gravel-bed streams and rivers, Water Resour. Res., 41, W04006, https://doi.org/10.1029/2004WR003692, 2005.
Paintal, A. S.: A Stochastic Model Of Bed Load Transport, J. Hydraul. Res., 9, 527–554, https://doi.org/10.1080/00221687109500371, 1971.
Parker, G.: Self-formed straight rivers with equilibrium banks and mobile
bed. Part 2, The gravel river, J. Fluid Mech., 89, 127–146,
https://doi.org/10.1017/S0022112078002505, 1978.
Parker, G.: Surface-based bedload transport relation for gravel rivers, J. Hydraul. Res., 28, 417–436, https://doi.org/10.1080/00221689009499058, 1990.
Parker, G. and Klingeman, P. C.: On why gravel bed streams are paved, Water
Resour. Res., 18, 1409–1423, https://doi.org/10.1029/WR018i005p01409, 1982.
Phillips, C. B. and Jerolmack, D. J.: Dynamics and mechanics of bed-load tracer particles, Earth Surf. Dynam., 2, 513–530, https://doi.org/10.5194/esurf-2-513-2014, 2014.
Phillips, C. B. and Jerolmack, D. J.: Self-organization of river channels as
a critical filter on climate signals, Science, 352, 694–697, https://doi.org/10.1126/science.aad3348, 2016.
Phillips, C. B. and Jerolmack, D. J.: Bankfull Transport Capacity and the
Threshold of Motion in Coarse-Grained Rivers, Water Resour. Res., 55,
11316–11330, https://doi.org/10.1029/2019WR025455, 2019.
Phillips, C. B., Hill, K. M., Paola, C., Singer, M. B., and Jerolmack, D. J.: Effect of Flood Hydrograph Duration, Magnitude, and Shape on Bed Load Transport Dynamics, Geophys. Res. Lett., 45, 8264–8271, https://doi.org/10.1029/2018GL078976, 2018.
Phillips, C. B., Masteller, C. C., Slater, L. J., Dunne, K. B. J., Francalanci, S., Lanzoni, S., Merritts, D. J., Lajeunesse, E., and Jerolmack, D. J.: Threshold constraints on the size, shape and stability of alluvial rivers, Nat. Rev. Earth Environ., 3, 406–419, https://doi.org/10.1038/s43017-022-00282-z, 2022.
Recking, A.: A comparison between flume and field bed load data and consequences for surface-based bed load transport prediction, Water Resour. Res., 46, W03518, https://doi.org/10.1029/2009WR008007, 2010.
Recking, A.: Influence of sediment supply on mountain streams bedload transport, Geomorphology, 175–176, 139–150, https://doi.org/10.1016/j.geomorph.2012.07.005, 2012.
Recking, A.: An analaysis of nonlinearity effects on bed load transport
prediction, J. Geophys. Res.-Earth, 118, 1264–1281, https://doi.org/10.1002/jgrf.20090, 2013a.
Recking, A.: Simple Method for Calculating Reach-Averaged Bed-Load Transport, J. Hydraul. Eng., 139, 70–75, https://doi.org/10.1061/(asce)hy.1943-7900.0000653, 2013b.
Recking, A.: BedloadWeb, https://en.bedloadweb.com/ (last access: 25 April 2022), 2019.
Recking, A., Liébault, F., Peteuil, C., and Jolimet, T.: Testing bedload
transport equations with consideration of time scales, Earth Surf. Proc. Land., 37, 774–789, https://doi.org/10.1002/esp.3213, 2012.
Rickenmann, D.: Hyperconcentrated Flow and Sediment, Hydraul. Eng., 117, 1419–1439, https://doi.org/10.1061/(ASCE)0733-9429(1991)117:11(1419), 1991.
Rickenmann, D.: Variability of Bed Load Transport During Six Summers of
Continuous Measurements in Two Austrian Mountain Streams (Fischbach and Ruetz, Water Resour. Res., 54, 107–131, https://doi.org/10.1002/2017WR021376, 2018.
Rickenmann, D. and McArdell, B. W.: Continuous measurement of sediment transport in the Erlenbach stream using piezoelectric bedload impact sensors, Earth Surf. Proc. Land., 32, 1362–1378, https://doi.org/10.1002/esp.1478, 2007.
Saravanan, K. and Sasithra, S.: Review on Classification Based on Artificial
Neural Networks, Int. J. Ambient Syst. Appl., 2, 11–18, https://doi.org/10.5121/ijasa.2014.2402, 2014.
Singer, M. B.: Transient response in longitudinal grain size to reduced
gravel supply in a large river, Geophys. Res. Lett., 37, L18403, https://doi.org/10.1029/2010GL044381, 2010.
Singh, A., Fienberg, K., Jerolmack, D. J., Marr, J., and Foufoula-Georgiou,
E.: Experimental evidence for statistical scaling and intermittency in sediment transport rates, J. Geophys. Res.-Earth, 114, F01025, https://doi.org/10.1029/2007JF000963, 2009.
Slater, L. J. and Singer, M. B.: Imprint of climate and climate change in alluvial riverbeds: Continental United States, 1950–2011, Geology, 41, 595–598, https://doi.org/10.1130/G34070.1, 2013.
Tan, Z., Leung, L. R., Li, H.-Y., and Cohen, S.: Representing global soil erosion and sediment flux in Earth System Models, J. Adv. Model. Earth Sy., 14, e2021MS002756, https://doi.org/10.1029/2021MS002756, 2022.
Warrick, J. A., Bountry, J. A., East, A. E., Magirl, C. S., Randle, T. J.,
and Gelfenbaum, G.: Large-scale dam removal on the Elwha River, sediment
budget and synthesis, Geomorphology, 246, 729–750, https://doi.org/10.1016/j.geomorph.2015.01.010, 2015.
Wilcock, P. R.: Two-Fraction Model of Initial Sediment Motion in Gravel-Bed
Rivers, Science, 280, 410–412, https://doi.org/10.1126/science.280.5362.410, 1998.
Wilcock, P. R.: Toward a practical method for estimating sediment-transport
rates in gravel-bed rivers, Earth Surf. Proc. Land., 26, 1395–1408, 2001.
Wilcock, P. R. and Crowe, J. C.: Surface-based Transport Model for Mixed-Size Sediment Surface-based Transport Model for Mixed-Size Sediment, J. Hydraul. Eng., 129, 120–128, https://doi.org/10.1061/(ASCE)0733-9429(2003)129:2(120), 2003.
Wilcock, P. R. and McArdell, B. W.: Partial transport of a sand/gravel sediment, Water Resour. Res., 33, 235–245, https://doi.org/10.1029/96WR02672, 1997.
Willmott, C. J. and Matsuura, K.: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance, Clim. Res., 30, 79–82, https://doi.org/10.3354/cr030079, 2005.
Wong, M. and Parker, G.: Reanalysis and Correction of Bed-Load Relation of
Meyer-Peter and Müller Using Their Own Database, J. Hydraul. Eng., 132, 1159–1168, https://doi.org/10.1061/(asce)0733-9429(2006)132:11(1159), 2006.
Zhao, T. and Nepf, H. M.: Turbulence Dictates Bedload Transport in Vegetated
Channels Without Dependence on Stem Diameter and Arrangement, Geophys. Res. Lett., 48, e2021GL095316, https://doi.org/10.1029/2021GL095316, 2021.
Zhou, X., Wu, W., Qin, Y., and Fu, X.: Geoinformation-based landslide
susceptibility mapping in subtropical area, Sci. Rep., 11, 24325, https://doi.org/10.1038/s41598-021-03743-5, 2021.
Short summary
It is of great importance to engineers and geomorphologists to predict the rate of bed load in rivers. In this contribution, we used a large dataset of measured data and developed an artificial neural network (ANN), a machine learning algorithm, for bed load prediction. The ANN model predicted the bed load flux close to measured values and better than the ones obtained from four standard bed load models with varying degrees of complexity.
It is of great importance to engineers and geomorphologists to predict the rate of bed load in...