Articles | Volume 11, issue 5
https://doi.org/10.5194/esurf-11-881-2023
https://doi.org/10.5194/esurf-11-881-2023
Research article
 | 
19 Sep 2023
Research article |  | 19 Sep 2023

Sediment source and sink identification using Sentinel-2 and a small network of turbidimeters on the Vjosa River

Jessica Droujko, Srividya Hariharan Sudha, Gabriel Singer, and Peter Molnar

Related authors

A process-informed framework linking temperature-rainfall projections and urban flood modeling
Wenyue Zou, Ruidong Li, Daniel B. Wright, Jovan Blagojevic, Peter Molnar, Mohammad A. Hussain, Yue Zhu, Yongkun Li, Guangheng Ni, and Nadav Peleg
EGUsphere, https://doi.org/10.5194/egusphere-2025-4099,https://doi.org/10.5194/egusphere-2025-4099, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Suspended sediment concentrations in Alpine rivers: from annual regimes to sub-daily extreme events
Amber van Hamel, Peter Molnar, Joren Janzing, and Manuela Irene Brunner
Hydrol. Earth Syst. Sci., 29, 2975–2995, https://doi.org/10.5194/hess-29-2975-2025,https://doi.org/10.5194/hess-29-2975-2025, 2025
Short summary
Responses of riverine dissolved organic matter to damming in two distinct hydrological regimes in northern Spain
Selin Kubilay, Edurne Estévez, José Barquín Ortiz, and Gabriel Singer
Biogeosciences, 22, 3279–3300, https://doi.org/10.5194/bg-22-3279-2025,https://doi.org/10.5194/bg-22-3279-2025, 2025
Short summary
Green water availability and water-limited crop yields under a changing climate in Ethiopia
Mosisa Tujuba Wakjira, Nadav Peleg, Johan Six, and Peter Molnar
Hydrol. Earth Syst. Sci., 29, 863–886, https://doi.org/10.5194/hess-29-863-2025,https://doi.org/10.5194/hess-29-863-2025, 2025
Short summary
The River Runner: a low-cost sensor prototype for continuous dissolved greenhouse gas measurements
Martin Dalvai Ragnoli and Gabriel Singer
J. Sens. Sens. Syst., 13, 41–61, https://doi.org/10.5194/jsss-13-41-2024,https://doi.org/10.5194/jsss-13-41-2024, 2024
Short summary

Cited articles

Arrigo, K. R., van Dijken, G., and Pabi, S.: Impact of a shrinking Arctic ice cover on marine primary production, Geophys. Res. Lett., 35, L19603, https://doi.org/10.1029/2008GL035028, 2008. a
Baker, D. B., Ewing, D. E., Johnson, L. T., Kramer, J. W., Merryfield, B. J., Confesor Jr, R. B., Richards, R. P., and Roerdink, A. A.: Lagrangian analysis of the transport and processing of agricultural runoff in the lower Maumee River and Maumee Bay, J. Great Lakes Res., 40, 479–495, 2014. a
Bernard, C. Y., Dürr, H. H., Heinze, C., Segschneider, J., and Maier-Reimer, E.: Contribution of riverine nutrients to the silicon biogeochemistry of the global ocean – a model study, Biogeosciences, 8, 551–564, https://doi.org/10.5194/bg-8-551-2011, 2011. a
Bernardo, N., Watanabe, F., Rodrigues, T., and Alcântara, E.: Atmospheric correction issues for retrieving total suspended matter concentrations in inland waters using OLI/Landsat-8 image, Adv. Space Res., 59, 2335–2348, 2017. a
Download
Short summary
We combined data from satellite images with data measured from a kayak in order to understand the propagation of fine sediment in the Vjosa River. We were able to find some storm-activated and some permanent sources of sediment. We also estimated how much fine sediment is carried into the Adriatic Sea by the Vjosa River: approximately 2.5 Mt per year, which matches previous findings. With our work, we hope to show the potential of open-access satellite images.
Share