Articles | Volume 12, issue 5
https://doi.org/10.5194/esurf-12-1145-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-12-1145-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Storm frequency, magnitude, and cumulative storm beach impact along the US east coast
Rachele Dominguez
CORRESPONDING AUTHOR
Department of Physics, Engineering, and Astrophysics, Randolph-Macon College, Ashland, VA 23005, USA
Michael S. Fenster
Geology/Environmental Studies Program, Randolph-Macon College, Ashland, VA 23005, USA
John W. McManus
Department of Computer Science, Randolph-Macon College, Ashland, VA 23005, USA
Related subject area
Cross-cutting themes: Impacts of climate change on Earth surface dynamics
Spatially coherent variability in modern orographic precipitation produces asymmetric paleo-glacier extents in flowline models: Olympic Mountains, USA
Modeling deadwood for rockfall mitigation assessments in windthrow areas
A 4000-year debris flow record based on amphibious investigations of fan delta activity in Plansee (Austria, Eastern Alps)
Biophysical controls of marsh soil shear strength along an estuarine salinity gradient
Current glacier recession causes significant rockfall increase: the immediate paraglacial response of deglaciating cirque walls
Temperature effects on the spatial structure of heavy rainfall modify catchment hydro-morphological response
Detection and explanation of spatiotemporal patterns in Late Cenozoic palaeoclimate change relevant to Earth surface processes
Estimates of late Cenozoic climate change relevant to Earth surface processes in tectonically active orogens
Reconstruction of North American drainage basins and river discharge since the Last Glacial Maximum
Vertical movements of frost mounds in subarctic permafrost regions analyzed using geodetic survey and satellite interferometry
Erosional response of an actively uplifting mountain belt to cyclic rainfall variations
Coastal vulnerability of a pinned, soft-cliff coastline – Part I: Assessing the natural sensitivity to wave climate
Andrew A. Margason, Alison M. Anders, Robert J. C. Conrick, and Gerard H. Roe
Earth Surf. Dynam., 11, 849–863, https://doi.org/10.5194/esurf-11-849-2023, https://doi.org/10.5194/esurf-11-849-2023, 2023
Short summary
Short summary
We examine differences in glacier extent in the Olympic Mountains, USA, where modern precipitation in east-facing valleys is only 50 % of that in west-facing valleys. During the Last Glacial Period, there were very small glaciers in the east and very large glaciers in the west. We use climate data and glacier models to show that the modern spatial pattern of precipitation is likely to have been similar during the past glaciation and may be sufficient to explain the asymmetry of glacier extent.
Adrian Ringenbach, Peter Bebi, Perry Bartelt, Andreas Rigling, Marc Christen, Yves Bühler, Andreas Stoffel, and Andrin Caviezel
Earth Surf. Dynam., 10, 1303–1319, https://doi.org/10.5194/esurf-10-1303-2022, https://doi.org/10.5194/esurf-10-1303-2022, 2022
Short summary
Short summary
The presented automatic deadwood generator (ADG) allows us to consider deadwood in rockfall simulations in unprecedented detail. Besides three-dimensional fresh deadwood cones, we include old woody debris in rockfall simulations based on a higher compaction rate and lower energy absorption thresholds. Simulations including different deadwood states indicate that a 10-year-old deadwood pile has a higher protective capacity than a pre-storm forest stand.
Carolin Kiefer, Patrick Oswald, Jasper Moernaut, Stefano Claudio Fabbri, Christoph Mayr, Michael Strasser, and Michael Krautblatter
Earth Surf. Dynam., 9, 1481–1503, https://doi.org/10.5194/esurf-9-1481-2021, https://doi.org/10.5194/esurf-9-1481-2021, 2021
Short summary
Short summary
This study provides amphibious investigations of debris flow fans (DFFs). We characterize active DFFs, combining laser scan and sonar surveys at Plansee. We discover a 4000-year debris flow record in sediment cores, providing evidence for a 7-fold debris flow frequency increase in the 20th and 21st centuries, coincident with 2-fold enhanced rainstorm activity in the northern European Alps. Our results indicate climate change as being the main factor controlling debris flow activity.
Megan N. Gillen, Tyler C. Messerschmidt, and Matthew L. Kirwan
Earth Surf. Dynam., 9, 413–421, https://doi.org/10.5194/esurf-9-413-2021, https://doi.org/10.5194/esurf-9-413-2021, 2021
Short summary
Short summary
We measured the shear strength of marsh soils along an estuarine salinity gradient to determine salinity's influence on marsh erodibility. Our work is one of the first studies to directly examine the relationship between salinity and marsh erodibility. We find that an increase in salinity correlates with higher soil shear strength values, indicating that salt marshes may be more resistant to erosion. We also show that both belowground biomass and soil properties drive shear strength differences.
Ingo Hartmeyer, Robert Delleske, Markus Keuschnig, Michael Krautblatter, Andreas Lang, Lothar Schrott, and Jan-Christoph Otto
Earth Surf. Dynam., 8, 729–751, https://doi.org/10.5194/esurf-8-729-2020, https://doi.org/10.5194/esurf-8-729-2020, 2020
Short summary
Short summary
Climate warming is causing significant ice surface lowering even in the uppermost parts of alpine glaciers. Using terrestrial lidar, we quantify rockfall in freshly exposed cirque walls. During 6-year monitoring (2011–2017), an extensive dataset was established and over 600 rockfall events identified. Drastically increased rockfall activity following ice retreat can clearly be observed as 60 % of the rockfall volume detached from less than 10 m above the glacier surface.
Nadav Peleg, Chris Skinner, Simone Fatichi, and Peter Molnar
Earth Surf. Dynam., 8, 17–36, https://doi.org/10.5194/esurf-8-17-2020, https://doi.org/10.5194/esurf-8-17-2020, 2020
Short summary
Short summary
Extreme rainfall is expected to intensify with increasing temperatures, which will likely affect rainfall spatial structure. The spatial variability of rainfall can affect streamflow and sediment transport volumes and peaks. The sensitivity of the hydro-morphological response to changes in the structure of heavy rainfall was investigated. It was found that the morphological components are more sensitive to changes in rainfall spatial structure in comparison to the hydrological components.
Sebastian G. Mutz and Todd A. Ehlers
Earth Surf. Dynam., 7, 663–679, https://doi.org/10.5194/esurf-7-663-2019, https://doi.org/10.5194/esurf-7-663-2019, 2019
Short summary
Short summary
We apply machine learning techniques to quantify and explain differences between recent palaeoclimates with regards to factors that are important in shaping the Earth's surface. We find that changes in ice cover, near-surface air temperature and rainfall duration create the most distinct differences. We also identify regions particularly prone to changes in rainfall and temperature-controlled erosion, which will help with the interpretation of erosion rates and geological archives.
Sebastian G. Mutz, Todd A. Ehlers, Martin Werner, Gerrit Lohmann, Christian Stepanek, and Jingmin Li
Earth Surf. Dynam., 6, 271–301, https://doi.org/10.5194/esurf-6-271-2018, https://doi.org/10.5194/esurf-6-271-2018, 2018
Short summary
Short summary
We use a climate model and statistics to provide an overview of regional climates from different times in the late Cenozoic. We focus on tectonically active mountain ranges in particular. Our results highlight significant changes in climates throughout the late Cenozoic, which should be taken into consideration when interpreting erosion rates. We also document the differences between model- and proxy-based estimates for late Cenozoic climate change in South America and Tibet.
Andrew D. Wickert
Earth Surf. Dynam., 4, 831–869, https://doi.org/10.5194/esurf-4-831-2016, https://doi.org/10.5194/esurf-4-831-2016, 2016
Short summary
Short summary
The ice sheets that once spread across northern North America dramatically changed the drainage basin areas and discharges of rivers across the continent. As these ice sheets retreated, starting around 19 500 years ago, they sent meltwater to the oceans, influencing climate and building a geologic record of deglaciation. This record can be used to evaluate ice-sheet reconstructions and build an improved history and understanding of past ice-sheet collapse across North America.
I. Beck, R. Ludwig, M. Bernier, T. Strozzi, and J. Boike
Earth Surf. Dynam., 3, 409–421, https://doi.org/10.5194/esurf-3-409-2015, https://doi.org/10.5194/esurf-3-409-2015, 2015
J. Braun, C. Voisin, A. T. Gourlan, and C. Chauvel
Earth Surf. Dynam., 3, 1–14, https://doi.org/10.5194/esurf-3-1-2015, https://doi.org/10.5194/esurf-3-1-2015, 2015
Short summary
Short summary
We have derived a simple solution to the stream power law equation governing the erosion of rapidly uplifting tectonic areas assuming that rainfall varies as a periodic function of time. We show that the erosional response of this forcing is characterized by an amplification of the resulting erosional flux variations as well as a time lag. We show how this time lag can be important in interpreting several geological observations.
A. Barkwith, C. W. Thomas, P. W. Limber, M. A. Ellis, and A. B. Murray
Earth Surf. Dynam., 2, 295–308, https://doi.org/10.5194/esurf-2-295-2014, https://doi.org/10.5194/esurf-2-295-2014, 2014
Cited articles
Ahmed, M. A., Sridharan, B., Saha, N. Sannasiraj, S. A., and Kuiry, S. N.: Assessment of coastal vulnerability for extreme events, Int. J. Disast. Risk Reduct., 82, 103341, https://doi.org/10.1016/j.ijdrr.2022.103341, 2022.
Aubrey, D. and Speer, P.: A study of non-linear tidal propagation in shallow inlet/estuarine systems Part I: Observations. Estuar. Coast. Shelf Sci., 21, 185–205, 1985.
Balsillie, J. H.: Volumetric beach and coast erosion due to storm and hurricane impact, Open File Report No. 78, Florida Geological Survey, Tallahassee, Florida, 37 pp., https://doi.org/10.35256/OFR78, 1999.
Bender, M. A., Knutson, T. R., Tuleya, R. E., and Held, I.: Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes, Science, 327, 454–458, https://doi.org/10.1126/science.1180568, 2010.
Bengtsson, L., Hodges, K. I., Esch, M., Keenlyside, N., Kornblueh, L., Luo, J.-J., and Yamagata, T.: How may tropical cyclones change in a warmer climate?, Tellus A, 59, 539–561, https://doi.org/10.1111/j.1600-0870.2007.00251.x, 2007.
Bhatia, K., Vecchi, G., Murakami, H., Underwood, S., and Kossin, J.: Projected response of tropical cyclone intensity and intensification in a global climate model, J. Climate, 31, 8281–8303, https://doi.org/10.1175/JCLI-D-17-0898.1, 2018.
Bigelow, F. H. and Moore, W. L.: Storms, Storm Tracks and Weather Forecasting, United States, Dept. of Agriculture, Weather Bureau, Government Printing Office, Washington, DC, 87 pp., 1897.
Birchler, J. J., Dalyander, P. S., Stockdon, H. F., and Doran, K. S.: National assessment of nor'easter-induced coastal erosion hazards – Mid- and northeast Atlantic coast, US Geological Survey Open-File Report 2015-1154, US Geolgical Survey, p. 34, https://doi.org/10.3133/ofr20151154, 2015.
Booth, J. F., Riedre, H. E., and Kushnir, Y.: Comparing hurricane and extratropical storm surge for the Mid-Atlantic and northeast coast of the United States for 1979–2013, Environ. Res. Lett., 11, 094004, https://doi.org/10.1088/1748-9326/11/9/094004, 2016.
Bromirski, P. D. and Kossin, J. P.: Increasing hurricane wave power along the U.S. Atlantic and Gulf coasts, J. Geophys. Res., 113, C07012, https://doi.org/10.1029/2007JC004706, 2008.
Burvingt, O., Masselink, G., Russell, P., and Scott, T.: Classification of beach response to extreme storms, Geomorpology, 295, 722–737, https://doi.org/10.1016/j.geomorph.2017.07.022, 2017.
Callahan, J. A., Leathers, D. J., and Callahan, C. L.: Comparison of extreme coastal flooding events between tropical and midlatitude weather systems in the Delaware and Chesapeake Bays for 1980–2019, J. Appl. Meteorol. Clim., 61, 457–472, https://doi.org/10.1175/JAMC-D-21-0077.1, 2022.
Camargo, S. J.: Global and regional aspects of tropical cyclone activity in the CMIP5 models, J. Climate, 26, 9880–9902, https://doi.org/10.1175/JCLI-D-12-00549.1, 2013.
Chang, E. K. M.: Impacts of background field removal on CMIP5 projected changes in Pacific winter cyclone activity, J. Geophys. Res.-Atmos, 119, 4626–4639, https://doi.org/10.1002/2013jd020746, 2014.
Chang, E. K. M.: CMIP5 projected change in northern hemisphere winter cyclones with associated extreme winds, J. Climate, 31, 6527–6542, https://doi.org/10.1175/JCLI-D-17-0899.1, 2018.
Chi, L., Wolfe, C. L. P., and Hameed, S.: Reconsidering the relationship between gulf stream transport and dynamic sea level at U.S. east coast. Geophys. Res. Lett., 50, e2022GL102018, https://doi.org/10.1029/2022GL102018, 2023.
Cohn, N., Ruggiero, P., García-Medina, G., Anderson, D., Serafin, K. A., and Biel, R.: Environmental and morphologic controls on wave-induced dune response, Geomorphology, 329, 108–128, https://doi.org/10.1016/j.geomorph.2018.12.023, 2019.
Colle, B. A., Zhang, Z., Lombardo, K. A., Chang, E., Liu, P., and Zhang, M.: Historical evaluation and future prediction of eastern North American and western Atlantic extratropical cyclones in the CMIP5 Models during the cool season, J. Climate, 26, 6882–6903, https://doi.org/10.1175/JCLI-D-12-00498.1, 2013.
Colle, B. A., Booth, J. F., and Chang, E. K. M.: A review of historical and future changes of extratropical cyclones and associated impacts along the US East Coast, Curr. Clim. Change Rep., 1, 125–143, https://doi.org/10.1007/s40641-015-0013-7, 2015.
Davis, R. E., Dolan, R., and Demme, G.: Synoptic climatology of Atlantic coast northeasters, Int. J. Climatol., 13, 171–189, 1993.
Dean, R. G.: Equilibrium beach profiles: characteristics and applications, J. Coast. Res., 7, 53–84, 1991.
Dinan, T.: Projected increases in hurricane damage in the United States: The role of climate change and coastal development, Ecol. Econ., 138, 186–198, https://doi.org/10.1016/j.ecolecon.2017.03.034, 2017.
Dolan, R. and Davis, R. E.: Coastal Storm Hazards, J. Coast. Res., 12, 103–114, 1994.
Dominguez, R., Fenster, M. McManus, J.: CSII calculations and Figs., Zenodo [code], https://doi.org/10.5281/zenodo.8277826, 2023.
Doran, K. S., Birchler, J. J., Hardy, M. W., Bendik, K. J., Pardun, J. M., and Locke, H. A.: National assessment of hurricane-induced coastal erosion hazards (ver. 2.0, February 2021): U.S. Geological Survey data release, US Geological Survey, https://doi.org/10.5066/P99ILAB9, 2021.
Edelman, T. I.: Dune erosion during storm conditions, in: Proceedings of 13th conference on coastal engineering, American Society of Civil Engineers, 10–14 June 1972, Vancouver, Canada, 1305–1312, https://doi.org/10.9753/icce.v13.66, 1972.
Emanuel, K. A.: Increasing destructiveness of tropical cyclones over the past 30 years, Nature, 436, 686–688, https://doi.org/10.1038/nature03906, 2005.
Emanuel, K. A.: Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century, P. Natl. Acad. Sci. USA, 110, 12219–12224, https://doi.org/10.1073/pnas.1301293110, 2013.
Ezer, T.: Sea level rise, spatially uneven and temporally unsteady: Why the U.S. East Coast, the global tide gauge record, and the global altimeter data show different trends, Geophys. Res. Lett., 40, 5439–5444, https://doi.org/10.1002/2013GL057952, 2013.
Ezer, T., Atkinson, L. P., Corlett, W. B., and Blanco, J. L.: Gulf Stream's induced sea level rise and variability along the U.S. mid-Atlantic coast, J. Geophys. Res., 118, 685–697, https://doi.org/10.1002/JGRC.20091, 2013.
Fenster, M. S. and Dominguez, R.: Quantifying coastal storm impacts using a new cumulative storm impact index (CSII) model: Application along the Virginia coast, USA, J. Geophys. Res.-Earth, 127, e2022JF006641, https://doi.org/10.1029/2022JF006641, 2022.
Feser, F., Barcikowska, M., Krueger, O., Schenk, F., Weisse, R., and Xia, L.: Storminess over the North Atlantic and northwestern Europe – A review, Q. J. Roy. Meteorol. Soc., 141, 350–382, https://doi.org/10.1002/qj.2364, 2014.
FitzGerald, D. M., Fenster, M. S., Argow, B. A., and Buynevich, I. V.: Coastal impacts due to sea-level rise, Annu. Rev. Earth Planet. Sci., 36, 601–647, https://doi.org/10.1146/annurev.earth.35.031306.140139, 2008.
Friedman, R. M., Dunn, S. V., and Merrell, W. J., Jr.: Summary of the Heinz Center report on coastal erosion and the National Flood Insurance Program, J. Coast. Res., 8, 568–575, 2002.
Ghanavati, M., Young, I., Kirezci, E., Ranasinghe, R., Duong, T. M., Luijendijk, A. P.: An assessment of whether long-term global changes in waves and storm surges have impacted global coastlines, Nat. Sci. Rep., 13, 11549, https://doi.org/10.1038/s41598-023-38729-y, 2023.
Gualdi, S., Scoccimarro, E., and Navarra, A.: Changes in tropical cyclone activity due to global warming: results from a high-resolution coupled general circulation model, J. Climate, 21, 5204–5228, https://doi.org/10.1175/2008JCLI1921.1, 2008.
Hamid, A. I. A., Din, A. H. M., Yusof, N., Abdullah, N. M., Omar, A. H., and Khanan, M. F. A.: Coastal vulnerability index development: A review, in: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 6th International Conference on Geomatics and Geospatial Technology, 1–3 October 2019, Kuala Lumpur, Malaysia, 229–235, https://doi.org/10.5194/isprs-archives-XLII-4-W16-229-2019, 2019.
Harley, M.: Coastal storm definition, in: Coastal Storms: Processes and Impacts, edited by: Ciavola, P. and Coco, G., John Wiley & Sons, 1–21, https://doi.org/10.1002/9781118937099.ch1, 2017.
Harley, M. D., Masselink, G., Ruiz de Alegría-Arzaburu, A., Valiente, N. G., and Scott, T.: Single extreme storm sequence can offset decades of shoreline retreat projected to result from sea-level rise, Commun. Earth Environ., 3, 112, https://doi.org/10.1038/s43247-022-00437-2, 2022.
Harvey, T. C., Hamlington, B. D., Frederikse, T., Nerem, R. S., Piecuch, C. G., Hammond, W. C., Blewitt, G., Thompson, P. R., Bekaert, D. P. S., Landerer, F. W., Reager, J. T., Kopp, R. E., Chandanpurkar, H., Fenty, I., Trossman, D., Walker, J. S., and Boening, C.: Ocean mass, sterodynamic effects, and vertical land motion largely explain US coast relative sea level rise, Commun. Earth Environ., 2, 233, https://doi.org/10.1038/s43247-021-00300-w, 2021.
Hayden, B.: Storm wave climates at Cape Hatteras, North Carolina: recent secular variations, Science, 190, 981–983, 1975.
Hayden, B. P.: Secular variations in Atlantic coast extratropical cyclones, Mon. Weather Rev., 100, 159–167, 1981.
Hayden, B. P.: Climate change and extratropical storminess in the United States: An assessment, J. Am. Water Resour. Assoc., 35, 1387–1397, 1999.
Hein, S. S. V., Sohrt, V., Nehlsen, E., Strotmann, T., and Fröhle, P.: Tidal oscillation and resonance in semi-closed estuaries – empirical analyses from the Elbe Estuary, North Sea, Water, 13, 848, https://doi.org/10.3390/w13060848, 2021.
Hirsch, M., DeGaetano, A., and Colucci, S.: An East Coast winter climatology, J. Climate, 14, 882–899, https://doi.org/10.1175/1520-0442(2001)014<0882:AECWSC>2.0.CO;2, 2001.
Holland, G. and Bruyère, C. L.: Recent intense hurricane response to global climate change, Clim. Dynam., 42, 617–627, https://doi.org/10.1007/s00382-013-1713-0, 2014.
Hosler, C. L. and Gamage, L. A.: Cyclone frequencies in the United States for the period 1905 to 1954.,Mon. Weather Rev., 84, 388–390, 1956.
Kang, N. Y. and Elsner, J. B.: Consensus on climate trends in western north Pacific tropical cyclones, J. Climate, 25, 7564–7573, https://doi.org/10.1175/jcli-d-11-00735.1, 2012.
Karunarathna, H., Pender, D., Ranasinghe, R., Short, A. D., and Reeve, D. E.: The effects of storm clustering on beach profile variability, Mar. Geol., 348, 103–112, https://doi.org/10.1016/j.margeo.2013.12.007, 2014.
Klein, W. H.: A hemispheric study of daily pressure variability at sea level and aloft, J. Meteorol., 8, 332–346, 1951.
Klein, W. H.: The frequency of cyclones and anticyclones in relation to the mean circulation, J. Meteorol., 15, 98–102, 1958.
Klein, W. H.: Application of synoptic climatology and short-range numerical prediction to five-day forecasting, Weather Bureau Research Paper No. 46, Weather Bureau, Washington, DC, 109 pp., 1965.
Kishtawal, C. M., Jaiswal, N., Singh, R., and Niyogi, D.: Tropical cyclone intensification trends during satellite era (1986–2010), Geophys. Res. Lett., 39, 1–6, https://doi.org/10.1029/2012gl051700, 2012.
Knutson, T. R., Sirutis, J. J., Garner, S. T., Held, I. M., and Tuleva, R. E.: Simulation of the recent multidecadal increase of Atlantic hurricane activity using an 18-km-grid regional model, B. Am. Meteorol. Soc., 88, 1549–1565, 2007.
Knutson, T. R., Sirutis, J. J., Garner, S. T., Vecchi, G. A., and Held, I. M.: Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions, Nat. Geosci., 359, 1–6, 2008.
Knutson, T. R., McBride, J. L., Chan, J., Emanuel, K. A., Holland, G. J., Landsea, C. W., Held, I., Kossin, J. P., Srivastava, A. K., and Sugi, M.: Tropical cyclones and climate change, Nat. Geosci., 3, 157–163, https://doi.org/10.1038/ngeo779, 2010.
Knutson, T.R, Sirutis, J. J., Zhao, M., Tuleya, R. E., Bender, M., Vecchi, G. A., Villarini, G., and Chavas, D.: Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4.5 scenarios, J. Climate, 28, 7203–7224, https://doi.org/10.1175/jcli-d-15-0129.1, 2015.
Knutson, T. R., Camargo, S. J., Chan, J. C. L., Emanuel, K., Ho, C. H., Kossin, J. P., Mohapatra, M., Satoh, M., Sugi, M., Walsh, K., and Wu, L.: Tropical cyclones and climate change assessment: Part I: Detection and attribution, B. Am. Meterol. Soc., 100, 1987–2007, https://doi.org/10.1175/BAMS-D-18-0189.1, 2019.
Knutson, T. R., Camargo, S. J., Chan, J. C. L., Emanuel, K., Ho, C. H., Kossin, J. P., Mohapatra, M., Satoh, M., Sugi, M., Walsh, K., and Wu, L.: Tropical cyclones and climate change assessment: Part II: Projected response to anthropogenic warming, B. Am. Meterol. Soc., 101, E303–E322, https://doi.org/10.1175/BAMS-D-18-0194.1, 2020.
Komar, P. and Allan, J. C.: Increasing hurricane-generated wave heights along the U.S. East Coast and their climate controls, J. Coast. Res., 24, 479–488, https://doi.org/10.2112/07-0894.1, 2008.
Kossin, J. P.: A global slowdown of tropical-cyclone translation speed, Nature, 558, 104–107, https://doi.org/10.1038/s41586-018-0158-3, 2018.
Kossin, J. P., Olander, T. L.. and Knapp, K. R.: Trend analysis with a new global record of tropical cyclone intensity, J. Climate, 26, 9960–9976, https://doi.org/10.1175/jcli-d-13-00262.1, 2013.
Kossin, J. P., Hall, T., Knutson, T., Kunkel, K. E., Trapp, R. J., Waliser, D. E., and Wehner, M. F.: Extreme storms, in: Climate Science Special Report: Fourth National Climate Assessment, Volume I, edited by: Wuebbles, D. J., Fahey, D. W., Hibbard, K. A., Dokken, D. J., Stewart, B. C., and Maycock, T. K., US Global Change Research Program, Washington, DC, 256–276, https://doi.org/10.7930/J07S7KXX, 2017.
Kossin, J. P., Knapp, K. R., Olander, T. L., and Velden, C. S.: Global increase in major tropical cyclone exceedance probability over the past four decades, P. Natl. Acad. Sci. USA, 117, 11975–11980, https://doi.org/10.1073/pnas.1920849117, 2020.
Leaman, C. K., Harley, M. D., Splinter, K. D., Thran, M. C., Kinsela, M. A., and Turner, I. L.: A storm hazard matrix combining coastal flooding and beach erosion, Coast. Eng., 170, 104001, https://doi.org/10.1016/j.coastaleng.2021.104001, 2021.
Leckebusch, G. C. and Ulbrich, U.: On the relationship between cyclones and extreme windstorm events over Europe under climate change, Global Planet. Change, 44, 181–193, https://doi.org/10.1016/j.gloplacha.2004.06.011, 2004.
Leckebusch, G. C., Koffi, B., Ulbrich, U., Pinto, J. G., Spangehl, T., and Zacharias, S.: Analysis of frequency and intensity of European winter storm events from a multi-model perspective, at synoptic and regional scales, Clim. Res., 32, 59–74, https://doi.org/10.3354/cr031059, 2006.
Little, C. M., Horton, R. M., Kopp, R. E., Oppenheimer, M., Vecchi, G. A., and Villarini, G.: Joint projections of US East Coast sea level and storm surge, Nat. Clim. Change, 5, 1114–1120, https://doi.org/10.1038/nclimate2801, 2015.
Lozano, I. and Swail, V.: The link between wave height variability in the north Atlantic and the storm track activity in the last four decades, Atmos.-Ocean, 40, 377–388, https://doi.org/10.3137/ao.400401, 2002.
Martin, G. M., Ringer, M. A., Pope, V. D., Jones, A., Dearden, C., and Hinton, T. J.: The physical properties of the atmosphere in the new Hadley Centre Global Environmental Model (HadGEM1). Part I: Model description and global climatology, J. Climate, 19, 1274–1301, https://doi.org/10.1175/JCLI3636.1, 2006.
Mather, J. R., Adams, H., and Yoshioka, G. A.: Coastal storms of the United States, J. Appl. Meteorol., 3, 693–706, 1964.
McInnes, K. L., Walsh, K. J. E., Hoeke, R. K., O'Grady, J. G., Colberg, F., and Hubbert, G. D.: Quantifying storm tide risk in Fiji due to climate variability and change, Global Planet. Change, 116, 115–129, https://doi.org/10.1016/j.gloplacha.2014.02.004, 2014.
Mclaughlin, S. and Cooper, J. A. G.: A multi-scale coastal vulnerability index: A tool for coastal managers?, Environ. Hazards, 9, 233–248, https://doi.org/10.3763/ehaz.2010.0052, 2010.
McManus, J., Dominguez, R., and Fenster, M.: Data pull and groom, Zenodo [code], https://doi.org/10.5281/zenodo.8277727, 2023a.
McManus, J., Dominguez, R., and Fenster, M.: Intermediate water level data set, Zenodo [data set], https://doi.org/10.5281/zenodo.8277745, 2023b.
McManus, J., Dominguez, R., and Fenster, M.: Storm ID and SEPI calculations, Zenodo [code], https://doi.org/10.5281/zenodo.8277822, 2023c.
McManus, J., Dominguez, R., and Fenster, M.: Storm and SEPI data set, Zenodo [data set], https://doi.org/10.5281/zenodo.8277826, 2023d.
Mei, W. and Xie, S. P.: Intensification of landfalling typhoons over the northwest Pacific since the late 1970s, Nat. Geosci., 9, 753–757, https://doi.org/10.1038/ngeo2792, 2016.
Meyer, E. M. I. and Gaslikova, L.: Investigation of historical severe storms and storm tides in the German Bight with century reanalysis data, Nat. Hazards Earth Syst. Sci., 24, 481–499, https://doi.org/10.5194/nhess-24-481-2024, 2024.
Miller, J. K. and Dean, R. G.: An engineering scale model for predicting the shoreline response to variations in waves and water levels, Coast. Eng., 3554–3566, https://doi.org/10.1142/9789812709554_0299, 2006.
Miller, J. K. and Livermont, E.: A predictive index for wave and storm surge induced erosion, in: Proceedings of the 31st International Conference on Coastal Engineering, 31 August–5 September 2008, Hamburg, Germany, 4143–4153, https://doi.org/10.1142/9789814277426_0344, 2008.
Morgan, J. P. and Stone, G. W.: A technique for quantifying the coastal geomorphology of Florida's barrier islands and sandy beaches”, Shore Beach, 53, 19–26, 1985.
Muis, S., Aerts, J. C. J. H., Á. Antolínez, J. A., Dullaart, J. C., Duong, T. M., Erikson, L., Haarsma, R. J., Apecechea, M. I., Mengel, M., Le Bars, D., O'Neill, A., Ranasinghe, R., Roberts, M. J., Verlaan, M., Ward, P. J., and Yan, K.: Global projections of storm surges using high-resolution CMIP6 climate models, Earth's Future, 11, e2023EF003479, https://doi.org/10.1029/2023EF003479, 2023.
Murakami, H., Hsu, P.-C. Arakawa, O., and Li, Y.: Influence of model biases on projected future changes in tropical cyclone frequency of occurrence, J. Climate, 27, 2159–2181, https://doi.org/10.1175/JCLI-D-13-00436.1, 2014.
Murakami, H., Vecchi, G. A., Underwood, S., Delworth, T. L., Wittenberg, A. T., Anderson, W. G., Chen, J.-H., Gudgel, R. G., Harris, L. M., Lin., S.-J., and Zeng, F.: Simulation and prediction of category 4 and 5 hurricanes in the high-resolution GFDL HiFLOR coupled climate model, J. Climate, 28, 9058–9079, https://doi.org/10.1175/jcli-d-15-0216.1, 2015.
Murakami, H., Delworth, T. L., Cooke, W. F., Zhao, M., Xiang, B., and Hsu, P.-C.: Detected climatic change in global distribution of tropical cyclones, P. Natl. Acad. Sci. USA, 117, 10706–10714, https://doi.org/10.1073/pnas.1922500117, 2020.
Nadal-Caraballo, N. C., Melby, J. A., Gonzalez, V. M., and Cox, A. T.: Coastal storm hazards from Virginia to Maine, North Atlantic Comprehensive Study ERDC/CHL TR-15-5, US Army Corps of Engineer Research and Development Center, Vicksburg, MS, 204 pp., https://www.nad.usace.army.mil/Portals/40/docs/ComprehensiveStudy/Coastal_Storm_Hazards_from_Virginia_to_Maine.pdf (last access: 26 September 2024), 2015.
NOAA: About Harmonic Constituents, Tides and Currents website, https://tidesandcurrents.noaa.gov/about_harmonic_constituents.html (last access: 21 August 2023), 2023.
NOAA: Tides and Currents, https://tidesandcurrents.noaa.gov/ (last access: 15 February 2024), 2024.
NOAA NCEI – National Centers for Environmental Information: U.S. billion-dollar weather and climate disasters, https://doi.org/10.25921/stkw-7w73, 2024.
Parker, B. B.: Tidal Analysis and Prediction, NOAA Special Publication NOS CO-OPS 3, US Department of Commerce, Silver Spring, Maryland, 378 pp., https://tidesandcurrents.noaa.gov/publications/Tidal_Analysis_and_Predictions.pdf (last access: 26 September 2024), 2007.
Parker, K., Erikson, L., Thomas, J., Nederhoff, K., Barnard, P., and Muis, S.: Relative contributions of water-level components to extreme water levels along the U.S. Southeast Atlantic Coast from a regional-scale water-level hindcast, Nat. Hazards, 117, 2219–2248, https://doi.org/10.1007/s11069-023-05939-6, 2023.
Roberts, M. J., Camp, J., Seddon, J., Vidale, P. L., Hodges, K., Vanniere, B., Mecking, J., Haarsma, R., Bellucci, A., Scoccimarro, E., Caron, L.-P., Chauvin, F., Terray, L., Valcke, S., Moine, M.-P., Putrasahan, D., Roberts, C., Senan, R., Zarzycki, C., and Ullrich, P.: Impact of model resolution on tropical cyclone simulation using the HighResMIP–PRIMAVERA multimodel ensemble, J. Climate, 33, 2557–2583, https://doi.org/10.1175/jcli-d-19-0639.1, 2020.
Sallenger, A. H.: Storm impact scale for barrier islands, J. Coast. Res., 16, 890–895, 2000.
Sallenger, A. H., Doran, K. S., and Howd, P.: Hotspot of accelerated sea-level rise on the Atlantic coast of North America, Nat. Clim. Change, 2, 884–888, https://doi.org/10.1038/nclimate1597, 2012.
Schreck, C. J., Knapp, K. R., and Kossin, J. P.: The impact of best track discrepancies on global tropical cyclone climatologies using IBTrACS, Mon. Weather Rev., 142, 3881–3899, https://doi.org/10.1175/mwr-d-14-00021.1, 2014.
Seiler, C. and Zwiers, F. W.: How will climate change affect explosive cyclones in the extratropics of the Northern Hemisphere?, Clim. Dynam., 46, 3633–3644, https://doi.org/10.1007/s00382-015-2791-y, 2016.
Seneviratne, S. I., Zhang, X., Adnan, M., Badi, W., Dereczynski, C., Di Luca, A., Ghosh, S., Iskandar, I., Kossin, J., Lewis, S., Otto, F., Pinto, I., Satoh, M., Vicente-Serrano, S. M., Wehner, M., and Zhou, B.: Weather and climate extreme events in a changing climate, in: Climate Change 2021: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, UK and New York, NY, USA, 1513–1766, https://doi.org/10.1017/9781009157896.013, 2021.
Serafin, K. A., Ruggiero, P., and Stockdon, H. F.: The relative contribution of waves, tides, and non-tidal residuals to extreme total water levels on U.S. West Coast sandy beaches, Geophys. Res. Lett., 44, 1839–1847, https://doi.org/10.1002/2016GL071020, 2017.
Shaw, T. A., Baldwin, M., Barnes, E. A., Caballero, R., Garfinkel, C. I., Hwang, Y. T., Li, C., and O'gorman, P. A.: Storm track processes and the opposing influences of climate change, Nat. Geosci., 9, 656–664, https://doi.org/10.1038/ngeo2783, 2016.
Smith, A. B. and Katz, R. W.: US billion-dollar weather and climate disasters: data sources, trends, accuracy and biases, Nat. Hazards, 67, 387–410, https://doi.org/10.1007/s11069-013-0566-5, 2013.
Smith, A. B. and Matthews, J. L.: Quantifying uncertainty and variable sensitivity within the US billion-dollar weather and climate disaster cost estimates, Nat. Hazards, 77, 1829–1851, https://doi.org/10.1007/s11069-015-1678-x, 2015.
Sobel, A. H., Wing, A. A., Camargo, S. J., Patricola, C. M., Vecchi, G. A., Lee, C.-Y., and Tippett, M. K.: Tropical cyclone frequency, Earth's Future, 9, e2021EF002275, https://doi.org/10.1029/2021EF002275, 2021.
Speer, P. and Aubrey, D.: A study of non-linear tidal propagation in shallow inlet/estuarine systems Part II: Theory, Estuar. Coast. Shelf Sci., 21, 207–224, 1985.
Steetzel, H. J.: Cross-shore transport during storm surges, PhD thesis, Deft University of Technology, Delft, 242 pp., https://resolver.tudelft.nl/uuid:83f01c82-f290-485e-b078-7643f1c2d419 (last access: 26 September 2024), 1993.
Stockdon, H. F., Sallenger, A. H., Holman, R. A., and Howd, P.: A simple model for the spatially-variable coastal response to hurricanes, Mar. Geol., 238, 1–20, https://doi.org/10.1016/J.MARGEO.2006.11.004, 2007.
Stockdon, H. F., Long, J. W., Palmsten, M. L., Van der Westhuysen, A., Doran, K. S., and Snell, R. J.: Operational forecasts of wave-driven water levels and coastal hazards for US Gulf and Atlantic coasts, Commun. Earth Environ., 4, 169, https://doi.org/10.1038/s43247-023-00817-2, 2023.
Sweet, W. V., Kopp, R. E., Weaver, C. P., Obeysekera, J., Horton, R. M., Thieler, E. R., and Zervas, C.: Global and regional sea level rise scenarios for the United States, NOAA Tech. Rep. NOS CO-OPS 083, NOAA, Silver Spring, MD, 55 pp. with appendices, https://doi.org/10.7289/v5/tr-nos-coops-083, 2017.
Tadesse, M. G., Wahl, T., Rashid, M. M., Dangendorf, S., Rodríguez-Enríquez, A., and Talke, S. A.: Long-term trends in storm surge climate derived from an ensemble of global surge reconstructions, Sci. Rep., 12, 13307, https://doi.org/10.1038/s41598-022-17099-x, 2022.
Tauvale, L. and Tsuboki, K.: Characteristics of tropical cyclones in the Southwest Pacific, J. Meteorol. Soc. Jpn. Ser. II, 97, 711–731, https://doi.org/10.2151/jmsj.2019-042, 2019.
Thieler, E. R. and Hammar-Klose, E. S.: National assessment of coastal vulnerability to sea level rise: preliminary results for the U.S. Atlanta coast, US Geol. Surv. Open File Rep. 99-593, US Geological Survey, https://doi.org/10.3133/ofr99593, 1999.
Torresan, S., Critto, A., Rizzi, J., and Marcomini, A.: Assessment of coastal vulnerability to climate change hazards at the regional scale: the case study of the North Adriatic Sea, Nat. Hazards Earth Syst. Sci., 12, 2347–2368, https://doi.org/10.5194/nhess-12-2347-2012, 2012.
Tory, K. J., Chand, S. S., McBride, J. L., Ye, H., and Dare, R. A.: Projected changes in late 21st century tropical cyclone frequency in 13 coupled climate models from phase 5 of the coupled model intercomparison project, J. Climate, 26, 9946–9959, https://doi.org/10.1175/JCLI-D-13-00010.1, 2013.
van Rijn, L.C.: Analytical and numerical analysis of tides and salinities in estuaries; part I: Tidal wave propagation in convergent estuaries, Ocean Dynam., 61, 1719–1741, https://doi.org/10.1007/s10236-011-0453-0, 2011.
Vecchi, G. A., Swanson, K. L., and Soden, B. J.: Whither hurricane activity?, Science, 322, 687–689, 2008.
Walsh, K. J. E., Camargo, S. J., Vecchi, G. A., Daloz, A. S., Elsner, J., Emanuel, K., Horn, M., Lim, Y.-K., Roberts, M., Patricola, C., Scoccimarro, E., Sobel., A. H., Strazzo, S., Villarini, G., Wehner, M., Zhao, M., Kossin, J. P., LaRow, T., Oouchi, K., Schubert, S., Wang, H., Bacmeister, J., Chang, P., Chauvin, F., Jablonowski, C., Kumar, A., Murakami, H., Ose, T., Reed, K. A., Saravanan, R., Yamada, Y., Zarzycki, C. M., Vidale, P. L., Jonas, J. A., and Henderson, N.: Hurricanes and climate: The U.S. CLIVAR Working Group on hurricanes, B. Am. Meteorol. Soc., 96, 997–1017, https://doi.org/10.1175/bams-d-13-00242.1, 2015.
Walsh, K. J. E., McBride, J. L., Klotzbach, P. J., Balachandran, S., Camargo, S. J., Holland, G., Knutson, T. R., Kossin, J. P., Lee, T.-C., Sobel, A., and Sugi, M.: Tropical cyclones and climate change, WIREs Clim. Change, 7, 65–89, https://doi.org/10.1002/wcc.371, 2016.
Webster, P. J., Holland, G. J., Curry, J. A., and Chang, H.-R.: Changes in tropical cyclone number, duration, and intensity in a warming environment, Science, 309, 1844–1846, 2005.
Wehner, M., Prabhat, Reed, K. A., Stone, D., Collins, W. D., and Bacmeister, J.: Resolution dependence of future tropical cyclone projections of CAM5.1 in the U.S. CLIVAR Hurricane Working Group idealized configurations, J. Climate, 28, 3905–3925, https://doi.org/10.1175/JCLI-D-14-00311.1, 2015.
Xi, D., Lin, N., and Gori, A.: Increasing sequential tropical cyclone hazards along the US East and Gulf coasts, Nat. Clim. Change, 13, 258–265, https://doi.org/10.1038/s41558-023-01595-7, 2023.
Yamaguchi, M., Chan, J. C. L., Moon, I.-J., Yoshida, K., and Mizuta, R.: Global warming changes tropical cyclone translation speed, Nat. Commun., 11, 47, https://doi.org/10.1038/s41467-019-13902-y, 2020.
Yang, H., Lohmann, G., Lu, J., Gowan, E. J., Shi, X., Liu, J., and Wang, Q.: Tropical expansion driven by poleward advancing mid-latitude meridional temperature gradients, J. Geophy. Res.-Atmos., 125, e2020JD033158, https://doi.org/10.1029/2020JD033158, 2020.
Yin, J.: Rapid decadal acceleration of sea level rise along the U.S. East and Gulf Coasts during 2010–2022 and its impact on hurricane-induced storm surge, J Climate, 1, 1–38, https://doi.org/10.1175/JCLI-D-22-0670.1, 2023.
Yin, J. and Goddard, P. B.: Oceanic control of sea level rise patterns along the East Coast of the United States, Geophys. Res. Lett., 40, 5514–5520, https://doi.org/10.1002/2013GL057992, 2013.
Zappa, G., Shaffrey, L. C., Hodges, K. I., Sansom, P. G,. and Stephenson, D. B.: A multimodel assessment of future projections of North Atlantic and European extratropical cyclones in the CMIP5 climate models, J. Climate, 26, 5846–5862, https://doi.org/10.1175/jcli-d-12-00573.1, 2013.
Zarzycki, C. M. and Ullrich, P. A.: Assessing sensitivities in algorithmic detection of tropical cyclones in climate data, Geophys. Res. Lett., 44, 1141–1149, https://doi.org/10.1002/2016gl071606, 2017.
Zhang, K.: Twentieth century storm activity and sea level rise along the U.S. east coast and their impact on shoreline position, PhD thesis, McKeldin Library, University of Maryland at College Park, College Park, 266 pp., 1998.
Zhang, K., Douglas, B. C., and Leatherman, S. P.: Twentieth-century storm activity along the U.S. east coast, J. Climate, 13, 1748–1761, 2000.
Zhang, K., Douglas, B. C., and Leatherman, S. P.: Beach erosion potential for severe nor'easters, J. Coast. Res., 17, 309–321, 2001.
Zhao, C., Lin, Y., Wu, F., Wang, Y., Li, Z., Rosenfeld, D., and Wang, Y.: Enlarging rainfall area of tropical cyclones by atmospheric aerosols, Geophys. Res. Lett., 45, 8604–8611, https://doi.org/10.1029/2018gl079427, 2018.
Zhao, M., Held, I. M., Lin, S.-J., and Vecchi, G. A.: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km Resolution GCM, J. Climate, 22, 6653–6678, https://doi.org/10.1175/2009JCLI3049.1, 2009.
Zishka, K. M. and Smith, P. J.: The climatology of cyclones and anticyclones over North America and surrounding ocean environs for January and July, 1950–77, Mon Weather Rev., 108, 387–401, 1980.
Short summary
Climate change is a hot topic and changes in storminess can be indicative of climate change impacts. Also, coastal storms can impact ecosystems and the people who live, work, and recreate along our world's coasts. Our findings show that the number of the US east coast storms has not increased since the early 20th century, but storm strength has increased moderately. Finally, beaches can take up to 10 years to recover depending on the number, timing, and strength of previous storms.
Climate change is a hot topic and changes in storminess can be indicative of climate change...