Articles | Volume 12, issue 3
https://doi.org/10.5194/esurf-12-709-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-12-709-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Time-varying drainage basin development and erosion on volcanic edifices
Department of Geography, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium
Helmholz Center Potsdam, GFZ German Research Center for Geosciences, Potsdam, Germany
Liran Goren
Ben Gurion University of the Negev, Department of Earth and Environmental Sciences, Be'er-Sheva, Israel
Roos M. J. van Wees
Department of Geography, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium
Benjamin Campforts
Department of Earth Sciences, Vrije Universiteit Amsterdam, 1081HV Amsterdam, the Netherlands
Pablo Grosse
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Fundación Miguel Lillo, Miguel Lillo 251, 4000 Tucumán, Argentina
Pierre Lahitte
Université Paris-Saclay, CNRS, Laboratoire GEOPS, Rue du Belvédère, 91405 Orsay, France
Gabor Kereszturi
Volcanic Risk Solutions, School of Agriculture and Environment, Massey University, 4474 Palmerston North, Aotearoa / New Zealand
Matthieu Kervyn
Department of Geography, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium
Related authors
No articles found.
Coline Ariagno, Philippe Steer, Pierre Valla, and Benjamin Campforts
EGUsphere, https://doi.org/10.5194/egusphere-2025-2088, https://doi.org/10.5194/egusphere-2025-2088, 2025
Short summary
Short summary
This study explored the impact of landslides on their topography using a landscape evolution model called ‘Hyland’, which enables long-term topographical analysis. Our finding reveal that landslides are concentrated at two specific elevations over time and predominantly affect the highest and steepest slopes, particularly along ridges and crests. This study is part of the large question about the origin of the erosion acceleration during the Quaternary.
Samuel T. Thiele, Gabor Kereszturi, Michael J. Heap, Andréa de Lima Ribeiro, Akshay Kamath, Maia Kidd, Matías Tramontini, Marina Rosas-Carbajal, and Richard Gloaguen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1904, https://doi.org/10.5194/egusphere-2025-1904, 2025
Short summary
Short summary
Volcanic rocks are shaped by many processes, including volcanism, chemical alteration and weathering. These processes change the rock's properties, making it difficult to predict volcanic hazards or design tunnels and mines in volcanic areas. In this study, we build on earlier research to connect unique spectral signatures that can be remotely imaged using hyperspectral cameras to the density, porosity, strength, and stiffness of volcanic rocks.
Mark S. Bebbington, Melody G. Whitehead, and Gabor Kereszturi
EGUsphere, https://doi.org/10.5194/egusphere-2025-2010, https://doi.org/10.5194/egusphere-2025-2010, 2025
Short summary
Short summary
In volcanic fields, the location of an eruptive vent controls the hazards, their intensities, and ultimately the impact of the eruption. Estimates of where future eruptions are likely to occur inform evacuation plans, the (re)location of vital infrastructure, and the placement of early-warning monitoring equipment. Current estimates assume that locations with more past-vents are more likely to produce future-vents. We provide the formulae for an alternative hypothesis of magma depletion.
Chinh Luu, Giuseppe Forino, Lynda Yorke, Hang Ha, Quynh Duy Bui, Hanh Hong Tran, Dinh Quoc Nguyen, Hieu Cong Duong, and Matthieu Kervyn
Nat. Hazards Earth Syst. Sci., 24, 4385–4408, https://doi.org/10.5194/nhess-24-4385-2024, https://doi.org/10.5194/nhess-24-4385-2024, 2024
Short summary
Short summary
This study presents a novel and integrated approach to assessing the climate hazards of floods and wildfires. We explore multi-hazard assessment and risk through a machine learning modeling approach. The process includes collecting a database of topography, climate, geology, environment, and building data; developing models for multi-hazard assessment and coding in the Google Earth Engine; and producing credible multi-hazard susceptibility and building exposure maps.
Liran Goren and Eitan Shelef
Earth Surf. Dynam., 12, 1347–1369, https://doi.org/10.5194/esurf-12-1347-2024, https://doi.org/10.5194/esurf-12-1347-2024, 2024
Short summary
Short summary
To explore the pattern formed by rivers as they crisscross the land, we developed a way to measure how these patterns vary, from straight to complex, winding paths. We discovered that a river's degree of complexity depends on how the river slope changes downstream. Although this is strange (i.e., why would changes in slope affect twists of a river in map view?), we show that this dependency is almost inevitable and that the complexity could signify how arid the climate is or used to be.
Jeffrey Keck, Erkan Istanbulluoglu, Benjamin Campforts, Gregory Tucker, and Alexander Horner-Devine
Earth Surf. Dynam., 12, 1165–1191, https://doi.org/10.5194/esurf-12-1165-2024, https://doi.org/10.5194/esurf-12-1165-2024, 2024
Short summary
Short summary
MassWastingRunout (MWR) is a new landslide runout model designed for sediment transport, landscape evolution, and hazard assessment applications. MWR is written in Python and includes a calibration utility that automatically determines best-fit parameters for a site and empirical probability density functions of each parameter for probabilistic model implementation. MWR and Jupyter Notebook tutorials are available as part of the Landlab package at https://github.com/landlab/landlab.
Tian Gan, Gregory E. Tucker, Eric W. H. Hutton, Mark D. Piper, Irina Overeem, Albert J. Kettner, Benjamin Campforts, Julia M. Moriarty, Brianna Undzis, Ethan Pierce, and Lynn McCready
Geosci. Model Dev., 17, 2165–2185, https://doi.org/10.5194/gmd-17-2165-2024, https://doi.org/10.5194/gmd-17-2165-2024, 2024
Short summary
Short summary
This study presents the design, implementation, and application of the CSDMS Data Components. The case studies demonstrate that the Data Components provide a consistent way to access heterogeneous datasets from multiple sources, and to seamlessly integrate them with various models for Earth surface process modeling. The Data Components support the creation of open data–model integration workflows to improve the research transparency and reproducibility.
Matthew C. Morriss, Benjamin Lehmann, Benjamin Campforts, George Brencher, Brianna Rick, Leif S. Anderson, Alexander L. Handwerger, Irina Overeem, and Jeffrey Moore
Earth Surf. Dynam., 11, 1251–1274, https://doi.org/10.5194/esurf-11-1251-2023, https://doi.org/10.5194/esurf-11-1251-2023, 2023
Short summary
Short summary
In this paper, we investigate the 28 June 2022 collapse of the Chaos Canyon landslide in Rocky Mountain National Park, Colorado, USA. We find that the landslide was moving prior to its collapse and took place at peak spring snowmelt; temperature modeling indicates the potential presence of permafrost. We hypothesize that this landslide could be part of the broader landscape evolution changes to alpine terrain caused by a warming climate, leading to thawing alpine permafrost.
Blaise Mafuko Nyandwi, Matthieu Kervyn, François Muhashy Habiyaremye, François Kervyn, and Caroline Michellier
Nat. Hazards Earth Syst. Sci., 23, 933–953, https://doi.org/10.5194/nhess-23-933-2023, https://doi.org/10.5194/nhess-23-933-2023, 2023
Short summary
Short summary
Risk perception involves the processes of collecting, selecting and interpreting signals about the uncertain impacts of hazards. It may contribute to improving risk communication and motivating the protective behaviour of the population living near volcanoes. Our work describes the spatial variation and factors influencing volcanic risk perception of 2204 adults of Goma exposed to Nyiragongo. It contributes to providing a case study for risk perception understanding in the Global South.
Elhanan Harel, Liran Goren, Onn Crouvi, Hanan Ginat, and Eitan Shelef
Earth Surf. Dynam., 10, 875–894, https://doi.org/10.5194/esurf-10-875-2022, https://doi.org/10.5194/esurf-10-875-2022, 2022
Short summary
Short summary
Drainage reorganization redistributes drainage area across basins, resulting in channel and valley widths that may be unproportional to the new drainage area. We demonstrate scaling between valley width and drainage area in reorganized drainages that deviates from scaling in non-reorganized drainages. Further, deviation patterns are associated with different reorganization categories. Our findings are consequential for studies that rely on this scaling for valley width estimation.
Vao Fenotiana Razanamahandry, Marjolein Dewaele, Gerard Govers, Liesa Brosens, Benjamin Campforts, Liesbet Jacobs, Tantely Razafimbelo, Tovonarivo Rafolisy, and Steven Bouillon
Biogeosciences, 19, 3825–3841, https://doi.org/10.5194/bg-19-3825-2022, https://doi.org/10.5194/bg-19-3825-2022, 2022
Short summary
Short summary
In order to shed light on possible past vegetation shifts in the Central Highlands of Madagascar, we measured stable isotope ratios of organic carbon in soil profiles along both forested and grassland hillslope transects in the Lake Alaotra region. Our results show that the landscape of this region was more forested in the past: soils in the C4-dominated grasslands contained a substantial fraction of C3-derived carbon, increasing with depth.
Yizhou Wang, Liran Goren, Dewen Zheng, and Huiping Zhang
Earth Surf. Dynam., 10, 833–849, https://doi.org/10.5194/esurf-10-833-2022, https://doi.org/10.5194/esurf-10-833-2022, 2022
Short summary
Short summary
Abrupt changes in tectonic uplift rates induce sharp changes in river profile, called knickpoints. When river erosion depends non-linearly on slope, we develop an analytic model for knickpoint velocity and find the condition of knickpoint merging. Then we develop analytic models that represent the two-directional link between tectonic changes and river profile evolution. The derivation provides new understanding on the links between tectonic changes and river profile evolution.
Liesa Brosens, Benjamin Campforts, Gerard Govers, Emilien Aldana-Jague, Vao Fenotiana Razanamahandry, Tantely Razafimbelo, Tovonarivo Rafolisy, and Liesbet Jacobs
Earth Surf. Dynam., 10, 209–227, https://doi.org/10.5194/esurf-10-209-2022, https://doi.org/10.5194/esurf-10-209-2022, 2022
Short summary
Short summary
Obtaining accurate information on the volume of geomorphic features typically requires high-resolution topographic data, which are often not available. Here, we show that the globally available 12 m TanDEM-X DEM can be used to accurately estimate gully volumes and establish an area–volume relationship after applying a correction. This allowed us to get a first estimate of the amount of sediment that has been mobilized by large gullies (lavaka) in central Madagascar over the past 70 years.
Gregory E. Tucker, Eric W. H. Hutton, Mark D. Piper, Benjamin Campforts, Tian Gan, Katherine R. Barnhart, Albert J. Kettner, Irina Overeem, Scott D. Peckham, Lynn McCready, and Jaia Syvitski
Geosci. Model Dev., 15, 1413–1439, https://doi.org/10.5194/gmd-15-1413-2022, https://doi.org/10.5194/gmd-15-1413-2022, 2022
Short summary
Short summary
Scientists use computer simulation models to understand how Earth surface processes work, including floods, landslides, soil erosion, river channel migration, ocean sedimentation, and coastal change. Research benefits when the software for simulation modeling is open, shared, and coordinated. The Community Surface Dynamics Modeling System (CSDMS) is a US-based facility that supports research by providing community support, computing tools and guidelines, and educational resources.
Ante Ivčević, Hubert Mazurek, Lionel Siame, Raquel Bertoldo, Vania Statzu, Kamal Agharroud, Isabel Estrela Rego, Nibedita Mukherjee, and Olivier Bellier
Nat. Hazards Earth Syst. Sci., 21, 3749–3765, https://doi.org/10.5194/nhess-21-3749-2021, https://doi.org/10.5194/nhess-21-3749-2021, 2021
Short summary
Short summary
The results from two Mediterranean case studies, in north Morocco and west Sardinia, confirm the importance of interdisciplinarity and risk awareness sessions for risk management. The policy literature and interviews held with the administration, associations and scientists indicate that although recognised, the importance of risk awareness sessions is not necessarily put into practice. As a consequence, this could lead to a failure of risk management policy.
Stuart R. Mead, Jonathan Procter, and Gabor Kereszturi
Nat. Hazards Earth Syst. Sci., 21, 2447–2460, https://doi.org/10.5194/nhess-21-2447-2021, https://doi.org/10.5194/nhess-21-2447-2021, 2021
Short summary
Short summary
Computer simulations can be used to estimate the flow path and inundation of volcanic mass flows; however, their accuracy needs to be appropriately measured and handled in order to determine hazard zones. This paper presents an approach to simulation accuracy assessment and hazard zonation with a volcanic debris avalanche as the benchmark. This method helped to identify and support key findings about errors in mass flow simulations, as well as potential end-use cases for hazard zonation.
Eitan Shelef and Liran Goren
Earth Surf. Dynam., 9, 687–700, https://doi.org/10.5194/esurf-9-687-2021, https://doi.org/10.5194/esurf-9-687-2021, 2021
Short summary
Short summary
Drainage basins are bounded by water divides (divides) that define their shape and extent. Divides commonly coincide with high ridges, but in places that experienced extensive tectonic deformation, divides sometimes cross elongated valleys. Inspired by field observations and using simulations of landscape evolution, we study how side channels that drain to elongated valleys induce pulses of divide migration, affecting the distribution of water and erosion products across mountain ranges.
Arthur Depicker, Gerard Govers, Liesbet Jacobs, Benjamin Campforts, Judith Uwihirwe, and Olivier Dewitte
Earth Surf. Dynam., 9, 445–462, https://doi.org/10.5194/esurf-9-445-2021, https://doi.org/10.5194/esurf-9-445-2021, 2021
Short summary
Short summary
We investigated how shallow landslide occurrence is impacted by deforestation and rifting in the North Tanganyika–Kivu rift region (Africa). We developed a new approach to calculate landslide erosion rates based on an inventory compiled in biased © Google Earth imagery. We find that deforestation increases landslide erosion by a factor of 2–8 and for a period of roughly 15 years. However, the exact impact of deforestation depends on the geomorphic context of the landscape (rejuvenated/relict).
Cited articles
Becerril, L., Lara, L. E., and Astudillo, V. I.: The strong competition between growth and erosive processes on the Juan Fernández Archipelago (SE Pacific, Chile), Geomorphology, 373, 107513, https://doi.org/10.1016/j.geomorph.2020.107513, 2021.
Beeson, H. W. and McCoy, S. W.: Disequilibrium river networks dissecting the western slope of the Sierra Nevada, California, USA, record significant late Cenozoic tilting and associated surface uplift, Bull. Geol. Soc. Am., 134, 2809–2853, https://doi.org/10.1130/B36517.1, 2022.
Biggs, J., Mothes, P., Ruiz, M., Amelung, F., Dixon, T. H., Baker, S., and Hong, S. H.: Stratovolcano growth by co-eruptive intrusion: The 2008 eruption of Tungurahua Ecuador, Geophys. Res. Lett., 37, L21302, https://doi.org/10.1029/2010GL044942, 2010.
Bishop, P.: Drainage rearrangement by river capture, beheading and diversion, Prog. Phys. Geogr., 19, 449–473, 1995.
Bohnenstiehl, D. W. R., Howell, J. K., White, S. M., and Hey, R. N.: A modified basal outlining algorithm for identifying topographic highs from gridded elevation data, Part 1: Motivation and methods, Comput. Geosci., 49, 308–314, https://doi.org/10.1016/j.cageo.2012.04.024, 2012.
Braun, J.: A review of numerical modeling studies of passive margin escarpments leading to a new analytical expression for the rate of escarpment migration velocity, Gondwana Res., 53, 209–224, https://doi.org/10.1016/j.gr.2017.04.012, 2018.
Castelltort, S. and Simpson, G.: River spacing and drainage network growth in widening mountain ranges, Basin Res., 18, 267–276, https://doi.org/10.1111/j.1365-2117.2006.00293.x, 2006.
Castelltort, S., Simpson, G., and Darrioulat, A.: Slope-control on the aspect ratio of river basins, Terra Nov., 21, 265–270, https://doi.org/10.1111/j.1365-3121.2009.00880.x, 2009.
Castelltort, S., Goren, L., Willett, S. D., Champagnac, J. D., Herman, F., and Braun, J.: River drainage patterns in the New Zealand Alps primarily controlled by plate tectonic strain, Nat. Geosci., 5, 744–748, https://doi.org/10.1038/ngeo1582, 2012.
Castro, J. M., Cordonnier, B., Schipper, C. I., Tuffen, H., Baumann, T. S., and Feisel, Y.: Rapid laccolith intrusion driven by explosive volcanic eruption, Nat. Commun., 7, 1–7, https://doi.org/10.1038/ncomms13585, 2016.
Civico, R., Ricci, T., Scarlato, P., Taddeucci, J., Andronico, D., Del Bello, E., D'Auria, L., Hernández, P. A., and Pérez, N. M.: High-resolution Digital Surface Model of the 2021 eruption deposit of Cumbre Vieja volcano, La Palma, Spain, Sci. Data, 9, 1–7, https://doi.org/10.1038/s41597-022-01551-8, 2022.
Cook, K. L., Turowski, J. M., and Hovius, N.: A demonstration of the importance of bedload transport for fluvial bedrock erosion and knickpoint propagation, Earth Surf. Proce. Land., 38, 683–695, https://doi.org/10.1002/esp.3313, 2013.
Dibacto, S., Lahitte, P., Karátson, D., Hencz, M., Szakács, A., Biró, T., Kovács, I., and Veres, D.: Growth and erosion rates of the East Carpathians volcanoes constrained by numerical models: Tectonic and climatic implications, Geomorphology, 368, 107352, https://doi.org/10.1016/j.geomorph.2020.107352, 2020.
Duvall, A. R. and Tucker, G. E.: Dynamic Ridges and Valleys in a Strike-Slip Environment, J. Geophys. Res.-Earth, 120, 2016–2026, https://doi.org/10.1002/2015JF003618, 2015.
Euillades, L. D., Grosse, P., and Euillades, P. A.: NETVOLC: An algorithm for automatic delimitation of volcano edifice boundaries using DEMs, Comput. Geosci., 56, 151–160, https://doi.org/10.1016/j.cageo.2013.03.011, 2013.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.: The Shuttle Radar Topography Mission, Rev. Geophys., 45, 1–43, 2007.
Ferrier, K. L., Huppert, K. L., and Perron, J. T.: Climatic control of bedrock river incision, Nature, 496, 206–209, https://doi.org/10.1038/nature11982, 2013.
Flint, J. J.: Stream gradient as a function of order, magnitude, and discharge, Water Resour. Res., 10, 969–973, https://doi.org/10.1029/WR010i005p00969, 1974.
Forte, A. M. and Whipple, K. X.: Criteria and tools for determining drainage divide stability, Earth Planet. Sc. Lett., 493, 102–117, https://doi.org/10.1016/j.epsl.2018.04.026, 2018.
Fox, M., Goren, L., May, D. A., and Willett, S. D.: Inversion of fluvial channels for paleorock uplift rates in Taiwan, J. Geophys. Res.-Earth, 119, 1853–1875, https://doi.org/10.1002/2014JF003196, 2014.
Gase, A. C., Brand, B. D., and Bradford, J. H.: Evidence of erosional self-channelization of pyroclastic density currents revealed by ground-penetrating radar imaging at Mount St. Helens, Washington (USA), Geophys. Res. Lett., 44, 2220–2228, https://doi.org/10.1002/2016GL072178, 2017.
Gertisser, R., Troll, V. R., Walter, T. R., Nandaka, I. G. M. A., and Ratdomopurbo, A.: Merapi Volcano: Geology, Eruptive Activity, and Monitoring of a High-Risk Volcano, Springer Nature, https://doi.org/10.1007/978-3-031-15040-1, 2023.
Gilbert, G. K.: The Convexity of Hilltops, J. Geol., 17, 344–350, 1909.
Global Volcanism Program: [Database] Volcanoes of the World (v. 5.1.7; 26 Apr 2024), compiled by: Venzke, E., Smithsonian Institution, https://doi.org/10.5479/si.GVP.VOTW5-2023.5.1, 2024.
Grosse, P., van Wyk de Vries, B., Petrinovic, I. A., Euillades, P. A., and Alvarado, G. E.: Morphometry and evolution of arc volcanoes, Geology, 37, 651–654, https://doi.org/10.1130/G25734A.1, 2009.
Grosse, P., van Wyk de Vries, B., Euillades, P. A., Kervyn, M., and Petrinovic, I. A.: Systematic morphometric characterization of volcanic edifices using digital elevation models, Geomorphology, 136, 114–131, https://doi.org/10.1016/j.geomorph.2011.06.001, 2012.
Haapala, J. M., Wolf, R. E., Vallance, J. W., Rose Jr., W. I., Griswold, J. P., Schilling, S. P., Ewert, J. W., and Mota, M.: Volcanic hazards at Atitlan volcano, Guatemala, US Geological Survey Open-File Report 2005-1403, S Geological Survey, https://doi.org/10.3133/ofr20051403, 2006.
Habousha, K., Goren, L., Nativ, R., and Gruber, C.: Plan-Form Evolution of Drainage Basins in Response to Tectonic Changes: Insights From Experimental and Numerical Landscapes, J. Geophys. Res.-Earth, 128, 1–24, https://doi.org/10.1029/2022jf006876, 2023.
Hack, J. T.: Studies of longitudinal stream profiles in Virginia and Maryland, in: Vol. 294, US Government Printing Office, https://doi.org/10.3133/pp294B, 1957.
Hamawi, M., Goren, L., Mushkin, A., and Levi, T.: Rectangular drainage pattern evolution controlled by pipe cave collapse along clastic dikes, the Dead Sea Basin, Israel, Earth Surf. Proc. Land., 47, 936–954, https://doi.org/10.1002/esp.5295, 2022.
Han, J., Gasparini, N. M., and Johnson, J. P. L.: Measuring the imprint of orographic rainfall gradients on the morphology of steady-state numerical fluvial landscapes, Earth Surf. Proc. Land., 40, 1334–1350, https://doi.org/10.1002/esp.3723, 2015.
Hasbargen, L. E. and Paola, C.: Landscape instability in an experimental drainage basin, Geology, 28, 1067–1070, https://doi.org/10.1130/0091-7613(2000)28<1067:LIIAED>2.0.CO, 2000.
Hayes, S. K., Montgomery, D. R., and Newhall, C. G.: Fluvial sediment transport and deposition following the 1991 eruption of Mount Pinatubo, Geomorphology, 45, 211–224, https://doi.org/10.1016/S0169-555X(01)00155-6, 2002.
Horton, R. E.: Erosional development of streams and their drainage basins; hydrological approach to quantative morphology, Geol. Soc. Am. Bull., 56, 275–370, https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2, 1945.
Hovius, N.: Regular spacing of drainage outlets from linear mountain belts, Basin Res., 8, 29–44, https://doi.org/10.1111/j.1365-2117.1996.tb00113.x, 1996.
Howard, A. D.: Drainage Analysis in Geologic Interpretation: A Summation, Am. Assoc. Petrol. Geol. Bull., 51, 2246–2259, https://doi.org/10.1306/5d25c26d-16c1-11d7-8645000102c1865d, 1967.
Jefferson, A., Grant, G. E., Lewis, S. L., and Lancaster, S. T.: Coevolution of hydrology and topography on a basalt landscape in the Oregon Cascade Range, USA, Earth Surf. Proc. Land., 35, 803–816, https://doi.org/10.1002/esp.1976, 2010.
Karátson, D., Thouret, J. C., Moriya, I., and Lomoschitz, A.: Erosion calderas: Origins, processes, structural and climatic control, Bull. Volcanol., 61, 174–193, https://doi.org/10.1007/s004450050270, 1999.
Karátson, D., Telbisz, T., and Wörner, G.: Erosion rates and erosion patterns of Neogene to Quaternary stratovolcanoes in the Western Cordillera of the Central Andes: An SRTM DEM based analysis, Geomorphology, 139–140, 122–135, https://doi.org/10.1016/j.geomorph.2011.10.010, 2012.
Kerr, R. C.: Thermal erosion by laminar lava flows, J. Geophys. Res.-Solid, 106, 453–465, https://doi.org/10.1029/2001JB000227, 2001.
Kirby, E. and Whipple, K. X.: Expression of active tectonics in erosional landscapes, J. Struct. Geol., 44, 54–75, https://doi.org/10.1016/j.jsg.2012.07.009, 2012.
Kirby, E., Whipple, K. X., Tang, W., and Chen, Z.: Distribution of active rock uplift along the eastern margin of the Tibetan Plateau: Inferences from bedrock channel longitudinal profiles, J. Geophys. Res.-Solid, 108, 2217, https://doi.org/10.1029/2001JB000861, 2003.
Lahitte, P., Samper, A., and Quidelleur, X.: DEM-based reconstruction of southern Basse-Terre volcanoes (Guadeloupe archipelago, FWI): Contribution to the Lesser Antilles Arc construction rates and magma production, Geomorphology, 136, 148–164, https://doi.org/10.1016/j.geomorph.2011.04.008, 2012.
Locke, C. A. and Cassidy, J.: Egmont Volcano, New Zealand: Three-dimensional structure and its implications for evolution, J. Volcanol. Geoth. Res., 76, 149–161, https://doi.org/10.1016/S0377-0273(96)00074-1, 1997.
Lohse, K. A. and Dietrich, W. E.: Contrasting effects of soil development on hydrological properties and flow paths, Water Resour. Res., 41, 1–17, https://doi.org/10.1029/2004WR003403, 2005.
Major, J. J., Mosbrucker, A. R., and Spicer, K. R.: Sediment erosion and delivery from Toutle River basin after the 1980 eruption of Mount St. Helens: A 30-year perspective, Ecol. Responses Mt. St. Helens Revisit. 35 years after 1980 Erupt., Springer, 19–44, https://doi.org/10.1007/978-1-4939-7451-1_2, 2018.
McBirney, A. R., Serva, L., Guerra, M., and Connor, C. B.: Volcanic and seismic hazards at a proposed nuclear power site in central Java, J. Volcanol. Geoth. Res., 126, 11–30, https://doi.org/10.1016/S0377-0273(03)00114-8, 2003.
Mejía, A. I. and Niemann, J. D.: Identification and characterization of dendritic, parallel, pinnate, rectangular, and trellis networks based on deviations from planform self-similarity, J. Geophys. Res.-Earth, 113, 1–21, https://doi.org/10.1029/2007JF000781, 2008.
Montgomery, D. R. and Dietrich, W. E.: Landscape dissection and drainage area-slope thresholds, in: Process Models and Theoretical Geomorphology, Chap. 11, edited by: Kirkby, M. J., John Wiley and Sons, https://docubase.berkeley.edu/cgi-bin/pl_dochome?query_src=pl_search&format=pdf&collection=Dietrich&id=82&show_doc=yes (last access: 6 May 2024). 1994.
Mudd, S. M. and Furbish, D. J.: Responses of soil-mantled hillslopes to transient channel incision rates, J. Geophys. Res.-Earth, 112, 1–12, https://doi.org/10.1029/2006JF000516, 2007.
Mueller, J. E.: Re-evaluation of the relationship of master streams and drainage basins, Bull. Geol. Soc. Am., 83, 3471–3474, https://doi.org/10.1130/0016-7606(1972)83[3471:ROTROM]2.0.CO;2, 1972.
Mulyaningsih, S. and Shaban, G.: Geochemistry of basaltic Merbabu volcanic rocks, Central Java, Indonesia, Indones. J. Geosci., 7, 161–178, https://doi.org/10.17014/ijog.7.2.161-178, 2020.
O'Hara, D.: danjohara/Volc_Packages: Volc_Packages (v3.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.10906553, 2024.
O'Hara, D. and Karlstrom, L.: The arc-scale spatial distribution of volcano erosion implies coupled magmatism and regional climate in the Cascades arc, United States, Front. Earth Sci., 11, 1–15, https://doi.org/10.3389/feart.2023.1150760, 2023.
O'Hara, D., Karlstrom, L., and Roering, J. J.: Distributed landscape response to localized uplift and the fragility of steady states, Earth Planet. Sc. Lett., 506, 243–254, https://doi.org/10.1016/j.epsl.2018.11.006, 2019.
O'Hara, D., Karlstrom, L., and Ramsey, D. W.: Time-evolving surface and subsurface signatures of Quaternary volcanism in the Cascades arc, Geology, 49, e526, https://doi.org/10.1130/g47706.1, 2020.
Ollier, C.: Volcanoes, Blackwell, Oxford, 288 pp., ISBN 13 9780631156642, 1988.
Perron, J. T. and Royden, L.: An integral approach to bedrock river profile analysis, Earth Surf. Proc. Land., 38, 570–576, https://doi.org/10.1002/esp.3302, 2013.
Pierson, T. C. and Major, J. J.: Hydrogeomorphic effects of explosive volcanic eruptions on drainage basins, Annu. Rev. Earth Planet. Sci., 42, 469–507, https://doi.org/10.1146/annurev-earth-060313-054913, 2014.
Prince, P. S. and Spotila, J. A.: Evidence of transient topographic disequilibrium in a landward passive margin river system: Knickpoints and paleo-landscapes of the New River basin, southern Appalachians, Earth Surf. Proc. Land., 38, 1685–1699, https://doi.org/10.1002/esp.3406, 2013.
Ricci, J., Lahitte, P., and Quidelleur, X.: Construction and destruction rates of volcanoes within tropical environment: Examples from the Basse-Terre Island (Guadeloupe, Lesser Antilles), Geomorphology, 228, 597–607, https://doi.org/10.1016/j.geomorph.2014.10.002, 2015.
Scherler, D. and Schwanghart, W.: Drainage divide networks – Part 1: Identification and ordering in digital elevation models, Earth Surf. Dynam., 8, 245–259, https://doi.org/10.5194/esurf-8-245-2020, 2020.
Schumm, S. A.: Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey, Bull. Geol. Soc. Am., 67, 597–646, https://doi.org/10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2, 1956.
Schwanghart, W. and Scherler, D.: Short Communication: TopoToolbox 2 – MATLAB-based software for topographic analysis and modeling in Earth surface sciences, Earth Surf. Dynam., 2, 1–7, https://doi.org/10.5194/esurf-2-1-2014, 2014.
Shea, T. and van Wyk de Vries, B.: Structural analysis and analogue modeling of the kinematics and dynamics of rockslide avalanches, Geosphere, 4, 657–686, https://doi.org/10.1130/GES00131.1, 2008.
Sklar, L. S. and Dietrich, W. E.: Sediment and rock strength controls on river incision into bedrock, Geology, 29, 1087–1090, https://doi.org/10.1130/0091-7613(2001)029<1087:SARSCO>2.0.CO;2, 2001.
Strahler, A. N.: Hypsometric (area-altitude) analysis of erosional topography, Bull. Geol. Soc. Am., 63, 1117–1142, https://doi.org/10.1128/AAC.03728-14, 1952.
Sweeney, K. E. and Roering, J. J.: Rapid fluvial incision of a late Holocene lava flow: Insights from LiDAR, alluvial stratigraphy, and numerical modeling, Bull. Geol. Soc. Am., 129, 500–512, https://doi.org/10.1130/B31537.1, 2017.
Talling, P. J., Stewart, M. D., Stark, C. P., Gupta, S., and Vincent, S. J.: Regular spacing of drainage outlets from linear fault blocks, Basin Res., 9, 275–302, https://doi.org/10.1046/j.1365-2117.1997.00048.x, 1997.
Thouret, J. C., Oehler, J. F., Gupta, A., Solikhin, A., and Procter, J. N.: Erosion and aggradation on persistently active volcanoes – a case study from Semeru Volcano, Indonesia, Bull. Volcanol., 76, 857, https://doi.org/10.1007/s00445-014-0857-z, 2014.
Ui, T. and Glicken, H.: Internal structural variations in a debris-avalanche deposit from ancestral Mount Shasta, California, USA, Bull. Volcanol., 48, 189–194, https://doi.org/10.1007/BF01087673, 1986.
van Wees, R., Tournigand, P.-Y., O'Hara, D., Grosse, P., Kereszturi, G., Campforts, B., Lahitte, P., and Kervyn, M.: The role of erosion in the morphometry of composite volcanoes, EGU General Assembly 2021, online, 19–30 April 2021, EGU21-14500, https://doi.org/10.5194/egusphere-egu21-14500, 2021.
van Wees, R. M. J., O'Hara, D., Kereszturi, G., Grosse, P., Lahitte, P., Tourniganda, P.-Y., and Kervyn, M.: Towards more consistent volcano morphometry datasets: Assessing boundary delineation and DEM impact on geometric and drainage parameters, Geomorphology, in review, 2024.
Wells, S. G., Dohrenwend, J. C., McFadden, L. D., Turrin, B. D., and Mahrer, K. D.: Late Cenozoic landscape evolution on lava flow surfaces of the Cima volcanic field, Mojave Desert, California, Geol. Soc. Am. Bull., 96, 1518–1529, https://doi.org/10.1130/0016-7606(1985)96<1518:LCLEOL>2.0.CO;2, 1985.
Whipple, K. X., DiBiase, R. A., Ouimet, W. B., and Forte, A. M.: Preservation or piracy: Diagnosing low-relief, high-elevation surface formation mechanisms, Geology, 45, 91–94, https://doi.org/10.1130/G32501Y.1, 2016.
Wicks, C. W., Dzurisin, D., Ingebritsen, S., Thatcher, W., Lu, Z., and Iverson, J.: Magmatic activity beneath the quiescent Three Sisters volcanic center, central Oregon Cascade Range, USA, Geophys. Res. Lett., 29, 26-1–26-4, https://doi.org/10.1029/2001GL014205, 2002.
Willett, S. D., Slingerland, R., and Hovius, N.: Uplift, shortening, and steady state topography in active mountain belts, Am. J. Sci., 301, 455–485, https://doi.org/10.2475/ajs.301.4-5.455, 2001.
Willett, S. D., McCoy, S. W., Perron, T. J., Goren, L., and Chen, C. Y.: Dynamic reorganization of River Basins, Science, 343, 1248765, https://doi.org/10.1126/science.1248765, 2014.
Yang, R., Willett, S. D., and Goren, L.: In situ low-relief landscape formation as a result of river network disruption, Nature, 520, 526–529, https://doi.org/10.1038/nature14354, 2015.
Zernitz, E. R.: Drainage Patterns and Their Significance, J. Geol., 40, 498–521, https://doi.org/10.1086/623976, 1932.
Short summary
Understanding how volcanic edifices develop drainage basins remains unexplored in landscape evolution. Using digital evolution models of volcanoes with varying ages, we quantify the geometries of their edifices and associated drainage basins through time. We find that these metrics correlate with edifice age and are thus useful indicators of a volcano’s history. We then develop a generalized model for how volcano basins develop and compare our results to basin evolution in other settings.
Understanding how volcanic edifices develop drainage basins remains unexplored in landscape...