Articles | Volume 13, issue 6
https://doi.org/10.5194/esurf-13-1093-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-13-1093-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hydrodynamic and morphodynamic patterns on a mid-channel intertidal bar in an estuary
Department of Physical Geography, Faculty of Geosciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, the Netherlands
Rijkswaterstaat Zee en Delta, Poelendaelesingel 18, 4335 JA Middelburg, the Netherlands
Maarten van der Vegt
Department of Physical Geography, Faculty of Geosciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, the Netherlands
Gerben Ruessink
Department of Physical Geography, Faculty of Geosciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, the Netherlands
Maarten G. Kleinhans
Department of Physical Geography, Faculty of Geosciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, the Netherlands
Related authors
No articles found.
Floris F. van Rees, Laura L. Govers, Polina Guseva, Maarten P. A. Zwarts, Camille Tuijnman, Cornelis J. Camphuysen, Gerben Ruessink, and Valérie C. Reijers
EGUsphere, https://doi.org/10.5194/egusphere-2025-3265, https://doi.org/10.5194/egusphere-2025-3265, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Seabird guano enriches nitrogen-loving plants and boost plants to trap sediment, driving the gradual growth and reshaping of coastal islands. By pairing on-site plant surveys with satellite imagery and elevation data, we show these effects vary with elevation, soil type, and season. Birds thus engineer and sustain their own breeding habitats. For conservation managers, protecting colonies is key to preserving the dynamic island landscapes these and other species rely on.
Sarah Hautekiet, Jan-Eike Rossius, Olivier Gourgue, Maarten Kleinhans, and Stijn Temmerman
Earth Surf. Dynam., 12, 601–619, https://doi.org/10.5194/esurf-12-601-2024, https://doi.org/10.5194/esurf-12-601-2024, 2024
Short summary
Short summary
This study examined how vegetation growing in marshes affects the formation of tidal channel networks. Experiments were conducted to imitate marsh development, both with and without vegetation. The results show interdependency between biotic and abiotic factors in channel development. They mainly play a role when the landscape changes from bare to vegetated. Overall, the study suggests that abiotic factors are more important near the sea, while vegetation plays a larger role closer to the land.
Marlies A. van der Lugt, Jorn W. Bosma, Matthieu A. de Schipper, Timothy D. Price, Marcel C. G. van Maarseveen, Pieter van der Gaag, Gerben Ruessink, Ad J. H. M. Reniers, and Stefan G. J. Aarninkhof
Earth Syst. Sci. Data, 16, 903–918, https://doi.org/10.5194/essd-16-903-2024, https://doi.org/10.5194/essd-16-903-2024, 2024
Short summary
Short summary
A 6-week field campaign was carried out at a sheltered sandy beach on Texel along the Dutch Wadden Sea with the aim of gaining new insights into the driving processes behind sheltered beach morphodynamics. Detailed measurements of the local hydrodynamics, bed-level changes and sediment composition were collected. The morphological evolution on this sheltered site is the result of the subtle interplay between waves, currents and bed composition.
Maarten G. Kleinhans, Lonneke Roelofs, Steven A. H. Weisscher, Ivar R. Lokhorst, and Lisanne Braat
Earth Surf. Dynam., 10, 367–381, https://doi.org/10.5194/esurf-10-367-2022, https://doi.org/10.5194/esurf-10-367-2022, 2022
Short summary
Short summary
Floodplain formation in estuaries limit the ebb and flood flow, reducing channel migration and shortening the tidally influenced reach. Vegetation establishment on bars reduces local flow velocity and concentrates flow into channels, while mudflats fill accommodation space and reduce channel migration. These results are based on experimental estuaries in the Metronome facility supported by numerical flow modelling.
Sepehr Eslami, Piet Hoekstra, Herman W. J. Kernkamp, Nam Nguyen Trung, Dung Do Duc, Hung Nguyen Nghia, Tho Tran Quang, Arthur van Dam, Stephen E. Darby, Daniel R. Parsons, Grigorios Vasilopoulos, Lisanne Braat, and Maarten van der Vegt
Earth Surf. Dynam., 9, 953–976, https://doi.org/10.5194/esurf-9-953-2021, https://doi.org/10.5194/esurf-9-953-2021, 2021
Short summary
Short summary
Increased salt intrusion jeopardizes freshwater supply to the Mekong Delta, and the current trends are often inaccurately associated with sea level rise. Using observations and models, we show that salinity is highly sensitive to ocean surge, tides, water demand, and upstream discharge. We show that anthropogenic riverbed incision has significantly amplified salt intrusion, exemplifying the importance of preserving sediment budget and riverbed levels to protect deltas against salt intrusion.
Cited articles
Allen, R. M., Lacy, J. R., Stacey, M. T., and Variano, E. A.: Seasonal, spring neap, and tidal variation in cohesive sediment transport parameters in estuarine shallows, J. Geophys. Res.-Oceans, 124, 7265–7284, https://doi.org/10.1029/2018JC014825, 2019. a
Baar, A. W., Boechat Albernaz, M., van Dijk, W. M., and Kleinhans, M. G.: Critical dependence of morphodynamic models of fluvial and tidal systems on empirical downslope sediment transport, Nat. Commun., 10, https://doi.org/10.1038/s41467-019-12753-x, 2019. a
Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., and Silliman, B. R.: The value of estuarine and coastal ecosystem services, Ecol. Monogr., 81, 169–193, https://doi.org/10.1890/10-1510.1, 2011. a
Bearman, J. A., Friedrichs, C. T., Jaffe, B. E., and Foxgrover, A. C.: Spatial trends in tidal flat shape and associated environmental parameters in South San Francisco Bay, J. Coast. Res., 26, 342–349, 2010. a
Benninghoff, M. and Winter, C.: Decadal evolution of tidal flats and channels in the Outer Weser estuary, Germany, Ocean Dynam., 68, 1181–1190, https://doi.org/10.1007/s10236-018-1184-2, 2018. a
Billy, J., Chaumillon, E., Féniès, H., and Poirier, C.: Tidal and fluvial controls on the morphological evolution of a lobate estuarine tidal bar: The Plassac Tidal Bar in the Gironde Estuary (France), Geomorphology, 169–170, 86–97, https://doi.org/10.1016/j.geomorph.2012.04.015, 2012. a
Coco, G., Zhou, Z., van Maanen, B., Olabarrieta, M., Tinoco, R., and Townend, I.: Morphodynamics of tidal networks: advances and challenges, Mar. Geol., 346, 1–16, https://doi.org/10.1016/j.margeo.2013.08.005, 2013. a
Colosimo, I., de Vet, P. L. M., van Maren, D. S., Reniers, A. J. H. M., Winterwerp, J. C., and van Prooijen, B. C.: The impact of wind on flow and sediment transport over intertidal flats, Journal of Marine Science and Engineering, 8, 910, https://doi.org/10.3390/jmse8110910, 2020. a
Costanza, R., d'Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O'Neill, R. V., Paruelo, J., Raskin, R. G., Sutton, P., and van den Belt, M.: The value of the world's ecosystem services and natural capital, Nature, 387, 253–260, https://doi.org/10.1038/387253a0, 1997. a
de Vet, P. L. M., van Prooijen, B. C., Schrijvershof, R. A., van der Werf, J. J., Ysebaert, T., Schrijver, M. C., and Wang, Z. B.: The importance of combined tidal and meteorological forces for the flow and sediment transport on intertidal shoals, J. Geophys. Res.-Earth, 123, 2464–2480, https://doi.org/10.1029/2018JF004605, 2018. a, b, c
de Vet, P. L. M., van Prooijen, B. C., Colosimo, I., Ysebaert, T., Herman, P. M. J., and Wang, Z. B.: Sediment disposals in estuarine channels alter the eco-morphology of intertidal flats, J. Geophys. Res.-Earth, 125, https://doi.org/10.1029/2019JF005432, 2020. a, b
Dyer, K. R.: Sediment processes in estuaries: future research requirements, J. Geophys. Res.-Oceans, 94, 14327–14339, https://doi.org/10.1029/jc094ic10p14327, 1989. a
Dyer, K. R. and Huntley, D. A.: The origin, classification and modelling of sand banks and ridges, Cont. Shelf Res., 19, 1285–1330, https://doi.org/10.1016/S0278-4343(99)00028-X, 1999. a
Elmilady, H., van der Wegen, M., Roelvink, D., and Jaffe, B. E.: Intertidal area disappears under sea level rise: 250 years of morphodynamic modeling in San Pablo Bay, California, J. Geophys. Res.-Earth, 124, 38–59, https://doi.org/10.1029/2018JF004857, 2019. a
Elmilady, H., Wegen, M., Roelvink, D., and Spek, A.: Morphodynamic evolution of a fringing sandy shoal: from tidal levees to sea level rise, J. Geophys. Res.-Earth, 125, https://doi.org/10.1029/2019JF005397, 2020. a
Fisher, N. I.: Statistical Analysis of Circular Data, Cambridge University Press, https://doi.org/10.1017/cbo9780511564345, 1993. a
Foreman, M. G. G. and Henry, R. F.: The harmonic analysis of tidal model time serie, Adv. Water Resour., 12, 109–120, 1989. a
Friedrichs, C. T.: York River physical oceanography and sediment transport, J. Coast. Res., 57, 17–22, 2009. a
Friedrichs, C. T. and Aubrey, D. G.: Uniform bottom shear stress and equilibrium hyposometry of intertidal flats, Coastal and Estuarine Studies, 50, 405–429, https://doi.org/10.1029/CE050p0405, 1996. a, b
Gelfort, A., Ladage, F., and Stoschek, O.: Numerical modelling of morphodynamic changes in the Jade estuary – Germany, Coastal Engineering Proceedings, 84, https://doi.org/10.9753/icce.v32.sediment.84, 2011. a
Grasso, F. and Le Hir, P.: Influence of morphological changes on suspended sediment dynamics in a macrotidal estuary: diachronic analysis in the Seine Estuary (France) from 1960 to 2010, Ocean Dynam., 69, 83–100, https://doi.org/10.1007/s10236-018-1233-x, 2018. a
Gregory Hood, W.: Indirect environmental effects of dikes on estuarine tidal channels: thinking outside of the dike for habitat restoration and monitoring, Estuaries, 27, 273–282, https://doi.org/10.1007/BF02803384, 2004. a
Hanssen, J. L. J., van Prooijen, B. C., and van Maren, D. S.: The shape of fringing tidal flats in engineered estuaries, Frontiers in Marine Science, 11, https://doi.org/10.3389/fmars.2024.1354716, 2024. a
Hir, P. L., Roberts, W., Cazaillet, O., Christie, M., Bassoullet, P., and Bacher, C.: Characterization of intertidal flat hydrodynamics, Cont. Shelf Res., 20, 1433–1459, https://doi.org/10.1016/S0278-4343(00)00031-5, 2000. a, b
Jeuken, M. C. J. L.: On the morphological behaviour of tidal channels in the Westerschelde estuary, PhD thesis, Utrecht University, 2000. a
Kennish, M. J.: Environmental threats and environmental future of estuaries, Environmental Conservation, 29, 78–107, https://doi.org/10.1017/s0376892902000061, 2002. a
Lefebvre, A., Herrling, G., Becker, M., Zorndt, A., Krämer, K., and Winter, C.: Morphology of estuarine bedforms, Weser Estuary, Germany, Earth Surf. Proc. Land., 47, 242–256, https://doi.org/10.1002/esp.5243, 2021. a
Leuven, J. R. F. W. and Kleinhans, M. G.: Incipient tidal bar and sill formation, J. Geophys. Res.-Earth, 124, 1762–1781, https://doi.org/10.1029/2018jf004953, 2019. a
Leuven, J. R. F. W., Kleinhans, M. G., Weisscher, S. A. H., and van der Vegt, M.: Tidal sand bar dimensions and shapes in estuaries, Earth Sci. Rev., 161, 204–223, https://doi.org/10.1016/j.earscirev.2016.08.004, 2016. a
Leuven, J. R. F. W., de Haas, T., Braat, L., and Kleinhans, M. G.: Topographic forcing of tidal sandbar patterns for irregular estuary planforms, Earth Surf. Proc. Land., 43, 172–186, https://doi.org/10.1002/esp.4166, 2017. a
Maan, D. C., Prooijen, B. C., Wang, Z. B., and Vriend, H. J. D.: Do intertidal flats ever reach equilibrium?, J. Geophys. Res., 120, 2406–2436, https://doi.org/10.1002/2014JF003311, 2015. a
Meire, P., Ysebaert, T., Van Damme, S., Van den Bergh, E., Maris, T., and Struyf, E.: The Scheldt estuary: a description of a changing ecosystem, Hydrobiologia, 540, 1–11, https://doi.org/10.1007/s10750-005-0896-8, 2005. a
Michel, G., Le Bot, S., Lesourd, S., and Lafite, R.: Morpho-sedimentological and dynamic patterns in a ria type estuary: the Belon estuary (South Brittany, France), J. Maps, 17, 389–400, https://doi.org/10.1080/17445647.2021.1925170, 2021. a
Pinto, R., Patrício, J., Neto, J. M., Salas, F., and Marques, J. C.: Assessing estuarine quality under the ecosystem services scope: ecological and socioeconomic aspects, Ecol. Complex., 7, 389–402, 2010. a
Plag, H.-P. and Jules-Plag, S.: Sea-level rise and coastal ecosystems, in: Climate Vulnerability, edited by: Pielke, R. A., Vol. 4, Elsevier, https://doi.org/10.1016/B978-0-12-384703-4.00419-6, 163–184, 2013. a
Rijkswaterstaat: Getijtafels voor Nederland. 2019, SDU Uitgevers, Den Haag, 163–184, ISBN 9789012403191, 2018. a
Roberts, W., Hir, P. L., and Whitehouse, R. J. S.: Investigation using simple mathematical models of the effect of tidal currents and waves on the profile shape of intertidal mudflats, Cont. Shelf Res., 20, 1079–1097, https://doi.org/10.1016/S0278-4343(00)00013-3, 2000. a
Schrijver, M.: Hydrodynamic and morphodynamic patterns on a mid-channel intertidal bar in an estuary, Zenodo [data set], https://doi.org/10.5281/zenodo.15017660, 2025. a
The Hydrographic Society: Tidal Reduction Methods, techreport, The Hydrographic Society, https://ihr.iho.int/ (last access: 1 December 2022), 1987. a
van Dijk, W. M., Cox, J. R., Leuven, J. R. F. W., Cleveringa, J., Taal, M., Hiatt, M. R., Sonke, W., Verbeek, K., Speckmann, B., and Kleinhans, M. G.: The vulnerability of tidal flats and multi-channel estuaries to dredging and disposal, Anthropocene Coasts, 4, 36–60, https://doi.org/10.1139/anc-2020-0006, 2021. a, b
van Rijn, L. C.: Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas, Part I, Aqua Publications, ISBN 90-800356-2-9, 1993. a
Waeles, B., Hir, P. L., and Jacinto, R. S.: Modélisation morphodynamique cross-shore d'un estran vaseux, C. R. Geosci., 336, 1025–1033, https://doi.org/10.1016/j.crte.2004.03.011, 2004. a
Wan, Y., Gu, F., Wu, H., and Roelvink, D.: Hydrodynamic evolutions at the Yangtze Estuary from 1998 to 2009, Appl. Ocean Res., 47, 291–302, https://doi.org/10.1016/j.apor.2014.06.009, 2014. a
Wang, Y., Wang, Y. P., Yu, Q., Du, Z., Wang, Z. B., and Gao, S.: Sand-mud tidal flat morphodynamics influenced by alongshore tidal currents, J. Geophys. Res.-Oceans, 124, 3818–3836, https://doi.org/10.1029/2018JC014550, 2019. a
Xie, D., Schwarz, C., Kleinhans, M. G., Zhou, Z., and van Maanen, B.: Implications of coastal conditions and sea level rise on mangrove vulnerability: a bio morphodynamic modeling study, J. Geophys. Res.-Earth, 127, https://doi.org/10.1029/2021JF006301, 2022. a
Zhou, Z., Ye, Q., and Coco, G.: A one-dimensional biomorphodynamic model of tidal flats: sediment sorting, marsh distribution, and carbon accumulation under sea level rise, Adv. Water Res., 93, 288–302, https://doi.org/10.1016/j.advwatres.2015.10.011, 2016. a
Zhu, Q., van Prooijen, B. C., Wang, Z. B., and Yang, S. L.: Bed-level changes on intertidal wetland in response to waves and tides: a case study from the Yangtze River Delta, Mar. Geol., 385, 160–172, https://doi.org/10.1016/j.margeo.2017.01.003, 2017. a
Short summary
To gain insight into the sediment transport onto a mid-channel bar in an estuary, we measured current velocities on and along the tidal flat during six months. Our analysis shows that intertidal currents have a more pronounced three-dimensional pattern than those on shore-connected tidal flats. This has consequences for sediment transport and morphodynamics. Existing models for tidal flats underestimate flow velocities and sediment dynamics on mid-channel bars.
To gain insight into the sediment transport onto a mid-channel bar in an estuary, we measured...