Articles | Volume 13, issue 1
https://doi.org/10.5194/esurf-13-119-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-13-119-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A numerical model for duricrust formation by water table fluctuations
GFZ Helmholtz Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Institute of Geosciences, University of Potsdam, 14476 Potsdam, Germany
GFZ Helmholtz Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Institute of Geosciences, University of Potsdam, 14476 Potsdam, Germany
François Guillocheau
CORRESPONDING AUTHOR
Univ Rennes, CNRS, Géosciences Rennes – UMR 6118, 35000 Rennes, France
Cécile Robin
CORRESPONDING AUTHOR
Univ Rennes, CNRS, Géosciences Rennes – UMR 6118, 35000 Rennes, France
Related authors
Caroline Fenske, Jean Braun, Cécile Robin, and François Guillocheau
EGUsphere, https://doi.org/10.5194/egusphere-2025-3134, https://doi.org/10.5194/egusphere-2025-3134, 2025
This preprint is open for discussion and under review for Earth Surface Dynamics (ESurf).
Short summary
Short summary
Duricrusts have contributed valuable insight to the evolving field of regolith science over the past two centuries. These mineral-rich layers occur in diverse settings, from hilltops to valley floors, and are thought to form through two main processes. In 2025, we introduced the first numerical model for the hydrological hypothesis; now, we present a complementary model based on laterisation. This framework simulates both the development of duricrusts and their impact on landscape evolution.
Caroline Fenske, Jean Braun, Cécile Robin, and François Guillocheau
EGUsphere, https://doi.org/10.5194/egusphere-2025-3134, https://doi.org/10.5194/egusphere-2025-3134, 2025
This preprint is open for discussion and under review for Earth Surface Dynamics (ESurf).
Short summary
Short summary
Duricrusts have contributed valuable insight to the evolving field of regolith science over the past two centuries. These mineral-rich layers occur in diverse settings, from hilltops to valley floors, and are thought to form through two main processes. In 2025, we introduced the first numerical model for the hydrological hypothesis; now, we present a complementary model based on laterisation. This framework simulates both the development of duricrusts and their impact on landscape evolution.
Pierre Dietrich, François Guillocheau, Guilhem A. Douillet, Neil P. Griffis, Guillaume Baby, Daniel P. Le Héron, Laurie Barrier, Maximilien Mathian, Isabel P. Montañez, Cécile Robin, Thomas Gyomlai, Christoph Kettler, and Axel Hofmann
Earth Surf. Dynam., 13, 495–529, https://doi.org/10.5194/esurf-13-495-2025, https://doi.org/10.5194/esurf-13-495-2025, 2025
Short summary
Short summary
At the evocation of icy landscapes, Africa is not the first place that comes to mind. The modern relief of Southern Africa is generally considered to be a result of uplift and counteracting erosion. We show that some of the modern relief of this region is due to fossil glacial landscapes – striated pavements, valleys, and fjords – tied to an ice age that occurred ca. 300 Myr ago. We focus on how these landscapes have escaped being erased for hundreds of millions of years.
Ruohong Jiao, Shengze Cai, and Jean Braun
Geochronology, 6, 227–245, https://doi.org/10.5194/gchron-6-227-2024, https://doi.org/10.5194/gchron-6-227-2024, 2024
Short summary
Short summary
We demonstrate a machine learning method to estimate the temperature changes in the Earth's crust over time. The method respects physical laws and conditions imposed by users. By using observed rock cooling ages as constraints, the method can be used to estimate the tectonic and landscape evolution of the Earth. We show the applications of the method using a synthetic rock uplift model in 1D and an evolution model of a real mountain range in 3D.
Chuanqi He, Ci-Jian Yang, Jens M. Turowski, Richard F. Ott, Jean Braun, Hui Tang, Shadi Ghantous, Xiaoping Yuan, and Gaia Stucky de Quay
Earth Syst. Sci. Data, 16, 1151–1166, https://doi.org/10.5194/essd-16-1151-2024, https://doi.org/10.5194/essd-16-1151-2024, 2024
Short summary
Short summary
The shape of drainage basins and rivers holds significant implications for landscape evolution processes and dynamics. We used a global 90 m resolution topography to obtain ~0.7 million drainage basins with sizes over 50 km2. Our dataset contains the spatial distribution of drainage systems and their morphological parameters, supporting fields such as geomorphology, climatology, biology, ecology, hydrology, and natural hazards.
Amanda Lily Wild, Jean Braun, Alexander C. Whittaker, and Sebastien Castelltort
EGUsphere, https://doi.org/10.5194/egusphere-2024-351, https://doi.org/10.5194/egusphere-2024-351, 2024
Short summary
Short summary
Sediments deposited within river channels form the stratigraphic record, which has been used to interpret tectonic events, basin subsidence, and changes in precipitation long after ancient mountain chains have eroded away. Our work combines methods for estimating gravel fining with a landscape evolution model in order to analyze the grain size preserved within the stratigraphic record with greater complexity (e.g. considering topography and channel dynamics) than past approaches.
Boris Gailleton, Luca C. Malatesta, Guillaume Cordonnier, and Jean Braun
Geosci. Model Dev., 17, 71–90, https://doi.org/10.5194/gmd-17-71-2024, https://doi.org/10.5194/gmd-17-71-2024, 2024
Short summary
Short summary
This contribution presents a new method to numerically explore the evolution of mountain ranges and surrounding areas. The method helps in monitoring with details on the timing and travel path of material eroded from the mountain ranges. It is particularly well suited to studies juxtaposing different domains – lakes or multiple rock types, for example – and enables the combination of different processes.
Esteban Acevedo-Trejos, Jean Braun, Katherine Kravitz, N. Alexia Raharinirina, and Benoît Bovy
Geosci. Model Dev., 16, 6921–6941, https://doi.org/10.5194/gmd-16-6921-2023, https://doi.org/10.5194/gmd-16-6921-2023, 2023
Short summary
Short summary
The interplay of tectonics and climate influences the evolution of life and the patterns of biodiversity we observe on earth's surface. Here we present an adaptive speciation component coupled with a landscape evolution model that captures the essential earth-surface, ecological, and evolutionary processes that lead to the diversification of taxa. We can illustrate with our tool how life and landforms co-evolve to produce distinct biodiversity patterns on geological timescales.
Ngai-Ham Chan, Moritz Langer, Bennet Juhls, Tabea Rettelbach, Paul Overduin, Kimberly Huppert, and Jean Braun
Earth Surf. Dynam., 11, 259–285, https://doi.org/10.5194/esurf-11-259-2023, https://doi.org/10.5194/esurf-11-259-2023, 2023
Short summary
Short summary
Arctic river deltas influence how nutrients and soil organic carbon, carried by sediments from the Arctic landscape, are retained or released into the Arctic Ocean. Under climate change, the deltas themselves and their ecosystems are becoming more vulnerable. We build upon previous models to reproduce for the first time an important feature ubiquitous to Arctic deltas and simulate its future under climate warming. This can impact the future of Arctic deltas and the carbon release they moderate.
Jean Braun
Earth Surf. Dynam., 10, 301–327, https://doi.org/10.5194/esurf-10-301-2022, https://doi.org/10.5194/esurf-10-301-2022, 2022
Short summary
Short summary
By comparing two models for the transport of sediment, we find that they share a similar steady-state solution that adequately predicts the shape of most depositional systems made of a fan and an alluvial plain. The length of the fan is controlled by the size of the mountain drainage area feeding the sedimentary system and its slope by the incoming sedimentary flux. We show that the models differ in their transient behavior to external forcing and are characterized by different response times.
Cited articles
Allard, T., Gautheron, C., Riffel, S. B., Balan, E., Soares, B. F., Pinna-Jamme, R., Derycke, A., Morin, G., Bueno, G. T., and Nascimento, N. D.: Combined dating of goethites and kaolinites from ferruginous duricrusts. Deciphering the Late Neogene erosion history of Central Amazonia, Chem. Geol., 479, 136–150, https://doi.org/10.1016/j.chemgeo.2018.01.004, 2018. a, b
Alonso-Zarza, A. and Wright, V.: Chapter 5 Calcretes, Developments in Sedimentology, 61, 225–267, https://doi.org/10.1016/s0070-4571(09)06105-6, 2010. a, b, c, d
Alonso-Zarza, A. M.: Palaeoenvironmental significance of palustrine carbonates and calcretes in the geological record, Earth-Sci. Rev., 60, 261–298, https://doi.org/10.1016/s0012-8252(02)00106-x, 2003. a, b, c, d
Alonso-Zarza, A. M., Tanner, L. H., Azañón, J. M., Tuccimei, P., Azor, A., Sánchez-Almazo, I. M., Alonso-Zarza, A. M., Soligo, M., and Pérez-Peña, J. V.: Paleoenvironmental Record and Applications of Calcretes and Palustrine Carbonates, Geological Society of America, https://doi.org/10.1130/2006.2416(14), 2006. a
Azmon, E. and Kedar, Y.: Lower cretaceous silcrete-ferricrete, at the northern end of the African Tethys shoreline, Maktesh Gadol, Israel, Sediment. Geol., 43, 261–276, https://doi.org/10.1016/0037-0738(85)90059-4, 1985. a
Balugani, E., Lubczynski, M., Reyes-Acosta, L., Tol, C. v. d., Francés, A., and Metselaar, K.: Groundwater and unsaturated zone evaporation and transpiration in a semi-arid open woodland, J. Hydrol., 547, 54–66, https://doi.org/10.1016/j.jhydrol.2017.01.042, 2017. a, b
Beauvais, A.: Ferricrete biochemical degradation on the rainforest–savannas boundary of Central African Republic, Geoderma, 150, 379–388, https://doi.org/10.1016/j.geoderma.2009.02.023, 2009. a
Beauvais, A., Ruffet, G., Hénocque, O., and Colin, F.: Chemical and physical erosion rhythms of the West African Cenozoic morphogenesis: The 39Ar‐40Ar dating of supergene K‐Mn oxides, J. Geophys. Res.-Earth, 113, F04007, https://doi.org/10.1029/2008jf000996, 2008. a
Bhuiyan, C.: Hydrogeological factors: their association and relationship with seasonal water-table fluctuation in the composite hardrock Aravalli terrain, India, Environ. Earth Sci., 60, 733–748, https://doi.org/10.1007/s12665-009-0211-5, 2010. a, b, c, d
Bierman, P. R., Coppersmith, R., Hanson, K., Neveling, J., Portenga, E. W., and Rood, D. H.: A cosmogenic view of erosion, relief generation, and the age of faulting in southern Africa, GSA Today, 24, 4–11, https://doi.org/10.1130/gsatg206a.1, 2014. a
Bonsor, H. C., MacDonald, A. M., and Davies, J.: Evidence for extreme variations in the permeability of laterite from a detailed analysis of well behaviour in Nigeria, Hydrol. Process., 28, 3563–3573, https://doi.org/10.1002/hyp.9871, 2014. a
Borger, H.: Mikromorphologie und Paläoenvironment: die Mineralverwitterung als Zeugnis der cretazisch-tertiären Umwelt in Süddeutschland, vol. 15, Gebrüder Borntraeger, ISBN 9783443090159, 2000. a
Boulangé, B.: Les formations bauxitiques latéritiques de Côte d'Ivoire: les faciès, leur transformation, leur distribution et l'évolution du modèle, Travaux et Documents de l'ORSTOM, ORSTOM, Paris, ISBN 2-7099-0715-1, https://www.documentation.ird.fr/hor/fdi:15338 (last access: 18 July 2024), 1984. a, b, c, d, e, f
Boulangé, B., Ambrosi, J.-P., and Nahon, D.: Laterites and Bauxites, in: Soils and Sediments Mineralogy and Geochemestry, Springer, vol. 1, p. 369, https://doi.org/10.1007/978-3-642-60525-3_3, ISBN 978-3-642-64443-6, 1997. a, b, c, d
Bourman, R.: Field relationships of ferricretes and weathered zones in southern South Australia: a contribution to 'laterite' studies in Australia, Soil Res., 23, 441–465, https://doi.org/10.1071/sr9850441, 1985. a
Bourman, R. P., Buckman, S., Chivas, A. R., Ollier, C. D., and Price, D. M.: Ferricretes at Burringurrah (Mount Augustus), Western Australia: Proof of lateral derivation, Geomorphology, 354, 107017, https://doi.org/10.1016/j.geomorph.2019.107017, 2020. a
Bovy, B., McBain, G. D., Gailleton, B., and Lange, R.: benbovy/xarray-simlab: 0.5.0, Zenodo [code], https://doi.org/10.5281/zenodo.4469813, 2021. a
Brantley, S. L. and White, A. F.: Approaches to Modeling Weathered Regolith, Rev. Mineral. Geochem., 70, 435–484, https://doi.org/10.2138/rmg.2009.70.10, 2009. a
Brantley, S. L., Lebedeva, M. I., Balashov, V. N., Singha, K., Sullivan, P. L., and Stinchcomb, G.: Toward a conceptual model relating chemical reaction fronts to water flow paths in hills, Geomorphology, 277, 100–117, https://doi.org/10.1016/j.geomorph.2016.09.027, 2017. a
Braun, J., Guillocheau, F., and Robin, C.: Reply to Comment on “A simple model for regolith formation by chemical weathering” by Braun et al. Contradictory concentrations and a tale of two velocities by Harman et al., J. Geophys. Res.-Earth, 122, 2037–2039, https://doi.org/10.1002/2017jf004271, 2017. a
Brown, K. S., Marean, C. W., Herries, A. I. R., Jacobs, Z., Tribolo, C., Braun, D., Roberts, D. L., Meyer, M. C., and Bernatchez, J.: Fire As an Engineering Tool of Early Modern Humans, Science, 325, 859–862, https://doi.org/10.1126/science.1175028, 2009. a
Buchanan, F.: A Journey from Madras through the Countries of Mysore, Canara, and Malabar, vol. 3, Cadell, https://doi.org/10.11588/diglit.2375, 1807. a
Bustillo, M. A., Plet, C., and Alonso-Zarza, A. M.: Root Calcretes and Uranium-Bearing Silcretes At Sedimentary Discontinuities In the Miocene of the Madrid Basin (Toledo, Spain), J. Sediment. Res., 83, 1130–1146, https://doi.org/10.2110/jsr.2013.85, 2013. a, b
Butt, C. and Bristow, A.: Relief inversion in the geomorphological evolution of sub-Saharan West Africa, Geomorphology, 185, 16–26, https://doi.org/10.1016/j.geomorph.2012.11.024, 2013. a
Butt, C. R. M.: Granite weathering and silcrete formation on the Yilgarn Block, Western Australia, Aust. J. Earth Sci., 32, 415–432, https://doi.org/10.1080/08120098508729341, 1985. a
Campforts, B. and Govers, G.: Keeping the edge: A numerical method that avoids knickpoint smearing when solving the stream power law, J. Geophys. Res.-Earth, 120, 1189–1205, https://doi.org/10.1002/2014jf003376, 2015. a
Campos, D. S. D., Monteiro, H. S., Vasconcelos, P. M., Farley, K. A., Silva, A. C., and Vidal‐Torrado, P.: A new model of bauxitization in quartzitic landscapes: A case study from the Southern Espinhaço Range (Brazil), Earth Surface Proc. Land., 48, 2788–2807, https://doi.org/10.1002/esp.5660, 2023. a, b, c
Candy, I., Black, S., and Sellwood, B.: Quantifying time scales of pedogenic calcrete formation using U-series disequilibria, Sediment. Geol., 170, 177–187, https://doi.org/10.1016/j.sedgeo.2004.07.003, 2003. a, b, c
Chandra, S., Singh, P. K., Tiwari, A. K., Panigrahy, B. P., and Kumar, A.: Evaluation of hydrogeological factors and their relationship with seasonal water table fluctuation in Dhanbad district, Jharkhand, India, J. Hydraul. Eng., 21, 193–206, https://doi.org/10.1080/09715010.2014.1002542, 2015. a, b, c, d, e, f
Chardon, D.: Landform-regolith patterns of Northwestern Africa: Deciphering Cenozoic surface dynamics of the tropical cratonic geosystem, Earth-Sci. Rev., 242, 104452, https://doi.org/10.1016/j.earscirev.2023.104452, 2023. a, b
Chen, C.-H., Liu, K.-K., and Shieh, Y.-N.: Geochemical and isotopic studies of bauxitization in the Tatun volcanic area, northern Taiwan, Chem. Geol., 68, 41–56, https://doi.org/10.1016/0009-2541(88)90085-x, 1988. a, b
Chivas, A. R. and Atlhopheng, J. R.: Oxygen-isotope dating the Yilgarn regolith, Geological Society, London, Special Publications, 346, 309–320, https://doi.org/10.1144/sp346.16, 2010. a
Chudasama, B., Porwal, A., González-Álvarez, I., Thakur, S., Wilde, A., and Kreuzer, O. P.: Calcrete-hosted surficial uranium systems in Western Australia: Prospectivity modeling and quantitative estimates of resources. Part 1 – Origin of calcrete uranium deposits in surficial environments: A review, Ore Geol. Rev., 102, 906–936, https://doi.org/10.1016/j.oregeorev.2018.04.024, 2018. a, b
Chudasama, B., Porwal, A., Wilde, A., González-Álvarez, I., Aranha, M., Akarapu, U., Hirsch, M., and Becker, E.: Bedrock topography modeling and calcrete-uranium prospectivity analysis of Central Erongo Region, Namibia, Ore Geol. Rev., 114, 103109, https://doi.org/10.1016/j.oregeorev.2019.103109, 2019. a
Colin, F., Beauvais, A., Ruffet, G., and Hénocque, O.: First 40Ar 39Ar geochronology of lateritic manganiferous pisolites: Implications for the Palaeogene history of a West African landscape, Earth Planet. Sci. Lett., 238, 172–188, https://doi.org/10.1016/j.epsl.2005.06.052, 2005. a, b
Deng, Y., Li, H., Wang, Y., Duan, Y., and Gan, Y.: Temporal Variability of Groundwater Chemistry and Relationship with Water-table Fluctuation in the Jianghan Plain, Central China, Proced. Earth Plan. Sc., 10, 100–103, https://doi.org/10.1016/j.proeps.2014.08.018, 2014. a, b, c
Dhir, R., Singhvi, A., Andrews, J., Kar, A., Sareen, B., Tandon, S., Kailath, A., and Thomas, J.: Multiple episodes of aggradation and calcrete formation in Late Quaternary aeolian sands, Central Thar Desert, Rajasthan, India, J. Asian Earth Sci., 37, 10–16, https://doi.org/10.1016/j.jseaes.2009.07.002, 2010. a, b, c
dos Santos Albuquerque, M. F., Horbe, A. M. C., and Danišík, M.: Episodic weathering in Southwestern Amazonia based on (UTh) He dating of Fe and Mn lateritic duricrust, Chem. Geol., 553, 119792, https://doi.org/10.1016/j.chemgeo.2020.119792, 2020. a, b, c, d
Ely, D. M. and Kahle, S. C.: Simulation of groundwater and surface-water resources and evaluation of water-management alternatives for the Chamokane Creek basin, Stevens County, Washington, Tech. Rep. 2012-5224, USGS, https://doi.org/10.3133/sir20125224, 2012. a
Eren, M., Kadir, S., Hatipoğlu, Z., and Gül, M.: Quaternary Calcrete Development in the Mersin Area, Southern Turkey, Turkish J. Earth Sci., 17, 763–784, 2008. a
Fenske, C.: CarolineFenske/Duricrusts: Initial Release (v1.0), Zenodo [code], https://doi.org/10.5281/zenodo.10523101, 2024a. a
Fenske, C.: S1 – Supplementary material for article “A numerical model for duricrust formation by water table fluctuations”, TIB AV-Portal [video], https://doi.org/10.5446/69377, 2024b. a
Fenske, C.: “A Numerical Model for Duricrust Formation by Water Table Fluctuations” Datasets, OSF [data set], https://doi.org/10.17605/OSF.IO/RNYH4, 2025. a
Ferrier, K. L. and Kirchner, J. W.: Effects of physical erosion on chemical denudation rates: A numerical modeling study of soil-mantled hillslopes, Earth Planet. Sc. Lett., 272, 591–599, https://doi.org/10.1016/j.epsl.2008.05.024, 2008. a
Firman, J.: Paleosols in laterite and silcrete profiles Evidence from the South East Margin of the Australian Precambrian Shield, Earth-Sci. Rev., 36, 149–179, https://doi.org/10.1016/0012-8252(94)90056-6, 1993. a, b, c, d
Fritz, B. and Tardy, Y.: Etude thermodynamique du système gibbsite, quartz, kaolinite, gaz carbonique. Application à la genèse des podzols et des bauxites, Sciences Géologiques. Bulletin, 26, 339–367, https://doi.org/10.3406/sgeol.1973.1438, 1973. a, b
Fujioka, T., Chappell, J., Honda, M., Yatsevich, I., Fifield, K., and Fabel, D.: Global cooling initiated stony deserts in central Australia 2–4 Ma, dated by cosmogenic 21Ne-10Be, Geology, 33, 993–996, https://doi.org/10.1130/g21746.1, 2005. a
Fujioka, T., Fifield, L., Stone, J., Vasconcelos, P., Tims, S., and Chappell, J.: In situ cosmogenic 53Mn production rate from ancient low-denudation surface in tropic Brazil, Nucl. Instrum. Meth. B, 268, 1209–1213, https://doi.org/10.1016/j.nimb.2009.10.135, 2010. a
Gilkes, B., Lee, S., and Singh, B.: The imprinting of aridity upon a lateritic landscape: an illustration from southwestern Australia, C. R. Geosci., 335, 1207–1218, https://doi.org/10.1016/j.crte.2003.10.003, 2003. a
Girard, J.-P., Freyssinet, P., and Morillon, A.-C.: Oxygen isotope study of Cayenne duricrust paleosurfaces: implications for past climate and laterization processes over French Guiana, Chem. Geol., 191, 329–343, https://doi.org/10.1016/s0009-2541(02)00130-4, 2002. a
Goudie, A.: Duricrusts in Tropical and Subtropical Landscapes, Clay Miner., 10, 131–131, https://doi.org/10.1180/claymin.1973.010.2.08, 1973. a, b, c, d
Grant, K. and Aitchison, G.: The engineering significance of silcretes and ferricretes in Australia, Eng. Geol., 4, 93–120, https://doi.org/10.1016/0013-7952(70)90007-4, 1970. a
Guinoiseau, D., Fekiacova, Z., Allard, T., Druhan, J. L., Balan, E., and Bouchez, J.: Tropical Weathering History Recorded in the Silicon Isotopes of Lateritic Weathering Profiles, Geophys. Res. Lett., 48, e2021GL092957, https://doi.org/10.1029/2021gl092957, 2021. a
Hall, S., Gosen, B. V., Paces, J., Zielinski, R., and Breit, G.: Calcrete uranium deposits in the Southern High Plains, USA, Ore Geol. Rev., 109, 50–78, https://doi.org/10.1016/j.oregeorev.2019.03.036, 2019. a, b
Hassan, S. T., Lubczynski, M. W., Niswonger, R. G., and Su, Z.: Surface–groundwater interactions in hard rocks in Sardon Catchment of western Spain: An integrated modeling approach, J. Hydrol., 517, 390–410, https://doi.org/10.1016/j.jhydrol.2014.05.026, 2014. a, b, c, d
Heller, B. M., Riffel, S. B., Allard, T., Morin, G., Roig, J.-Y., Couëffé, R., Aertgeerts, G., Derycke, A., Ansart, C., Pinna-Jamme, R., and Gautheron, C.: Reading the climate signals hidden in bauxite, Geochim. Cosmochim. Ac., 323, 40–73, https://doi.org/10.1016/j.gca.2022.02.017, 2022. a, b, c, d, e
Hénocque, O., Ruffet, G., Colin, F., and Féraud, G.: 40Ar 39Ar dating of West African lateritic cryptomelanes, Geochim. Cosmochim. Ac., 62, 2739–2756, https://doi.org/10.1016/s0016-7037(98)00185-9, 1998. a, b, c
Horbe, A. M. C. and Anand, R.: Bauxite on igneous rocks from Amazonia and Southwestern of Australia: Implication for weathering process, J. Geochem. Explor., 111, 1–12, https://doi.org/10.1016/j.gexplo.2011.06.003, 2011. a, b, c
Hunt, P., Mitchell, P., and Paton, T.: “Laterite profiles” and “lateritic ironstones” on the hawkesbury sandstone, Australia, Geoderma, 19, 105–121, https://doi.org/10.1016/0016-7061(77)90019-2, 1977. a
Kelly, M., Black, S., and Rowan, J.: A calcrete-based U Th chronology for landform evolution in the Sorbas basin, southeast Spain, Quaternary Sci. Rev., 19, 995–1010, https://doi.org/10.1016/s0277-3791(99)00050-5, 2000. a, b
Khalaf, F. I.: Occurrences and genesis of calcrete and dolocrete in the Mio-Pleistocene fluviatile sequence in Kuwait, northeast Arabian Peninsula, Sediment. Geol., 199, 129–139, https://doi.org/10.1016/j.sedgeo.2007.01.021, 2007. a
Khalifa, M., Kumon, F., and Yoshida, K.: Calcareous duricrust, Al Qasim Province, Saudi Arabia: Occurrence and origin, Quatern. Int., 209, 163–174, https://doi.org/10.1016/j.quaint.2009.02.014, 2009. a
Král, V.: Silcretes and Their Relationship to Planation Surfaces in Western Bohemia, Geografie, 81, 19–22, https://doi.org/10.37040/geografie1976081010019, 1976. a, b, c
Küçükuysal, C., Engin, B., Türkmenoğlu, A. G., and Aydaş, C.: ESR dating of calcrete nodules from Bala, Ankara (Turkey): Preliminary results, Appl. Radiat. Isotopes, 69, 492–499, https://doi.org/10.1016/j.apradiso.2010.10.005, 2011. a, b, c
Kuruppath, N., Raviraj, A., Kannan, B., and Sellamuthu, K. M.: Estimation of Groundwater Recharge Using Water Table Fluctuation Method, International Journal of Current Microbiology and Applied Sciences, 7, 3404–3412, https://doi.org/10.20546/ijcmas.2018.710.395, 2018. a, b, c, d
Lebedeva, M. and Brantley, S.: A clarification and extension of our model of regolith formation on hillslopes, Earth Surface Proc. Land., 43, 2715–2723, https://doi.org/10.1002/esp.4426, 2018. a
Lebedeva, M., Fletcher, R., Balashov, V., and Brantley, S.: A reactive diffusion model describing transformation of bedrock to saprolite, Chem. Geol., 244, 624–645, https://doi.org/10.1016/j.chemgeo.2007.07.008, 2007. a
Lebedeva, M., Fletcher, R., and Brantley, S.: A mathematical model for steady‐state regolith production at constant erosion rate, Earth Surf. Proc. Land., 35, 508–524, https://doi.org/10.1002/esp.1954, 2010. a, b
Lebedeva, M. I. and Brantley, S. L.: Exploring geochemical controls on weathering and erosion of convex hillslopes: beyond the empirical regolith production function, Earth Surface Proc. Land., 38, 1793–1807, https://doi.org/10.1002/esp.3424, 2013. a
Leduc, C., Bromley, J., and Schroeter, P.: Water table fluctuation and recharge in semi-arid climate: some results of the HAPEX-Sahel hydrodynamic survey (Niger), J. Hydrol., 188, 123–138, https://doi.org/10.1016/s0022-1694(96)03156-3, 1997. a, b, c
Leer, B. v.: Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme, J. Comput. Phys., 14, 361–370, https://doi.org/10.1016/0021-9991(74)90019-9, 1974. a
Lichtner, P. C. and Biino, G. G.: A first principles approach to supergene enrichment of a porphyry copper protore: I. Cu-Fe-S subsystem, Geochim. Cosmochim. Ac., 56, 3987–4013, https://doi.org/10.1016/0016-7037(92)90012-8, 1992. a, b
Maher, K.: The dependence of chemical weathering rates on fluid residence time, Earth Planet. Sc. Lett., 294, 101–110, https://doi.org/10.1016/j.epsl.2010.03.010, 2010. a
Maréchal, J., Dewandel, B., Ahmed, S., Galeazzi, L., and Zaidi, F.: Combined estimation of specific yield and natural recharge in a semi-arid groundwater basin with irrigated agriculture, J. Hydrol., 329, 281–293, https://doi.org/10.1016/j.jhydrol.2006.02.022, 2006. a
Marques, E. A., Junior, G. C. S., Eger, G. Z., Ilambwetsi, A. M., Raphael, P., Generoso, T. N., Oliveira, J., and Júnior, J. N.: Analysis of groundwater and river stage fluctuations and their relationship with water use and climate variation effects on Alto Grande watershed, Northeastern Brazil, J. S. Am. Earth Sci., 103, 102723, https://doi.org/10.1016/j.jsames.2020.102723, 2020. a
Mather, C. C., Nash, D. J., Dogramaci, S., Grierson, P. F., and Skrzypek, G.: Geomorphic and hydrological controls on groundwater dolocrete formation in the semi‐arid Hamersley Basin, northwest Australia, Earth Surf. Proc. Land., 44, 2752–2770, https://doi.org/10.1002/esp.4704, 2019. a
Millot, G.: Geology of Clays: weathering, sedimentology, geochemistry, vol. 1, New York Springer-Verlag, https://doi.org/10.1007/978-3-662-41609-9, https://archive.org/details/geologyofclayswe0000unse/page/n5/mode/2up (last access: 18 July 2024), 1970. a, b
Momo, M. N., Beauvais, A., Tematio, P., and Yemefack, M.: Differentiated Neogene bauxitization of volcanic rocks (western Cameroon): Morpho-geological constraints on chemical erosion, CATENA, 194, 104685, https://doi.org/10.1016/j.catena.2020.104685, 2020. a, b, c
Monteiro, H., Vasconcelos, P., Farley, K., and Lopes, C.: Age and evolution of diachronous erosion surfaces in the Amazon: Combining (U-Th) He and cosmogenic 3He records, Geochim. Cosmochim. Ac., 229, 162–183, https://doi.org/10.1016/j.gca.2018.02.045, 2017. a, b
Monteiro, H. S., Vasconcelos, P. M., Farley, K. A., Spier, C. A., and Mello, C. L.: (U-Th) He geochronology of goethite and the origin and evolution of cangas, Geochim. Cosmochim. Ac., 131, 267–289, https://doi.org/10.1016/j.gca.2014.01.036, 2014. a, b, c, d
Moon, S.-K., Woo, N. C., and Lee, K. S.: Statistical analysis of hydrographs and water-table fluctuation to estimate groundwater recharge, J. Hydrol., 292, 198–209, https://doi.org/10.1016/j.jhydrol.2003.12.030, 2004. a, b
Moussavi-Harami, R., Mahboubi, A., Nadjafi, M., Brenner, R., and Mortazavi, M.: Mechanism of calcrete formation in the Lower Cretaceous (Neocomian) fluvial deposits, northeastern Iran based on petrographic, geochemical data, Cretaceous Res., 30, 1146–1156, https://doi.org/10.1016/j.cretres.2009.04.003, 2009. a, b
Nahon, D. and Bocquier, G.: Petrology of elements transfers in weathering and soil systems, in: Pétrologie des altérations et des sols, Vol. II: Pétrologie des séquences naturelles. Colloque international du CNRS, Paris, France, 4–7 July 1983, Sciences Géologiques, bulletins et mémoires, https://www.persee.fr/doc/sgeol_0302-2684_1983_act_72_1_2016 (last access: 18 July 2024), 1983. a
Nash, D. J.: Arid Zone Geomorphology, John Wiley & Sons, Ltd, 131–180, https://doi.org/10.1002/9780470710777.ch8, 2011. a, b, c, d
Nash, D. J. and Shaw, P. A.: Silica and carbonate relationships in silcrete-calcrete intergrade duricrusts from the Kalahari of Botswana and Namibia, J. Afr. Earth Sci., 27, 11–25, https://doi.org/10.1016/s0899-5362(98)00043-8, 1998. a
Nash, D. J., Mclaren, S. J., and Webb, J. A.: Petrology, geochemistry and environmental significance of silcrete‐calcrete intergrade duricrusts at Kang Pan and Tswaane, central Kalahari, Botswana, Earth Surf. Proc. Land., 29, 1559–1586, https://doi.org/10.1002/esp.1138, 2004. a
Netterberg, F.: Ages of Calcretes in Southern Africa, S. Afr. Archaeol. Bull., 24, 88–92, https://doi.org/10.2307/3888283, 1969. a, b
Norton, K. P., Molnar, P., and Schlunegger, F.: The role of climate-driven chemical weathering on soil production, Geomorphology, 204, 510–517, https://doi.org/10.1016/j.geomorph.2013.08.030, 2014. a
Nygren, M., Giese, M., Kløve, B., Haaf, E., Rossi, P. M., and Barthel, R.: Changes in seasonality of groundwater level fluctuations in a temperate-cold climate transition zone, J. Hydrol., 8, 100062, https://doi.org/10.1016/j.hydroa.2020.100062, 2020. a, b, c
Ollier, C. and Galloway, R.: The laterite profile, ferricrete and unconformity, CATENA, 17, 97–109, https://doi.org/10.1016/0341-8162(90)90001-t, 1990. a, b, c
Ollier, C. D. and Sheth, H. C.: The High Deccan duricrusts of India and their significance for the `laterite' issue, J. Earth Syst. Sci., 117, 537–551, https://doi.org/10.1007/s12040-008-0051-9, 2008. a
Paton, T. R. and Williams, M. A. J.: The Concept of Laterite, Ann. Assoc. Am. Geogr., 62, 42–56, https://doi.org/10.1111/j.1467-8306.1972.tb00842.x, 1972. a
Paz, A., Gagen, E. J., Levett, A., Zhao, Y., Kopittke, P. M., and Southam, G.: Biogeochemical cycling of iron oxides in the rhizosphere of plants grown on ferruginous duricrust (canga), Sci. Total Environ., 713, 136637, https://doi.org/10.1016/j.scitotenv.2020.136637, 2020. a
Paz, A., Gagen, E. J., Levett, A., and Southam, G.: Ferrugination of biocrusts grown on crushed ferricrete: Potential for slope stabilisation, Ore Geol. Rev., 135, 104239, https://doi.org/10.1016/j.oregeorev.2021.104239, 2021. a
Pelletier, J. D.: How do pediments form?: A numerical modeling investigation with comparison to pediments in southern Arizona, USA, GSA Bull., 122, 1815–1829, https://doi.org/10.1130/b30128.1, 2010. a, b
Pelletier, J. D., Broxton, P. D., Hazenberg, P., Zeng, X., Troch, P. A., Niu, G., Williams, Z., Brunke, M. A., and Gochis, D.: A gridded global data set of soil, intact regolith, and sedimentary deposit thicknesses for regional and global land surface modeling, J. Adv. Model. Earth Sy., 8, 41–65, https://doi.org/10.1002/2015ms000526, 2016. a
Pérez-Peña, J. V., Azañón, J. M., Azor, A., Tuccimei, P., Seta, M. D., and Soligo, M.: Quaternary landscape evolution and erosion rates for an intramontane Neogene basin (Guadix–Baza basin, SE Spain), Geomorphology, 106, 206–218, https://doi.org/10.1016/j.geomorph.2008.10.018, 2009. a
Phillips, J. D.: Rapid Development of Ferricretes on a Subtropical Valley Side Slope, Geogr. Ann. A, 82, 69–78, https://doi.org/10.1111/j.0435-3676.2000.00113.x, 2000. a
Radtke, U. and Brückner, H.: Investigation on age and genesis of silcretes in Queensland (Australia) – Preliminary results, Earth Surf. Proc. Land., 16, 547–554, https://doi.org/10.1002/esp.3290160606, 1991. a, b
Radtke, U., Brückner, H., Mangini, A., and Hausmann, R.: Problems encountered with absolute dating (U-series, ESR) of Spanish calcretes, Quaternary Sci. Rev., 7, 439–445, https://doi.org/10.1016/0277-3791(88)90043-1, 1988. a, b, c
Rempe, D. M. and Dietrich, W. E.: A bottom-up control on fresh-bedrock topography under landscapes, P. Natl. Acad. Sci. USA, 111, 6576–6581, https://doi.org/10.1073/pnas.1404763111, 2014. a, b
Retallack, G. J.: Soils of the Past, Blackwell Science, USA, https://doi.org/10.1002/9780470698716, ISBN 9780470698716, 2001. a
Retallack, G. J.: Lateritization and Bauxitization Events, Econ. Geol., 105, 655–667, https://doi.org/10.2113/gsecongeo.105.3.655, 2010. a, b
Ricordel‐Prognon, C., Lagroix, F., Moreau, M., and Thiry, M.: Lateritic paleoweathering profiles in French Massif Central: Paleomagnetic datings, J. Geophys. Res.-Sol. Ea., 115, B10104, https://doi.org/10.1029/2010jb007419, 2010. a
Riffel, S. B., Vasconcelos, P. M., Carmo, I. O., and Farley, K. A.: Goethite (U-Th) He geochronology and precipitation mechanisms during weathering of basalts, Chem. Geol., 446, 18–32, https://doi.org/10.1016/j.chemgeo.2016.03.033, 2016. a
Ritter, B., Albert, R., Rakipov, A., Van der Wateren, F. M., Dunai, T. J., and Gerdes, A.: Late Neogene terrestrial climate reconstruction of the central Namib Desert derived by the combination of U–Pb silcrete and terrestrial cosmogenic nuclide exposure dating, Geochronology, 5, 433–450, https://doi.org/10.5194/gchron-5-433-2023, 2023. a, b
Rozefelds, A. C., Webb, J., Carpenter, R. J., Milroy, A. K., and Hill, R. S.: Born of fire, borne by water – Review of paleo-environmental conditions, floristic assemblages and modes of preservation as evidence of distinct silicification pathways for silcrete floras in Australia, Gondwana Res., 130, 234–249, https://doi.org/10.1016/j.gr.2024.02.001, 2024. a
Sacek, V., Neto, J. M. M., Vasconcelos, P. M., and Carmo, I. O.: Numerical Modeling of Weathering, Erosion, Sedimentation, and Uplift in a Triple Junction Divergent Margin, Geochem. Geophy. Geosy., 20, 2334–2354, https://doi.org/10.1029/2018gc008124, 2019. a, b
Schwarz, T.: Lateritic bauxite in central Germany and implications for Miocene palaeoclimate, Palaeogeogr. Palaeocl., 129, 37–50, https://doi.org/10.1016/s0031-0182(96)00065-x, 1997. a
Shuster, D. L., Farley, K. A., Vasconcelos, P. M., Balco, G., Monteiro, H. S., Waltenberg, K., and Stone, J. O.: Cosmogenic 3He in hematite and goethite from Brazilian “canga” duricrust demonstrates the extreme stability of these surfaces, Earth Planet. Sc. Lett., 329, 41–50, https://doi.org/10.1016/j.epsl.2012.02.017, 2012. a
Soler, J. M. and Lasaga, A. C.: A mass transfer model of bauxite formation, Geochim. Cosmochim. Ac., 60, 4913–4931, https://doi.org/10.1016/s0016-7037(96)00319-5, 1996. a, b
Spier, C. A., Vasconcelos, P. M., and Oliviera, S. M.: 40Ar 39Ar geochronological constraints on the evolution of lateritic iron deposits in the Quadrilátero Ferrífero, Minas Gerais, Brazil, Chem. Geol., 234, 79–104, https://doi.org/10.1016/j.chemgeo.2006.04.006, 2006. a, b
Sreedevi, P. D., Ahmed, S., Made, B., Ledoux, E., and Gandolfi, J. M.: Association of hydrogeological factors in temporal variations of fluoride concentration in a crystalline aquifer in India, Environ. Geol., 50, 1–11, https://doi.org/10.1007/s00254-005-0167-z, 2006. a, b, c
Staunton, S. and Fairbridge, R. W.: Duricrusts and Induration, Springer, 192–198, https://doi.org/10.1007/978-1-4020-3995-9_168, 2008. a
Stephens, C.: Laterite and silcrete in Australia: A study of the genetic relationships of laterite and silcrete and their companion materials, and their collective significance in the formation of the weathered mantle, soils, relief and drainage of the australian continent, Geoderma, 5, 5–52, https://doi.org/10.1016/0016-7061(71)90023-1, 1970. a, b
Strasser, M., Strasser, A., Pelz, K., and Seyfried, H.: A mid Miocene to early Pleistocene multi-level cave as a gauge for tectonic uplift of the Swabian Alb (Southwest Germany), Geomorphology, 106, 130–141, https://doi.org/10.1016/j.geomorph.2008.09.012, 2009. a
Struck, M., Jansen, J. D., Fujioka, T., Codilean, A. T., Fink, D., Fülöp, R.-H., Wilcken, K. M., Price, D. M., Kotevski, S., Fifield, L. K., and Chappell, J.: Tracking the 10Be–26Al source-area signal in sediment-routing systems of arid central Australia, Earth Surf. Dynam., 6, 329–349, https://doi.org/10.5194/esurf-6-329-2018, 2018. a
Tardy, Y.: Silice, silicates magnésiens, silicates sodiques et géochimie des paysages arides, B. Soc. Géol. Fr., XXIII, 325–334, 1981. a
Tardy, Y.: Cuirasses latéritiques et minéralisations aurifères de la région de Kangaba au Mali., Cartographie, minéralogie, géochimie et télédetection, ORSTOM, DNGM, CNRS, rapport de Première Phase, IRD no. fdi:29793, 1986. a
Tardy, Y., Bardossy, G., and Nahon, D.: Fluctuations de l'activité de l'eau et succesions de minéraux hydratés et déshydratés au sein des profils latéritiques ferrugineux et bauxitiques, C. R. Académie des Sciences de Paris, 307, 753–759, 1988. a
Tardy, Y., Kobilsek, B., and Paquet, H.: Mineralogical composition and geographical distribution of African and Brazilian periatlantic laterites. The influence of continental drift and tropical paleoclimates during the past 150 million years and implications for India and Australia, J. Afr. Earth Sci., 12, 283–295, https://doi.org/10.1016/0899-5362(91)90077-c, 1991. a, b, c, d
Taylor, G. and Eggleton, R. A.: Regolith Geology and Geomorphology, Wiley, 1st edn., ISBN 978-0-471-97454-3, https://www.wiley.com/en-fr/Regolith+Geology+and+Geomorphology-p-9780471974543 (last access: 18 July 2024), 2001. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, aa, ab, ac, ad, ae, af, ag, ah, ai, aj, ak, al, am, an, ao, ap
Temgoua, E., Tchapnga, H. D., Tanawa, E., Guenat, C., and Pfeifer, H.: Groundwater fluctuations and footslope ferricrete soils in the humid tropical zone of southern Cameroon, Hydrol. Process., 19, 3097–3111, https://doi.org/10.1002/hyp.5834, 2005. a, b
Théveniaut, H. and Freyssinet, P.: Timing of lateritization on the Guiana Shield: synthesis of paleomagnetic results from French Guiana and Suriname, Palaeogeogr. Palaeocl., 178, 91–117, https://doi.org/10.1016/s0031-0182(01)00404-7, 2002. a
Thiry, M. and Milnes, A.: Silcretes: Insights into the occurrences and formation of materials sourced for stone tool making, J. Archaeol. Sci.: Reports, 15, 500–513, https://doi.org/10.1016/j.jasrep.2016.08.015, 2017. a, b
Ullyott, J. S. and Nash, D. J.: Distinguishing pedogenic and non-pedogenic silcretes in the landscape and geological record, P. Geologist. Assoc., 127, 311–319, https://doi.org/10.1016/j.pgeola.2016.03.001, 2016. a, b
Ullyott, J. S., Nash, D. J., and Shaw, P. A.: Recent advances in silcrete research and their implications for the origin and palaeoenvironmental significance of sarsens, P. Geologist. Assoc., 109, 255–270, https://doi.org/10.1016/s0016-7878(98)80019-9, 1998. a
Vasconcelos, P. M. and Conroy, M.: Geochronology of weathering and landscape evolution, Dugald River valley, NW Queensland, Australia, Geochim. Cosmochim. Ac., 67, 2913–2930, https://doi.org/10.1016/s0016-7037(02)01372-8, 2003. a, b, c
Vasconcelos, P. M., Brimhall, G. H., Becker, T. A., and Renne, P. R.: 40Ar39Ar analysis of supergene jarosite and alunite: Implications to the paleoweathering history of the western USA and West Africa, Geochim. Cosmochim. Ac., 58, 401–420, https://doi.org/10.1016/0016-7037(94)90473-1, 1994. a, b
Vogel, J. and Geyh, M.: Radiometric dating of hillslope calcrete in the Negev Desert, Israel, S. Afr. J. Sci., 104, 493–495, https://doi.org/10.1590/s0038-23532008000600025, 2008. a
Wang, Y., Nahon, D., and Merino, E.: Dynamic model of the genesis of calcretes replacing silicate rocks in semi-arid regions, Geochim. Cosmochim. Ac., 58, 5131–5145, https://doi.org/10.1016/0016-7037(94)90299-2, 1993. a
Watson, A.: Desert gypsum crusts as palaeoenvironmental indicators: A micropetrographic study of crusts from southern Tunisia and the central Namib Desert, J. Arid Environ., 15, 19–42, https://doi.org/10.1016/s0140-1963(18)31002-4, 1988. a, b
Webb, J. A. and Golding, S. D.: Geochemical mass-balance and oxygen-isotope constraints on silcrete formation and its paleoclimatic implications in southern Australia, J. Sediment. Res., 68, 981–993, https://doi.org/10.2110/jsr.68.981, 1998. a, b
Webb, J. A. and Nash, D. J.: Reassessing southern African silcrete geochemistry: implications for silcrete origin and sourcing of silcrete artefacts, Earth Surface Proc. Land., 45, 3396–3413, https://doi.org/10.1002/esp.4976, 2020. a, b, c
Wells, M., Danišík, M., McInnes, B., and Morris, P.: (U-Th) He-dating of ferruginous duricrust: Insight into laterite formation at Boddington, WA, Chem. Geol., 522, 148–161, https://doi.org/10.1016/j.chemgeo.2019.05.030, 2019. a
Widdowson, M.: Laterites and Ferricretes, in: Geochemical Sediments and Landscapes, edited by: Nash, D. and McLaren, S. J., Blackwell Publishing Ltd, 45–94, https://doi.org/10.1002/9780470712917.ch3, ISBN 9780470712917, 2007. a, b
Wright, V., Sloan, R., Garcés, B. V., and Garvie, L.: Groundwater ferricretes from the Silurian of Ireland and Permian of the Spanish Pyrenees, Sediment. Geol., 77, 37–49, https://doi.org/10.1016/0037-0738(92)90102-w, 1992. a, b
Wright, V. P.: Estimating rates of calcrete formation and sediment accretion in ancient alluvial deposits, Geol. Mag., 127, 273–276, https://doi.org/10.1017/s0016756800014539, 1989. a, b, c, d
Yijian, C., Jinfen, L., Head, J., Arakel, A., and Jacobson, G.: 14C and ESR dating of calcrete and gypcrete cores from the Amadeus Basin, Northern Territory, Australia, Quaternary Sci. Rev., 7, 447–453, https://doi.org/10.1016/0277-3791(88)90044-3, 1988. a, b
Youngson, J. H.: Diagenetic silcrete and formation of silcrete ventifacts and aeolian gold placers in Central Otago, New Zealand, New Zeal. J. Geol. Geop., 48, 247–263, https://doi.org/10.1080/00288306.2005.9515113, 2005. a
Short summary
We have developed a new numerical model to represent the formation of duricrusts, which are hard mineral layers found in soils and at the surface of the Earth. We assume that the formation mechanism implies variations in the height of the water table and that the hardening rate is proportional to precipitation. The model allows us to quantify the potential feedbacks they generate on the surface topography and the thickness of the regolith/soil layer.
We have developed a new numerical model to represent the formation of duricrusts, which are hard...