Articles | Volume 13, issue 5
https://doi.org/10.5194/esurf-13-875-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-13-875-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Grain size dynamics using a new planform model – Part 1: GravelScape description and validation
GFZ Helmholtz Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
The Institute of Geosciences, Universität Potsdam, Potsdam, Germany
Jean Braun
GFZ Helmholtz Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
The Institute of Geosciences, Universität Potsdam, Potsdam, Germany
Alexander C. Whittaker
Department of Earth Science and Engineering, Royal School of Mines, Imperial College London, London, UK
Sebastien Castelltort
Department of Earth Sciences, University of Geneva, Rue des Maraîchers 13, 1205 Geneva, Switzerland
Related authors
Amanda Lily Wild, Jean Braun, Alexander C. Whittaker, Marine Prieur, and Sebastien Castelltort
Earth Surf. Dynam., 13, 889–905, https://doi.org/10.5194/esurf-13-889-2025, https://doi.org/10.5194/esurf-13-889-2025, 2025
Short summary
Short summary
Sediments deposited within river channels form the stratigraphic record, which has been used to interpret tectonic events, basin subsidence, and changes in precipitation long after ancient mountain chains have eroded away. Our work combines methods for estimating gravel fining with a Landscape Evolution Model in order to analyze the grain size preserved within the stratigraphic record with greater complexity (e.g. considering topography and channel dynamics) than past approaches.
Amanda Lily Wild, Jean Braun, Alexander C. Whittaker, and Sebastien Castelltort
Earth Surf. Dynam., 13, 907–922, https://doi.org/10.5194/esurf-13-907-2025, https://doi.org/10.5194/esurf-13-907-2025, 2025
Short summary
Short summary
Sediments deposited within river channels form the stratigraphic record, which has been used to interpret tectonic events, basin subsidence, and changes in precipitation long after ancient mountain chains have eroded away. Our work combines methods for estimating gravel fining with a landscape evolution model in order to analyze the grain size preserved within the stratigraphic record with greater complexity (e.g. considering topography and channel dynamics) than past approaches.
Amanda Lily Wild, Jean Braun, Alexander C. Whittaker, Marine Prieur, and Sebastien Castelltort
Earth Surf. Dynam., 13, 889–905, https://doi.org/10.5194/esurf-13-889-2025, https://doi.org/10.5194/esurf-13-889-2025, 2025
Short summary
Short summary
Sediments deposited within river channels form the stratigraphic record, which has been used to interpret tectonic events, basin subsidence, and changes in precipitation long after ancient mountain chains have eroded away. Our work combines methods for estimating gravel fining with a Landscape Evolution Model in order to analyze the grain size preserved within the stratigraphic record with greater complexity (e.g. considering topography and channel dynamics) than past approaches.
Amanda Lily Wild, Jean Braun, Alexander C. Whittaker, and Sebastien Castelltort
Earth Surf. Dynam., 13, 907–922, https://doi.org/10.5194/esurf-13-907-2025, https://doi.org/10.5194/esurf-13-907-2025, 2025
Short summary
Short summary
Sediments deposited within river channels form the stratigraphic record, which has been used to interpret tectonic events, basin subsidence, and changes in precipitation long after ancient mountain chains have eroded away. Our work combines methods for estimating gravel fining with a landscape evolution model in order to analyze the grain size preserved within the stratigraphic record with greater complexity (e.g. considering topography and channel dynamics) than past approaches.
Florian Franziskakis, Christian Vérard, Sébastien Castelltort, and Grégory Giuliani
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W13-2025, 111–118, https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-111-2025, https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-111-2025, 2025
Rocio Jaimes-Gutierrez, Marine Prieur, David J. Wilson, Philip A. E. Pogge von Strandmann, Emmanuelle Pucéat, Thierry Adatte, Jorge E. Spangenberg, and Sébastien Castelltort
EGUsphere, https://doi.org/10.5194/egusphere-2025-2619, https://doi.org/10.5194/egusphere-2025-2619, 2025
Short summary
Short summary
This study examines how weathering in the Southern Pyrenees responded to a significant global warming event that occurred 56 million years ago. We found that changes in rainfall and erosion significantly influenced how minerals break down, and that the weathering response evolved from the continental interior to the marine environment. These results highlight regional variations in Earth's surface response to climatic perturbations and the processes at play in response to global warming.
Ekta Aggarwal, Marleen C. de Ruiter, Kartikeya S. Sangwan, Rajiv Sinha, Sophie Buijs, Ranjay Shrestha, Sanjeev Gupta, and Alexander C. Whittaker
EGUsphere, https://doi.org/10.5194/egusphere-2024-3901, https://doi.org/10.5194/egusphere-2024-3901, 2025
Preprint archived
Short summary
Short summary
The occurrence of frequent floods in recent years due to changing weather, heavy rainfall, and the natural landscape, has caused major damage to lives and property. This study looks at flood risks in the Ganga Basin, focusing on the factors that cause floods, the areas affected, and the vulnerability of people. The study uses NASA's night-time lights to track human activities. This helps to show how risks are connected to expanding human activities, and changing resilience to floods.
Caroline Fenske, Jean Braun, François Guillocheau, and Cécile Robin
Earth Surf. Dynam., 13, 119–146, https://doi.org/10.5194/esurf-13-119-2025, https://doi.org/10.5194/esurf-13-119-2025, 2025
Short summary
Short summary
We have developed a new numerical model to represent the formation of duricrusts, which are hard mineral layers found in soils and at the surface of the Earth. We assume that the formation mechanism implies variations in the height of the water table and that the hardening rate is proportional to precipitation. The model allows us to quantify the potential feedbacks they generate on the surface topography and the thickness of the regolith/soil layer.
Ruohong Jiao, Shengze Cai, and Jean Braun
Geochronology, 6, 227–245, https://doi.org/10.5194/gchron-6-227-2024, https://doi.org/10.5194/gchron-6-227-2024, 2024
Short summary
Short summary
We demonstrate a machine learning method to estimate the temperature changes in the Earth's crust over time. The method respects physical laws and conditions imposed by users. By using observed rock cooling ages as constraints, the method can be used to estimate the tectonic and landscape evolution of the Earth. We show the applications of the method using a synthetic rock uplift model in 1D and an evolution model of a real mountain range in 3D.
Nikhil Sharma, Jorge E. Spangenberg, Thierry Adatte, Torsten Vennemann, László Kocsis, Jean Vérité, Luis Valero, and Sébastien Castelltort
Clim. Past, 20, 935–949, https://doi.org/10.5194/cp-20-935-2024, https://doi.org/10.5194/cp-20-935-2024, 2024
Short summary
Short summary
The Middle Eocene Climatic Optimum (MECO) is an enigmatic global warming event with scarce terrestrial records. To contribute, this study presents a new comprehensive geochemical record of the MECO in the fluvial Escanilla Formation, Spain. In addition to identifying the regional preservation of the MECO, results demonstrate continental sedimentary successions, as key archives of past climate and stable isotopes, to be a powerful tool in correlating difficult-to-date fluvial successions.
Ariel Henrique do Prado, David Mair, Philippos Garefalakis, Chantal Schmidt, Alexander Whittaker, Sebastien Castelltort, and Fritz Schlunegger
Hydrol. Earth Syst. Sci., 28, 1173–1190, https://doi.org/10.5194/hess-28-1173-2024, https://doi.org/10.5194/hess-28-1173-2024, 2024
Short summary
Short summary
Engineering structures known as check dams are built with the intention of managing streams. The effectiveness of such structures can be expressed by quantifying the reduction of the sediment flux after their implementation. In this contribution, we estimate and compare the volumes of sediment transported in a mountain stream for engineered and non-engineered conditions. We found that without check dams the mean sediment flux would be ca. 10 times larger in comparison with the current situation.
Chuanqi He, Ci-Jian Yang, Jens M. Turowski, Richard F. Ott, Jean Braun, Hui Tang, Shadi Ghantous, Xiaoping Yuan, and Gaia Stucky de Quay
Earth Syst. Sci. Data, 16, 1151–1166, https://doi.org/10.5194/essd-16-1151-2024, https://doi.org/10.5194/essd-16-1151-2024, 2024
Short summary
Short summary
The shape of drainage basins and rivers holds significant implications for landscape evolution processes and dynamics. We used a global 90 m resolution topography to obtain ~0.7 million drainage basins with sizes over 50 km2. Our dataset contains the spatial distribution of drainage systems and their morphological parameters, supporting fields such as geomorphology, climatology, biology, ecology, hydrology, and natural hazards.
Boris Gailleton, Luca C. Malatesta, Guillaume Cordonnier, and Jean Braun
Geosci. Model Dev., 17, 71–90, https://doi.org/10.5194/gmd-17-71-2024, https://doi.org/10.5194/gmd-17-71-2024, 2024
Short summary
Short summary
This contribution presents a new method to numerically explore the evolution of mountain ranges and surrounding areas. The method helps in monitoring with details on the timing and travel path of material eroded from the mountain ranges. It is particularly well suited to studies juxtaposing different domains – lakes or multiple rock types, for example – and enables the combination of different processes.
Esteban Acevedo-Trejos, Jean Braun, Katherine Kravitz, N. Alexia Raharinirina, and Benoît Bovy
Geosci. Model Dev., 16, 6921–6941, https://doi.org/10.5194/gmd-16-6921-2023, https://doi.org/10.5194/gmd-16-6921-2023, 2023
Short summary
Short summary
The interplay of tectonics and climate influences the evolution of life and the patterns of biodiversity we observe on earth's surface. Here we present an adaptive speciation component coupled with a landscape evolution model that captures the essential earth-surface, ecological, and evolutionary processes that lead to the diversification of taxa. We can illustrate with our tool how life and landforms co-evolve to produce distinct biodiversity patterns on geological timescales.
Ngai-Ham Chan, Moritz Langer, Bennet Juhls, Tabea Rettelbach, Paul Overduin, Kimberly Huppert, and Jean Braun
Earth Surf. Dynam., 11, 259–285, https://doi.org/10.5194/esurf-11-259-2023, https://doi.org/10.5194/esurf-11-259-2023, 2023
Short summary
Short summary
Arctic river deltas influence how nutrients and soil organic carbon, carried by sediments from the Arctic landscape, are retained or released into the Arctic Ocean. Under climate change, the deltas themselves and their ecosystems are becoming more vulnerable. We build upon previous models to reproduce for the first time an important feature ubiquitous to Arctic deltas and simulate its future under climate warming. This can impact the future of Arctic deltas and the carbon release they moderate.
Sabí Peris Cabré, Luis Valero, Jorge E. Spangenberg, Andreu Vinyoles, Jean Verité, Thierry Adatte, Maxime Tremblin, Stephen Watkins, Nikhil Sharma, Miguel Garcés, Cai Puigdefàbregas, and Sébastien Castelltort
Clim. Past, 19, 533–554, https://doi.org/10.5194/cp-19-533-2023, https://doi.org/10.5194/cp-19-533-2023, 2023
Short summary
Short summary
The Middle Eocene Climatic Optimum (MECO) was a global warming event that took place 40 Myr ago and lasted ca. 500 kyr, inducing physical, chemical, and biotic changes on the Earth. We use stable isotopes to identify the MECO in the Eocene deltaic deposits of the Southern Pyrenees. Our findings reveal enhanced deltaic progradation during the MECO, pointing to the important impact of global warming on fluvial sediment transport with implications for the consequences of current climate change.
David Mair, Ariel Henrique Do Prado, Philippos Garefalakis, Alessandro Lechmann, Alexander Whittaker, and Fritz Schlunegger
Earth Surf. Dynam., 10, 953–973, https://doi.org/10.5194/esurf-10-953-2022, https://doi.org/10.5194/esurf-10-953-2022, 2022
Short summary
Short summary
Grain size data are important for studying and managing rivers, but they are difficult to obtain in the field. Therefore, methods have been developed that use images from small and remotely piloted aircraft. However, uncertainty in grain size data from such image-based products is understudied. Here we present a new way of uncertainty estimation that includes fully modeled errors. We use this technique to assess the effect of several image acquisition aspects on grain size uncertainty.
Jean Braun
Earth Surf. Dynam., 10, 301–327, https://doi.org/10.5194/esurf-10-301-2022, https://doi.org/10.5194/esurf-10-301-2022, 2022
Short summary
Short summary
By comparing two models for the transport of sediment, we find that they share a similar steady-state solution that adequately predicts the shape of most depositional systems made of a fan and an alluvial plain. The length of the fan is controlled by the size of the mountain drainage area feeding the sedimentary system and its slope by the incoming sedimentary flux. We show that the models differ in their transient behavior to external forcing and are characterized by different response times.
Louis Honegger, Thierry Adatte, Jorge E. Spangenberg, Miquel Poyatos-Moré, Alexandre Ortiz, Magdalena Curry, Damien Huyghe, Cai Puigdefàbregas, Miguel Garcés, Andreu Vinyoles, Luis Valero, Charlotte Läuchli, Andrés Nowak, Andrea Fildani, Julian D. Clark, and Sébastien Castelltort
Solid Earth Discuss., https://doi.org/10.5194/se-2021-12, https://doi.org/10.5194/se-2021-12, 2021
Publication in SE not foreseen
Cited articles
Allen, P. A., Armitage, J. J., Carter, A., Duller, R. A., Michael, N. A., Sinclair, H. D., Whitchurch, A. L., and Whittaker, A. C.: The Qs problem: Sediment volumetric balance of proximal foreland basin systems, Sedimentology, 60, 102–130, https://doi.org/10.1111/sed.12015, 2013. a
Armitage, J. J., Duller, R. A., Whittaker, A. C., and Allen, P. A.: Transformation of tectonic and climatic signals from source to sedimentary archive, Nat. Geosci., 4, 231–235, https://doi.org/10.1038/ngeo1087, 2011. a, b, c, d
Bovy, B., Braun, J., Glerum, A., and Wolf, S.: fastscape-lem/fastscapelib-fortran: Release v2.8 (v2.8.4), Zenodo [code], https://doi.org/10.5281/zenodo.8392416, 2023. a, b
Bovy, B. and Lange, R.: fastscape-lem/fastscape: Release v0.1.0 (0.1.0), Zenodo [code], https://doi.org/10.5281/zenodo.8375653, 2023. a, b
Braun, J.: Comparing the transport-limited and ξ–q models for sediment transport, Earth Surf. Dynam., 10, 301–327, https://doi.org/10.5194/esurf-10-301-2022, 2022. a, b
Braun, J. and Willett, S. D.: A very efficient O(n), implicit and parallel method to solve the stream power equation governing fluvial incision and landscape evolution, Geomorphology, 180, 170–179, https://doi.org/10.1016/j.geomorph.2012.10.008, 2013. a, b
Carretier, S., Martinod, P., Reich, M., and Godderis, Y.: Modelling sediment clasts transport during landscape evolution, Earth Surf. Dynam., 4, 237–251, https://doi.org/10.5194/esurf-4-237-2016, 2016. a, b
Davy, P. and Lague, D.: Fluvial erosion/transport equation of landscape evolution models revisited, J. Geophys. Res.-Earth, 114, https://doi.org/10.1029/2008JF001146, 2009. a, b, c, d
Dingle, E. H., Sinclair, H. D., Attal, M., Milodowski, D. T., and Singh, V.: Subsidence control on river morphology and grain size in the Ganga Plain, Am. J. Sci., 316, 778–812, https://doi.org/10.2475/08.2016.03, 2016. a
Garefalakis, P., do Prado, A. H., Whittaker, A. C., Mair, D., and Schlunegger, F.: Quantification of sediment fluxes and intermittencies from Oligo–Miocene megafan deposits in the Swiss Molasse basin, Basin Res., 36, e12865, https://doi.org/10.1111/bre.12865, 2024. a
Guerit, L., Yuan, X.-P., Carretier, S., Bonnet, S., Rohais, S., Braun, J., and Rouby, D.: Fluvial landscape evolution controlled by the sediment deposition coefficient: Estimation from experimental and natural landscapes, Geology, 47, 853–856, https://doi.org/10.1130/g46356.1, 2019. a
Hajek, E. A. and Straub, K. M.: Autogenic sedimentation in clastic stratigraphy, Annu. Rev. Earth Pl. Sc., 45, 681–709, https://doi.org/10.1146/annurev-earth-063016-015935, 2017. a
Harries, R. M., Kirstein, L. A., Whittaker, A. C., Attal, M., and Main, I.: Impact of recycling and lateral sediment input on grain size fining trends–Implications for reconstructing tectonic and climate forcings in ancient sedimentary systems, Basin Res., 31, 866–891, https://doi.org/10.1111/bre.12349, 2019. a
Hooke, R. L.: Steady-state relationships on arid-region alluvial fans in closed basins, Am. J. Sci., 266, 609–629, https://doi.org/10.2475/ajs.266.8.609, 1968. a
Paola, C. and Voller, V. R.: A generalized Exner equation for sediment mass balance, J. Geophys. Res.-Earth, 110, F04014, https://doi.org/10.1029/2004jf000274, 2005. a, b
Paola, C., Heller, P. L., and Angevine, C. L.: The large-scale dynamics of grain-size variation in alluvial basins, 1: Theory, Basin Res., 4, 73–90, 1992. a
Rice, S.: The nature and controls of downstream fining within sedimentary links, J. Sediment. Res., 69, 32–39, https://doi.org/10.2110/jsr.69.32, 1999. a
Romans, B. W., Castelltort, S., Covault, J. A., Fildani, A., and Walsh, J. P.: Environmental signal propagation in sedimentary systems across timescales, Earth-Sci. Rev., 153, 7–29, https://doi.org/10.1016/j.earscirev.2015.07.012, 2016. a
Scheingross, J. S., Limaye, A. B., McCoy, S. W., and Whittaker, A. C.: The shaping of erosional landscapes by internal dynamics, Nat. Rev. Earth Environ., 1, 661–676, https://doi.org/10.1038/s43017-020-0096-0, 2020. a, b
Sømme, T. O., Helland-Hansen, W., Martinsen, O. J., and Thurmond, J. B.: Relationships between morphological and sedimentological parameters in source-to-sink systems: a basis for predicting semi-quantitative characteristics in subsurface systems, Basin Res., 21, 361–387, https://doi.org/10.1111/j.1365-2117.2009.00397.x, 2009. a
Stock, J. D., Schmidt, K. M., and Miller, D. M.: Controls on alluvial fan long-profiles, Geol. Soc. Am. Bull., 120, 619–640, https://doi.org/10.1130/b26208.1, 2008. a
Veldkamp, A., Baartman, J. E. M., Coulthard, T. J., Maddy, D., Schoorl, J. M., Storms, J. E. A., Temme, A. J. A. M., van Balen, R., van De Wiel, M. J., van Gorp, W., Viveen, W., Westaway, R., and Whittaker, A. C.: Two decades of numerical modelling to understand long term fluvial archives: Advances and future perspectives, Quaternary Sci. Rev., 166, 177–187, https://doi.org/10.1016/j.quascirev.2016.10.002, 2017. a, b
Whipple, K. X. and Tucker, G. E.: Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs, J. Geophys. Res.-Sol. Ea., 104, 17661–17674, 1999. a
Whittaker, A. C., Duller, R. A., Springett, J., Smithells, R. A., Whitchurch, A. L., and Allen, P. A.: Decoding downstream trends in stratigraphic grain size as a function of tectonic subsidence and sediment supply, Geol. Soci. Am. Bull., 123, 1363–1382, https://doi.org/10.1130/b30351.1, 2011. a, b, c, d
Wild, A.: Grain size dynamics using a new planform model, TIB AV [video], https://doi.org/10.5446/70575, 2025. a
Wild, A., Braun, J., and Bovy, B.: fastscape-lem/GravelScape: GravelScape, Zenodo [code], https://doi.org/10.5281/zenodo.15641112, 2025a. a, b
Wild, A. L., Braun, J., Whittaker, A. C., Prieur, M., and Castelltort, S.: Grain size dynamics using a new planform model – Part 2: Determining the relative control of autogenic processes and subsidence, Earth Surf. Dynam., 13, 889–906, https://doi.org/10.5194/esurf-13-889-2025, 2025b. a, b, c, d
Wild, A. L., Braun, J., Whittaker, A. C., and Castelltort, S.: Grain size dynamics using a new planform model – Part 3: Stratigraphy and flexural foreland evolution, Earth Surf. Dynam., 13, 907–922, https://doi.org/10.5194/esurf-13-907-2025, 2025c. a
Download
- Article
(3464 KB) - Full-text XML
Short summary
Sediments deposited within river channels form the stratigraphic record, which has been used to interpret tectonic events, basin subsidence, and changes in precipitation long after ancient mountain chains have eroded away. Our work combines methods for estimating gravel fining with a landscape evolution model in order to analyze the grain size preserved within the stratigraphic record with greater complexity (e.g. considering topography and channel dynamics) than past approaches.
Sediments deposited within river channels form the stratigraphic record, which has been used to...