Articles | Volume 4, issue 2
Earth Surf. Dynam., 4, 343–358, 2016
https://doi.org/10.5194/esurf-4-343-2016

Special issue: Frontiers in geomorphometry

Earth Surf. Dynam., 4, 343–358, 2016
https://doi.org/10.5194/esurf-4-343-2016

Research article 21 Apr 2016

Research article | 21 Apr 2016

Topography-based flow-directional roughness: potential and challenges

Sebastiano Trevisani and Marco Cavalli

Related subject area

Cross-cutting themes: Digital Landscapes: Insights into geomorphological processes from high-resolution topography and quantitative interrogation of topographic data
Measurement of rock glacier surface change over different timescales using terrestrial laser scanning point clouds
Veit Ulrich, Jack G. Williams, Vivien Zahs, Katharina Anders, Stefan Hecht, and Bernhard Höfle
Earth Surf. Dynam., 9, 19–28, https://doi.org/10.5194/esurf-9-19-2021,https://doi.org/10.5194/esurf-9-19-2021, 2021
Short summary
Coastal Change Patterns from Time Series Clustering of Permanent Laser Scan Data
Mieke Kuschnerus, Roderik Lindenbergh, and Sander Vos
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2020-34,https://doi.org/10.5194/esurf-2020-34, 2020
Revised manuscript accepted for ESurf
Short summary
Short communication: A semiautomated method for bulk fault slip analysis from topographic scarp profiles
Franklin D. Wolfe, Timothy A. Stahl, Pilar Villamor, and Biljana Lukovic
Earth Surf. Dynam., 8, 211–219, https://doi.org/10.5194/esurf-8-211-2020,https://doi.org/10.5194/esurf-8-211-2020, 2020
Short summary
Short Communication: A simple workflow for robust low-cost UAV-derived change detection without ground control points
Kristen L. Cook and Michael Dietze
Earth Surf. Dynam., 7, 1009–1017, https://doi.org/10.5194/esurf-7-1009-2019,https://doi.org/10.5194/esurf-7-1009-2019, 2019
Short summary
Computing water flow through complex landscapes – Part 1: Incorporating depressions in flow routing using FlowFill
Kerry L. Callaghan and Andrew D. Wickert
Earth Surf. Dynam., 7, 737–753, https://doi.org/10.5194/esurf-7-737-2019,https://doi.org/10.5194/esurf-7-737-2019, 2019
Short summary

Cited articles

Atkinson, P. M. and Lewis, P.: Geostatistical classification for remote sensing: an introduction, Comput. Geosci., 26, 361–371, 2000.
Balaguer, A., Ruiz, L. A., Hermosilla, T., and Recio, J. A.: Definition of a Comprehensive set of texture semivariogram features and their evaluation for object-oriented image classification, Comput. Geosci., 36, 231–240, 2010.
Benito-Calvo, A., Pérez-González, A., Magri, O., and Meza, P.: Assessing regional geodiversity: The Iberian Peninsula, Earth Surf. Proc. Land., 34, 1433–1445, 2009.
Berti, M., Corsini, A., and Daehne, A.: Comparative analysis of surface roughness algorithms for the identification of active landslides, Geomorphology, 182, 1–18, 2013.
Booth, A. M., Roering J. J., and Perron, J. T.: Automated landslide mapping using spectral analysis and high-resolution topographic data: Puget Sound lowlands, Washington, and Portland Hills, Oregon. Geomorphology, 109, 132–147, 2009.
Download
Short summary
The generalization of the concept of roughness implies the need to refer to a family of roughness indices capturing specific aspects of surface morphology. We test the application of a flow-oriented directional measure of roughness based on the geostatistical index MAD (median of absolute directional differences), computed considering gravity-driven flow direction. The use of flow-directional roughness improves geomorphometric modeling and the interpretation of landscape morphology.