Articles | Volume 4, issue 1
https://doi.org/10.5194/esurf-4-47-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/esurf-4-47-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Storm-triggered landslides in the Peruvian Andes and implications for topography, carbon cycles, and biodiversity
K. E. Clark
CORRESPONDING AUTHOR
Environmental Change Institute, School of Geography and the
Environment, University of Oxford, Oxford, UK
now at: Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA, USA
A. J. West
Department of Earth Sciences, University of Southern California,
Los Angeles, CA, USA
R. G. Hilton
Department of Geography, Durham University, Durham, UK
G. P. Asner
Department of Global Ecology, Carnegie Institution for Science,
Stanford, CA, USA
C. A. Quesada
Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
M. R. Silman
Department of Biology and Center for Energy, Environment, and
Sustainability, Wake Forest University, Winston-Salem, NC, USA
S. S. Saatchi
Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA, USA
W. Farfan-Rios
Department of Biology and Center for Energy, Environment, and
Sustainability, Wake Forest University, Winston-Salem, NC, USA
R. E. Martin
Department of Global Ecology, Carnegie Institution for Science,
Stanford, CA, USA
A. B. Horwath
Department of Plant Sciences, University of Cambridge, Cambridge, UK
now at: Department of Biology, University of Stirling, Stirling, UK
K. Halladay
Environmental Change Institute, School of Geography and the
Environment, University of Oxford, Oxford, UK
Environmental Change Institute, School of Geography and the
Environment, University of Oxford, Oxford, UK
African Climate and Development Initiative, University of Cape Town,
Rondebosch, Cape Town, South Africa
School of International Development, University of East Anglia, Norwich, UK
Y. Malhi
Environmental Change Institute, School of Geography and the
Environment, University of Oxford, Oxford, UK
Related authors
K. E. Clark, M. A. Torres, A. J. West, R. G. Hilton, M. New, A. B. Horwath, J. B. Fisher, J. M. Rapp, A. Robles Caceres, and Y. Malhi
Hydrol. Earth Syst. Sci., 18, 5377–5397, https://doi.org/10.5194/hess-18-5377-2014, https://doi.org/10.5194/hess-18-5377-2014, 2014
Short summary
Short summary
This paper presents measurements of the balance of water inputs and outputs over 1 year for a river basin in the Andes of Peru. Our results show that the annual water budget is balanced within a few percent uncertainty; that is to say, the amount of water entering the basin was the same as the amount leaving, providing important information for understanding the water cycle. We also show that seasonal storage of water is important in sustaining the flow of water during the dry season.
Sophie Hage, Megan L. Baker, Nathalie Babonneau, Guillaume Soulet, Bernard Dennielou, Ricardo Silva Jacinto, Robert G. Hilton, Valier Galy, François Baudin, Christophe Rabouille, Clément Vic, Sefa Sahin, Sanem Açikalin, and Peter J. Talling
Biogeosciences, 21, 4251–4272, https://doi.org/10.5194/bg-21-4251-2024, https://doi.org/10.5194/bg-21-4251-2024, 2024
Short summary
Short summary
The land-to-ocean flux of particulate organic carbon (POC) is difficult to measure, inhibiting accurate modeling of the global carbon cycle. Here, we quantify the POC flux between one of the largest rivers on Earth (Congo) and the ocean. POC in the form of vegetation and soil is transported by episodic submarine avalanches in a 1000 km long canyon at up to 5 km water depth. The POC flux induced by avalanches is at least 3 times greater than that induced by the background flow related to tides.
Luiz A. T. Machado, Jürgen Kesselmeier, Santiago Botía, Hella van Asperen, Meinrat O. Andreae, Alessandro C. de Araújo, Paulo Artaxo, Achim Edtbauer, Rosaria R. Ferreira, Marco A. Franco, Hartwig Harder, Sam P. Jones, Cléo Q. Dias-Júnior, Guido G. Haytzmann, Carlos A. Quesada, Shujiro Komiya, Jost Lavric, Jos Lelieveld, Ingeborg Levin, Anke Nölscher, Eva Pfannerstill, Mira L. Pöhlker, Ulrich Pöschl, Akima Ringsdorf, Luciana Rizzo, Ana M. Yáñez-Serrano, Susan Trumbore, Wanda I. D. Valenti, Jordi Vila-Guerau de Arellano, David Walter, Jonathan Williams, Stefan Wolff, and Christopher Pöhlker
Atmos. Chem. Phys., 24, 8893–8910, https://doi.org/10.5194/acp-24-8893-2024, https://doi.org/10.5194/acp-24-8893-2024, 2024
Short summary
Short summary
Composite analysis of gas concentration before and after rainfall, during the day and night, gives insight into the complex relationship between trace gas variability and precipitation. The analysis helps us to understand the sources and sinks of trace gases within a forest ecosystem. It elucidates processes that are not discernible under undisturbed conditions and contributes to a deeper understanding of the trace gas life cycle and its intricate interactions with cloud dynamics in the Amazon.
Ingrid Chanca, Ingeborg Levin, Susan Trumbore, Kita Macario, Jost Lavric, Carlos Alberto Quesada, Alessandro Carioca de Araújo, Cléo Quaresma Dias Júnior, Hella van Asperen, Samuel Hammer, and Carlos Sierra
EGUsphere, https://doi.org/10.5194/egusphere-2024-883, https://doi.org/10.5194/egusphere-2024-883, 2024
Short summary
Short summary
Assessing the net carbon (C) budget of the Amazon entails considering the magnitude and timing of C absorption and losses through respiration (transit time of C). Radiocarbon-based estimates of the transit time of C in the Amazon Tall Tower Observatory (ATTO) suggest a doubling of the transit time from 6 ± 2 years and 18 ± 5 years (October 2019 and December 2021, respectively). This variability indicates that only a fraction of newly fixed C can be stored for decades or longer.
Tobias Roylands, Robert G. Hilton, Erin L. McClymont, Mark H. Garnett, Guillaume Soulet, Sébastien Klotz, Mathis Degler, Felipe Napoleoni, and Caroline Le Bouteiller
Earth Surf. Dynam., 12, 271–299, https://doi.org/10.5194/esurf-12-271-2024, https://doi.org/10.5194/esurf-12-271-2024, 2024
Short summary
Short summary
Chemical weathering of sedimentary rocks can release carbon dioxide and consume oxygen. We present a new field-based method to measure the exchange of these gases in real time, which allows us to directly compare the amount of reactants and products. By studying two sites with different rock types, we show that the chemical composition is an important factor in driving the weathering reactions. Locally, the carbon dioxide release changes alongside temperature and precipitation.
João Paulo Darela-Filho, Anja Rammig, Katrin Fleischer, Tatiana Reichert, Laynara Figueiredo Lugli, Carlos Alberto Quesada, Luis Carlos Colocho Hurtarte, Mateus Dantas de Paula, and David M. Lapola
Earth Syst. Sci. Data, 16, 715–729, https://doi.org/10.5194/essd-16-715-2024, https://doi.org/10.5194/essd-16-715-2024, 2024
Short summary
Short summary
Phosphorus (P) is crucial for plant growth, and scientists have created models to study how it interacts with carbon cycle in ecosystems. To apply these models, it is important to know the distribution of phosphorus in soil. In this study we estimated the distribution of phosphorus in the Amazon region. The results showed a clear gradient of soil development and P content. These maps can help improve ecosystem models and generate new hypotheses about phosphorus availability in the Amazon.
Emily I. Burt, Gregory R. Goldsmith, Roxanne M. Cruz-de Hoyos, Adan Julian Ccahuana Quispe, and A. Joshua West
Hydrol. Earth Syst. Sci., 27, 4173–4186, https://doi.org/10.5194/hess-27-4173-2023, https://doi.org/10.5194/hess-27-4173-2023, 2023
Short summary
Short summary
When it rains, water remains in the ground for variable amounts of time before it is taken up by plants or becomes streamflow. Understanding how long water stays in the ground before it is taken up by plants or becomes streamflow helps predict what will happen to the water cycle in future climates. Some studies suggest that plants take up water that has been in the ground for a long time; in contrast, we find that plants take up a significant amount of recent rain.
Emily I. Burt, Daxs Herson Coayla Rimachi, Adan Julian Ccahuana Quispe, Abra Atwood, and A. Joshua West
Hydrol. Earth Syst. Sci., 27, 2883–2898, https://doi.org/10.5194/hess-27-2883-2023, https://doi.org/10.5194/hess-27-2883-2023, 2023
Short summary
Short summary
Mountains store and release water, serving as water towers for downstream regions and affecting global sediment and carbon fluxes. We use stream and rain chemistry to calculate how much streamflow comes from recent rainfall across seven sites in the Andes mountains and the nearby Amazon lowlands. We find that the type of rock and the intensity of rainfall control water retention and release, challenging assumptions that mountain topography exerts the primary effect on watershed hydrology.
Shengli Tao, Zurui Ao, Jean-Pierre Wigneron, Sassan Saatchi, Philippe Ciais, Jérôme Chave, Thuy Le Toan, Pierre-Louis Frison, Xiaomei Hu, Chi Chen, Lei Fan, Mengjia Wang, Jiangling Zhu, Xia Zhao, Xiaojun Li, Xiangzhuo Liu, Yanjun Su, Tianyu Hu, Qinghua Guo, Zhiheng Wang, Zhiyao Tang, Yi Y. Liu, and Jingyun Fang
Earth Syst. Sci. Data, 15, 1577–1596, https://doi.org/10.5194/essd-15-1577-2023, https://doi.org/10.5194/essd-15-1577-2023, 2023
Short summary
Short summary
We provide the first long-term (since 1992), high-resolution (8.9 km) satellite radar backscatter data set (LHScat) with a C-band (5.3 GHz) signal dynamic for global lands. LHScat was created by fusing signals from ERS (1992–2001; C-band), QSCAT (1999–2009; Ku-band), and ASCAT (since 2007; C-band). LHScat has been validated against independent ERS-2 signals. It could be used in a variety of studies, such as vegetation monitoring and hydrological modelling.
Ricardo Dalagnol, Lênio Soares Galvão, Fabien Hubert Wagner, Yhasmin Mendes de Moura, Nathan Gonçalves, Yujie Wang, Alexei Lyapustin, Yan Yang, Sassan Saatchi, and Luiz Eduardo Oliveira Cruz Aragão
Earth Syst. Sci. Data, 15, 345–358, https://doi.org/10.5194/essd-15-345-2023, https://doi.org/10.5194/essd-15-345-2023, 2023
Short summary
Short summary
The AnisoVeg dataset brings 22 years of monthly satellite data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor for South America at 1 km resolution aimed at vegetation applications. It has nadir-normalized data, which is the most traditional approach to correct satellite data but also unique anisotropy data with strong biophysical meaning, explaining 55 % of Amazon forest height. We expect this dataset to help large-scale estimates of vegetation biomass and carbon.
Marina Corrêa Scalon, Imma Oliveras Menor, Renata Freitag, Karine S. Peixoto, Sami W. Rifai, Beatriz Schwantes Marimon, Ben Hur Marimon Junior, and Yadvinder Malhi
Biogeosciences, 19, 3649–3661, https://doi.org/10.5194/bg-19-3649-2022, https://doi.org/10.5194/bg-19-3649-2022, 2022
Short summary
Short summary
We investigated dynamic nutrient flow and demand in a typical savanna and a transition forest to understand how similar soils and the same climate dominated by savanna vegetation can also support forest-like formations. Savanna relied on nutrient resorption from wood, and nutrient demand was equally partitioned between leaves, wood and fine roots. Transition forest relied on resorption from the canopy biomass and nutrient demand was predominantly driven by leaves.
Maxwell P. Dahlquist and A. Joshua West
Earth Surf. Dynam., 10, 705–722, https://doi.org/10.5194/esurf-10-705-2022, https://doi.org/10.5194/esurf-10-705-2022, 2022
Short summary
Short summary
Himalayan rivers are full of giant boulders that rarely move except during glacial lake outburst floods (GLOFs), which therefore must be important drivers of erosion in the Himalayas. GLOFs are rare, so little is known about their long-term erosional impact. We found that rivers in Nepal have channel geometry that, compared with markers of upstream glaciation, confirm GLOFs as a major control on erosion. This previously unrecognized control should be accounted for in landscape evolution studies.
Mahdi André Nakhavali, Lina M. Mercado, Iain P. Hartley, Stephen Sitch, Fernanda V. Cunha, Raffaello di Ponzio, Laynara F. Lugli, Carlos A. Quesada, Kelly M. Andersen, Sarah E. Chadburn, Andy J. Wiltshire, Douglas B. Clark, Gyovanni Ribeiro, Lara Siebert, Anna C. M. Moraes, Jéssica Schmeisk Rosa, Rafael Assis, and José L. Camargo
Geosci. Model Dev., 15, 5241–5269, https://doi.org/10.5194/gmd-15-5241-2022, https://doi.org/10.5194/gmd-15-5241-2022, 2022
Short summary
Short summary
In tropical ecosystems, the availability of rock-derived elements such as P can be very low. Thus, without a representation of P cycling, tropical forest responses to rising atmospheric CO2 conditions in areas such as Amazonia remain highly uncertain. We introduced P dynamics and its interactions with the N and P cycles into the JULES model. Our results highlight the potential for high P limitation and therefore lower CO2 fertilization capacity in the Amazon forest with low-fertility soils.
Félicien Meunier, Sruthi M. Krishna Moorthy, Marc Peaucelle, Kim Calders, Louise Terryn, Wim Verbruggen, Chang Liu, Ninni Saarinen, Niall Origo, Joanne Nightingale, Mathias Disney, Yadvinder Malhi, and Hans Verbeeck
Geosci. Model Dev., 15, 4783–4803, https://doi.org/10.5194/gmd-15-4783-2022, https://doi.org/10.5194/gmd-15-4783-2022, 2022
Short summary
Short summary
We integrated state-of-the-art observations of the structure of the vegetation in a temperate forest to constrain a vegetation model that aims to reproduce such an ecosystem in silico. We showed that the use of this information helps to constrain the model structure, its critical parameters, as well as its initial state. This research confirms the critical importance of the representation of the vegetation structure in vegetation models and proposes a method to overcome this challenge.
Madison M. Douglas, Gen K. Li, Woodward W. Fischer, Joel C. Rowland, Preston C. Kemeny, A. Joshua West, Jon Schwenk, Anastasia P. Piliouras, Austin J. Chadwick, and Michael P. Lamb
Earth Surf. Dynam., 10, 421–435, https://doi.org/10.5194/esurf-10-421-2022, https://doi.org/10.5194/esurf-10-421-2022, 2022
Short summary
Short summary
Arctic rivers erode into permafrost and mobilize organic carbon, which can react to form greenhouse gasses or be re-buried in floodplain deposits. We collected samples on a permafrost floodplain in Alaska to determine if more carbon is eroded or deposited by river meandering. The floodplain contained a mixture of young carbon fixed by the biosphere and old, re-deposited carbon. Thus, sediment storage may allow Arctic river floodplains to retain aged organic carbon even when permafrost thaws.
Yan Yang, A. Anthony Bloom, Shuang Ma, Paul Levine, Alexander Norton, Nicholas C. Parazoo, John T. Reager, John Worden, Gregory R. Quetin, T. Luke Smallman, Mathew Williams, Liang Xu, and Sassan Saatchi
Geosci. Model Dev., 15, 1789–1802, https://doi.org/10.5194/gmd-15-1789-2022, https://doi.org/10.5194/gmd-15-1789-2022, 2022
Short summary
Short summary
Global carbon and water have large uncertainties that are hard to quantify in current regional and global models. Field observations provide opportunities for better calibration and validation of current modeling of carbon and water. With the unique structure of CARDAMOM, we have utilized the data assimilation capability and designed the benchmarking framework by using field observations in modeling. Results show that data assimilation improves model performance in different aspects.
Thomas Croissant, Robert G. Hilton, Gen K. Li, Jamie Howarth, Jin Wang, Erin L. Harvey, Philippe Steer, and Alexander L. Densmore
Earth Surf. Dynam., 9, 823–844, https://doi.org/10.5194/esurf-9-823-2021, https://doi.org/10.5194/esurf-9-823-2021, 2021
Short summary
Short summary
In mountain ranges, earthquake-derived landslides mobilize large amounts of organic carbon (OC) by eroding soil from hillslopes. We propose a model to explore the role of different parameters in the post-seismic redistribution of soil OC controlled by fluvial export and heterotrophic respiration. Applied to the Southern Alps, our results suggest that efficient OC fluvial export during the first decade after an earthquake promotes carbon sequestration.
Florian Hofmann, Emily H. G. Cooperdock, A. Joshua West, Dominic Hildebrandt, Kathrin Strößner, and Kenneth A. Farley
Geochronology, 3, 395–414, https://doi.org/10.5194/gchron-3-395-2021, https://doi.org/10.5194/gchron-3-395-2021, 2021
Short summary
Short summary
We use microCT scanning to improve the quality of 3He exposure ages measured in detrital magnetite. We show that the presence of inclusions can significantly increase the measured amount of 3He and thereby the exposure age. By prescreening magnetite with microCT and analyzing only inclusion-free grains, this problem can be avoided. We also calibrate the cosmogenic 3He production rate in magnetite relative to 10Be in quartz, which can be used for similar studies in the future.
A. Anthony Bloom, Kevin W. Bowman, Junjie Liu, Alexandra G. Konings, John R. Worden, Nicholas C. Parazoo, Victoria Meyer, John T. Reager, Helen M. Worden, Zhe Jiang, Gregory R. Quetin, T. Luke Smallman, Jean-François Exbrayat, Yi Yin, Sassan S. Saatchi, Mathew Williams, and David S. Schimel
Biogeosciences, 17, 6393–6422, https://doi.org/10.5194/bg-17-6393-2020, https://doi.org/10.5194/bg-17-6393-2020, 2020
Short summary
Short summary
We use a model of the 2001–2015 tropical land carbon cycle, with satellite measurements of land and atmospheric carbon, to disentangle lagged and concurrent effects (due to past and concurrent meteorological events, respectively) on annual land–atmosphere carbon exchanges. The variability of lagged effects explains most 2001–2015 inter-annual carbon flux variations. We conclude that concurrent and lagged effects need to be accurately resolved to better predict the world's land carbon sink.
Carlos Alberto Quesada, Claudia Paz, Erick Oblitas Mendoza, Oliver Lawrence Phillips, Gustavo Saiz, and Jon Lloyd
SOIL, 6, 53–88, https://doi.org/10.5194/soil-6-53-2020, https://doi.org/10.5194/soil-6-53-2020, 2020
Short summary
Short summary
Amazon soils hold as much carbon (C) as is contained in the vegetation. In this work we sampled soils across 8 different Amazonian countries to try to understand which soil properties control current Amazonian soil C concentrations. We confirm previous knowledge that highly developed soils hold C through clay content interactions but also show a previously unreported mechanism of soil C stabilization in the younger Amazonian soil types which hold C through aluminium organic matter interactions.
Sophie Flack-Prain, Patrick Meir, Yadvinder Malhi, Thomas Luke Smallman, and Mathew Williams
Biogeosciences, 16, 4463–4484, https://doi.org/10.5194/bg-16-4463-2019, https://doi.org/10.5194/bg-16-4463-2019, 2019
Short summary
Short summary
Across the Amazon rainforest, trees take in carbon through photosynthesis. However, photosynthesis across the basin is threatened by predicted shifts in rainfall patterns. To unpick how changes in rainfall affect photosynthesis, we use a model which combines climate data with our knowledge of photosynthesis and other plant processes. We find that stomatal constraints are less important, and instead shifts in leaf surface area and leaf properties drive changes in photosynthesis with rainfall.
Guillaume Soulet, Robert G. Hilton, Mark H. Garnett, Mathieu Dellinger, Thomas Croissant, Mateja Ogrič, and Sébastien Klotz
Biogeosciences, 15, 4087–4102, https://doi.org/10.5194/bg-15-4087-2018, https://doi.org/10.5194/bg-15-4087-2018, 2018
Short summary
Short summary
Oxidative weathering of sedimentary rocks can release carbon dioxide to the atmosphere. Here, we designed a chamber-based method to measure these CO2 emissions directly for the first time. The chamber is drilled in the rock and allows us to collect the CO2 to fingerprint its source using carbon isotopes. We tested our method in Draix (France). The measured CO2 fluxes were substantial, with ~20% originating from oxidation of the rock organic matter and ~80% from dissolution of carbonate minerals.
Tommaso Jucker, Gregory P. Asner, Michele Dalponte, Philip G. Brodrick, Christopher D. Philipson, Nicholas R. Vaughn, Yit Arn Teh, Craig Brelsford, David F. R. P. Burslem, Nicolas J. Deere, Robert M. Ewers, Jakub Kvasnica, Simon L. Lewis, Yadvinder Malhi, Sol Milne, Reuben Nilus, Marion Pfeifer, Oliver L. Phillips, Lan Qie, Nathan Renneboog, Glen Reynolds, Terhi Riutta, Matthew J. Struebig, Martin Svátek, Edgar C. Turner, and David A. Coomes
Biogeosciences, 15, 3811–3830, https://doi.org/10.5194/bg-15-3811-2018, https://doi.org/10.5194/bg-15-3811-2018, 2018
Short summary
Short summary
Efforts to protect tropical forests hinge on recognizing the ecosystem services they provide, including their ability to store carbon. Airborne laser scanning (ALS) captures information on the 3-D structure of forests, allowing carbon stocks to be mapped. By combining ALS with data from 173 field plots on the island of Borneo, we develop a simple yet general model for estimating forest carbon stocks from the air. Our model underpins ongoing efforts to restore Borneo's unique tropical forests.
Victoria Meyer, Sassan Saatchi, David B. Clark, Michael Keller, Grégoire Vincent, António Ferraz, Fernando Espírito-Santo, Marcus V. N. d'Oliveira, Dahlia Kaki, and Jérôme Chave
Biogeosciences, 15, 3377–3390, https://doi.org/10.5194/bg-15-3377-2018, https://doi.org/10.5194/bg-15-3377-2018, 2018
Short summary
Short summary
This study shows how a simple lidar-derived metric measuring the area covered by large trees (> 27 m) can explain biomass variations across the Neotropics. The importance of this metric is in its relevance to the structural and ecological characteristics of large trees and their unique contribution in determining the biomass of forests. Our results point toward simplified ground data collection and potential algorithms for future space missions focusing on biomass estimation.
Katja Frieler, Stefan Lange, Franziska Piontek, Christopher P. O. Reyer, Jacob Schewe, Lila Warszawski, Fang Zhao, Louise Chini, Sebastien Denvil, Kerry Emanuel, Tobias Geiger, Kate Halladay, George Hurtt, Matthias Mengel, Daisuke Murakami, Sebastian Ostberg, Alexander Popp, Riccardo Riva, Miodrag Stevanovic, Tatsuo Suzuki, Jan Volkholz, Eleanor Burke, Philippe Ciais, Kristie Ebi, Tyler D. Eddy, Joshua Elliott, Eric Galbraith, Simon N. Gosling, Fred Hattermann, Thomas Hickler, Jochen Hinkel, Christian Hof, Veronika Huber, Jonas Jägermeyr, Valentina Krysanova, Rafael Marcé, Hannes Müller Schmied, Ioanna Mouratiadou, Don Pierson, Derek P. Tittensor, Robert Vautard, Michelle van Vliet, Matthias F. Biber, Richard A. Betts, Benjamin Leon Bodirsky, Delphine Deryng, Steve Frolking, Chris D. Jones, Heike K. Lotze, Hermann Lotze-Campen, Ritvik Sahajpal, Kirsten Thonicke, Hanqin Tian, and Yoshiki Yamagata
Geosci. Model Dev., 10, 4321–4345, https://doi.org/10.5194/gmd-10-4321-2017, https://doi.org/10.5194/gmd-10-4321-2017, 2017
Short summary
Short summary
This paper describes the simulation scenario design for the next phase of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), which is designed to facilitate a contribution to the scientific basis for the IPCC Special Report on the impacts of 1.5 °C global warming. ISIMIP brings together over 80 climate-impact models, covering impacts on hydrology, biomes, forests, heat-related mortality, permafrost, tropical cyclones, fisheries, agiculture, energy, and coastal infrastructure.
Wei Li, Philippe Ciais, Shushi Peng, Chao Yue, Yilong Wang, Martin Thurner, Sassan S. Saatchi, Almut Arneth, Valerio Avitabile, Nuno Carvalhais, Anna B. Harper, Etsushi Kato, Charles Koven, Yi Y. Liu, Julia E.M.S. Nabel, Yude Pan, Julia Pongratz, Benjamin Poulter, Thomas A. M. Pugh, Maurizio Santoro, Stephen Sitch, Benjamin D. Stocker, Nicolas Viovy, Andy Wiltshire, Rasoul Yousefpour, and Sönke Zaehle
Biogeosciences, 14, 5053–5067, https://doi.org/10.5194/bg-14-5053-2017, https://doi.org/10.5194/bg-14-5053-2017, 2017
Short summary
Short summary
We used several observation-based biomass datasets to constrain the historical land-use change carbon emissions simulated by models. Compared to the range of the original modeled emissions (from 94 to 273 Pg C), the observationally constrained global cumulative emission estimate is 155 ± 50 Pg C (1σ Gaussian error) from 1901 to 2012. Our approach can also be applied to evaluate the LULCC impact of land-based climate mitigation policies.
Mark A. Torres, Ajay B. Limaye, Vamsi Ganti, Michael P. Lamb, A. Joshua West, and Woodward W. Fischer
Earth Surf. Dynam., 5, 711–730, https://doi.org/10.5194/esurf-5-711-2017, https://doi.org/10.5194/esurf-5-711-2017, 2017
Short summary
Short summary
In this paper, we describe a new model for the storage times of sediments and organic carbon (OC) in river deposits. Comparisons between our model predictions and field data show good agreement, which suggests that our model accurately captures the relevant time and space scales. An implication of our model is that OC is stored in river deposits over geologic timescales and, as a result, we propose that fluvial storage plays a larger role in the carbon cycle than previously recognized.
Fabien H. Wagner, Bruno Hérault, Damien Bonal, Clément Stahl, Liana O. Anderson, Timothy R. Baker, Gabriel Sebastian Becker, Hans Beeckman, Danilo Boanerges Souza, Paulo Cesar Botosso, David M. J. S. Bowman, Achim Bräuning, Benjamin Brede, Foster Irving Brown, Jesus Julio Camarero, Plínio Barbosa Camargo, Fernanda C. G. Cardoso, Fabrício Alvim Carvalho, Wendeson Castro, Rubens Koloski Chagas, Jérome Chave, Emmanuel N. Chidumayo, Deborah A. Clark, Flavia Regina Capellotto Costa, Camille Couralet, Paulo Henrique da Silva Mauricio, Helmut Dalitz, Vinicius Resende de Castro, Jaçanan Eloisa de Freitas Milani, Edilson Consuelo de Oliveira, Luciano de Souza Arruda, Jean-Louis Devineau, David M. Drew, Oliver Dünisch, Giselda Durigan, Elisha Elifuraha, Marcio Fedele, Ligia Ferreira Fedele, Afonso Figueiredo Filho, César Augusto Guimarães Finger, Augusto César Franco, João Lima Freitas Júnior, Franklin Galvão, Aster Gebrekirstos, Robert Gliniars, Paulo Maurício Lima de Alencastro Graça, Anthony D. Griffiths, James Grogan, Kaiyu Guan, Jürgen Homeier, Maria Raquel Kanieski, Lip Khoon Kho, Jennifer Koenig, Sintia Valerio Kohler, Julia Krepkowski, José Pires Lemos-Filho, Diana Lieberman, Milton Eugene Lieberman, Claudio Sergio Lisi, Tomaz Longhi Santos, José Luis López Ayala, Eduardo Eijji Maeda, Yadvinder Malhi, Vivian R. B. Maria, Marcia C. M. Marques, Renato Marques, Hector Maza Chamba, Lawrence Mbwambo, Karina Liana Lisboa Melgaço, Hooz Angela Mendivelso, Brett P. Murphy, Joseph J. O'Brien, Steven F. Oberbauer, Naoki Okada, Raphaël Pélissier, Lynda D. Prior, Fidel Alejandro Roig, Michael Ross, Davi Rodrigo Rossatto, Vivien Rossi, Lucy Rowland, Ervan Rutishauser, Hellen Santana, Mark Schulze, Diogo Selhorst, Williamar Rodrigues Silva, Marcos Silveira, Susanne Spannl, Michael D. Swaine, José Julio Toledo, Marcos Miranda Toledo, Marisol Toledo, Takeshi Toma, Mario Tomazello Filho, Juan Ignacio Valdez Hernández, Jan Verbesselt, Simone Aparecida Vieira, Grégoire Vincent, Carolina Volkmer de Castilho, Franziska Volland, Martin Worbes, Magda Lea Bolzan Zanon, and Luiz E. O. C. Aragão
Biogeosciences, 13, 2537–2562, https://doi.org/10.5194/bg-13-2537-2016, https://doi.org/10.5194/bg-13-2537-2016, 2016
P. A. Baker, S. C. Fritz, C. G. Silva, C. A. Rigsby, M. L. Absy, R. P. Almeida, M. Caputo, C. M. Chiessi, F. W. Cruz, C. W. Dick, S. J. Feakins, J. Figueiredo, K. H. Freeman, C. Hoorn, C. Jaramillo, A. K. Kern, E. M. Latrubesse, M. P. Ledru, A. Marzoli, A. Myrbo, A. Noren, W. E. Piller, M. I. F. Ramos, C. C. Ribas, R. Trnadade, A. J. West, I. Wahnfried, and D. A. Willard
Sci. Dril., 20, 41–49, https://doi.org/10.5194/sd-20-41-2015, https://doi.org/10.5194/sd-20-41-2015, 2015
Short summary
Short summary
We report on a planned Trans-Amazon Drilling Project (TADP) that will continuously sample Late Cretaceous to modern sediment in a transect along the equatorial Amazon of Brazil, from the Andean foreland to the Atlantic Ocean. The TADP will document the evolution of the Neotropical forest and will link biotic diversification to changes in the physical environment, including climate, tectonism, and landscape. We will also sample the ca. 200Ma basaltic sills that underlie much of the Amazon.
J. Lloyd, T. F. Domingues, F. Schrodt, F. Y. Ishida, T. R. Feldpausch, G. Saiz, C. A. Quesada, M. Schwarz, M. Torello-Raventos, M. Gilpin, B. S. Marimon, B. H. Marimon-Junior, J. A. Ratter, J. Grace, G. B. Nardoto, E. Veenendaal, L. Arroyo, D. Villarroel, T. J. Killeen, M. Steininger, and O. L. Phillips
Biogeosciences, 12, 6529–6571, https://doi.org/10.5194/bg-12-6529-2015, https://doi.org/10.5194/bg-12-6529-2015, 2015
Short summary
Short summary
Across tropical South America, forest soils are typically of a higher cation status than their savanna equivalents with soil exchangeable potassium a key soil nutrient differentiating these two vegetation types. Differences in soil water storage capacity are also important – interacting with both potassium availability and precipitation regimes in a relatively complex manner.
M. O. Andreae, O. C. Acevedo, A. Araùjo, P. Artaxo, C. G. G. Barbosa, H. M. J. Barbosa, J. Brito, S. Carbone, X. Chi, B. B. L. Cintra, N. F. da Silva, N. L. Dias, C. Q. Dias-Júnior, F. Ditas, R. Ditz, A. F. L. Godoi, R. H. M. Godoi, M. Heimann, T. Hoffmann, J. Kesselmeier, T. Könemann, M. L. Krüger, J. V. Lavric, A. O. Manzi, A. P. Lopes, D. L. Martins, E. F. Mikhailov, D. Moran-Zuloaga, B. W. Nelson, A. C. Nölscher, D. Santos Nogueira, M. T. F. Piedade, C. Pöhlker, U. Pöschl, C. A. Quesada, L. V. Rizzo, C.-U. Ro, N. Ruckteschler, L. D. A. Sá, M. de Oliveira Sá, C. B. Sales, R. M. N. dos Santos, J. Saturno, J. Schöngart, M. Sörgel, C. M. de Souza, R. A. F. de Souza, H. Su, N. Targhetta, J. Tóta, I. Trebs, S. Trumbore, A. van Eijck, D. Walter, Z. Wang, B. Weber, J. Williams, J. Winderlich, F. Wittmann, S. Wolff, and A. M. Yáñez-Serrano
Atmos. Chem. Phys., 15, 10723–10776, https://doi.org/10.5194/acp-15-10723-2015, https://doi.org/10.5194/acp-15-10723-2015, 2015
Short summary
Short summary
This paper describes the Amazon Tall Tower Observatory (ATTO), a new atmosphere-biosphere observatory located in the remote Amazon Basin. It presents results from ecosystem ecology, meteorology, trace gas, and aerosol measurements collected at the ATTO site during the first 3 years of operation.
G. Saiz, M. Bird, C. Wurster, C. A. Quesada, P. Ascough, T. Domingues, F. Schrodt, M. Schwarz, T. R. Feldpausch, E. Veenendaal, G. Djagbletey, G. Jacobsen, F. Hien, H. Compaore, A. Diallo, and J. Lloyd
Biogeosciences, 12, 5041–5059, https://doi.org/10.5194/bg-12-5041-2015, https://doi.org/10.5194/bg-12-5041-2015, 2015
Short summary
Short summary
We demonstrate and explain differential patterns in SOM dynamics in C3/C4 mixed ecosystems at various spatial scales across contrasting climate and soils. This study shows that the interdependence between biotic and abiotic factors ultimately determines whether SOM dynamics of C3- and C4-derived vegetation are at variance in ecosystems where both vegetation types coexist. The results also highlight the far-reaching implications that vegetation thickening may have for the stability of deep SOM.
A. J. West, M. Arnold, G. AumaÎtre, D. L. Bourlès, K. Keddadouche, M. Bickle, and T. Ojha
Earth Surf. Dynam., 3, 363–387, https://doi.org/10.5194/esurf-3-363-2015, https://doi.org/10.5194/esurf-3-363-2015, 2015
Short summary
Short summary
Soils are vital resources put at risk by erosional loss. Evaluating agricultural effects on erosion is complicated where natural rates are high, as in central Nepal. This study infers erosion rates over thousands of years and compares these rates to those observed over the short term. Results suggest that effects of agriculture are small and that most erosion takes place through natural processes. However, present-day erosion on degraded lands is significantly faster than over the long term.
E. M. Veenendaal, M. Torello-Raventos, T. R. Feldpausch, T. F. Domingues, F. Gerard, F. Schrodt, G. Saiz, C. A. Quesada, G. Djagbletey, A. Ford, J. Kemp, B. S. Marimon, B. H. Marimon-Junior, E. Lenza, J. A. Ratter, L. Maracahipes, D. Sasaki, B. Sonké, L. Zapfack, D. Villarroel, M. Schwarz, F. Yoko Ishida, M. Gilpin, G. B. Nardoto, K. Affum-Baffoe, L. Arroyo, K. Bloomfield, G. Ceca, H. Compaore, K. Davies, A. Diallo, N. M. Fyllas, J. Gignoux, F. Hien, M. Johnson, E. Mougin, P. Hiernaux, T. Killeen, D. Metcalfe, H. S. Miranda, M. Steininger, K. Sykora, M. I. Bird, J. Grace, S. Lewis, O. L. Phillips, and J. Lloyd
Biogeosciences, 12, 2927–2951, https://doi.org/10.5194/bg-12-2927-2015, https://doi.org/10.5194/bg-12-2927-2015, 2015
Short summary
Short summary
When nearby forest and savanna stands are compared, they are not as structurally different as first seems. Moreover, savanna-forest transition zones typically occur at higher rainfall for South America than for Africa but with coexistence confined to a well-defined edaphic-climate envelope. With interacting soil cation-soil water storage–precipitations effects on canopy cover also observed we argue that both soils and climate influence the location of the two major tropical vegetation types.
L. Rowland, A. Harper, B. O. Christoffersen, D. R. Galbraith, H. M. A. Imbuzeiro, T. L. Powell, C. Doughty, N. M. Levine, Y. Malhi, S. R. Saleska, P. R. Moorcroft, P. Meir, and M. Williams
Geosci. Model Dev., 8, 1097–1110, https://doi.org/10.5194/gmd-8-1097-2015, https://doi.org/10.5194/gmd-8-1097-2015, 2015
Short summary
Short summary
This study evaluates the capability of five vegetation models to simulate the response of forest productivity to changes in temperature and drought, using data collected from an Amazonian forest. This study concludes that model consistencies in the responses of net canopy carbon production to temperature and precipitation change were the result of inconsistently modelled leaf-scale process responses and substantial variation in modelled leaf area responses.
K. E. Clark, M. A. Torres, A. J. West, R. G. Hilton, M. New, A. B. Horwath, J. B. Fisher, J. M. Rapp, A. Robles Caceres, and Y. Malhi
Hydrol. Earth Syst. Sci., 18, 5377–5397, https://doi.org/10.5194/hess-18-5377-2014, https://doi.org/10.5194/hess-18-5377-2014, 2014
Short summary
Short summary
This paper presents measurements of the balance of water inputs and outputs over 1 year for a river basin in the Andes of Peru. Our results show that the annual water budget is balanced within a few percent uncertainty; that is to say, the amount of water entering the basin was the same as the amount leaving, providing important information for understanding the water cycle. We also show that seasonal storage of water is important in sustaining the flow of water during the dry season.
M. Réjou-Méchain, H. C. Muller-Landau, M. Detto, S. C. Thomas, T. Le Toan, S. S. Saatchi, J. S. Barreto-Silva, N. A. Bourg, S. Bunyavejchewin, N. Butt, W. Y. Brockelman, M. Cao, D. Cárdenas, J.-M. Chiang, G. B. Chuyong, K. Clay, R. Condit, H. S. Dattaraja, S. J. Davies, A. Duque, S. Esufali, C. Ewango, R. H. S. Fernando, C. D. Fletcher, I. A. U. N. Gunatilleke, Z. Hao, K. E. Harms, T. B. Hart, B. Hérault, R. W. Howe, S. P. Hubbell, D. J. Johnson, D. Kenfack, A. J. Larson, L. Lin, Y. Lin, J. A. Lutz, J.-R. Makana, Y. Malhi, T. R. Marthews, R. W. McEwan, S. M. McMahon, W. J. McShea, R. Muscarella, A. Nathalang, N. S. M. Noor, C. J. Nytch, A. A. Oliveira, R. P. Phillips, N. Pongpattananurak, R. Punchi-Manage, R. Salim, J. Schurman, R. Sukumar, H. S. Suresh, U. Suwanvecho, D. W. Thomas, J. Thompson, M. Uríarte, R. Valencia, A. Vicentini, A. T. Wolf, S. Yap, Z. Yuan, C. E. Zartman, J. K. Zimmerman, and J. Chave
Biogeosciences, 11, 6827–6840, https://doi.org/10.5194/bg-11-6827-2014, https://doi.org/10.5194/bg-11-6827-2014, 2014
Short summary
Short summary
Forest carbon mapping may greatly reduce uncertainties in the global carbon budget. Accuracy of such maps depends however on the quality of field measurements. Using 30 large forest plots, we found large local spatial variability in biomass. When field calibration plots are smaller than the remote sensing pixels, this high local spatial variability results in an underestimation of the variance in biomass.
N. M. Fyllas, E. Gloor, L. M. Mercado, S. Sitch, C. A. Quesada, T. F. Domingues, D. R. Galbraith, A. Torre-Lezama, E. Vilanova, H. Ramírez-Angulo, N. Higuchi, D. A. Neill, M. Silveira, L. Ferreira, G. A. Aymard C., Y. Malhi, O. L. Phillips, and J. Lloyd
Geosci. Model Dev., 7, 1251–1269, https://doi.org/10.5194/gmd-7-1251-2014, https://doi.org/10.5194/gmd-7-1251-2014, 2014
M. A. Higgins, G. P. Asner, E. Perez, N. Elespuru, and A. Alonso
Biogeosciences, 11, 3505–3513, https://doi.org/10.5194/bg-11-3505-2014, https://doi.org/10.5194/bg-11-3505-2014, 2014
T. R. Marthews, C. A. Quesada, D. R. Galbraith, Y. Malhi, C. E. Mullins, M. G. Hodnett, and I. Dharssi
Geosci. Model Dev., 7, 711–723, https://doi.org/10.5194/gmd-7-711-2014, https://doi.org/10.5194/gmd-7-711-2014, 2014
S.-J. Kao, R. G. Hilton, K. Selvaraj, M. Dai, F. Zehetner, J.-C. Huang, S.-C. Hsu, R. Sparkes, J. T. Liu, T.-Y. Lee, J.-Y. T. Yang, A. Galy, X. Xu, and N. Hovius
Earth Surf. Dynam., 2, 127–139, https://doi.org/10.5194/esurf-2-127-2014, https://doi.org/10.5194/esurf-2-127-2014, 2014
G. P. Asner, C. B. Anderson, R. E. Martin, D. E. Knapp, R. Tupayachi, F. Sinca, and Y. Malhi
Biogeosciences, 11, 843–856, https://doi.org/10.5194/bg-11-843-2014, https://doi.org/10.5194/bg-11-843-2014, 2014
R. Valentini, A. Arneth, A. Bombelli, S. Castaldi, R. Cazzolla Gatti, F. Chevallier, P. Ciais, E. Grieco, J. Hartmann, M. Henry, R. A. Houghton, M. Jung, W. L. Kutsch, Y. Malhi, E. Mayorga, L. Merbold, G. Murray-Tortarolo, D. Papale, P. Peylin, B. Poulter, P. A. Raymond, M. Santini, S. Sitch, G. Vaglio Laurin, G. R. van der Werf, C. A. Williams, and R. J. Scholes
Biogeosciences, 11, 381–407, https://doi.org/10.5194/bg-11-381-2014, https://doi.org/10.5194/bg-11-381-2014, 2014
B. B. L. Cintra, J. Schietti, T. Emillio, D. Martins, G. Moulatlet, P. Souza, C. Levis, C. A. Quesada, and J. Schöngart
Biogeosciences, 10, 7759–7774, https://doi.org/10.5194/bg-10-7759-2013, https://doi.org/10.5194/bg-10-7759-2013, 2013
V. Meyer, S. S. Saatchi, J. Chave, J. W. Dalling, S. Bohlman, G. A. Fricker, C. Robinson, M. Neumann, and S. Hubbell
Biogeosciences, 10, 5421–5438, https://doi.org/10.5194/bg-10-5421-2013, https://doi.org/10.5194/bg-10-5421-2013, 2013
A. D. A. Castanho, M. T. Coe, M. H. Costa, Y. Malhi, D. Galbraith, and C. A. Quesada
Biogeosciences, 10, 2255–2272, https://doi.org/10.5194/bg-10-2255-2013, https://doi.org/10.5194/bg-10-2255-2013, 2013
R. G. Hilton, A. Galy, A. J. West, N. Hovius, and G. G. Roberts
Biogeosciences, 10, 1693–1705, https://doi.org/10.5194/bg-10-1693-2013, https://doi.org/10.5194/bg-10-1693-2013, 2013
Related subject area
Cross-cutting themes: Coupling of chemical, physical and biological processes
Yukon River incision drove organic carbon burial in the Bering Sea during global climate changes at 2.6 and 1 Ma
Comparison of soil production, chemical weathering, and physical erosion rates along a climate and ecological gradient (Chile) to global observations
Pulsed carbon export from mountains by earthquake-triggered landslides explored in a reduced-complexity model
Impact of grain size and rock composition on simulated rock weathering
Oxidation of sulfides and rapid weathering in recent landslides
Linking mineralisation process and sedimentary product in terrestrial carbonates using a solution thermodynamic approach
Field investigation of preferential fissure flow paths with hydrochemical analysis of small-scale sprinkling experiments
Adrian M. Bender, Richard O. Lease, Lee B. Corbett, Paul R. Bierman, Marc W. Caffee, James V. Jones, and Doug Kreiner
Earth Surf. Dynam., 10, 1041–1053, https://doi.org/10.5194/esurf-10-1041-2022, https://doi.org/10.5194/esurf-10-1041-2022, 2022
Short summary
Short summary
To understand landscape evolution in the mineral resource-rich Yukon River basin (Alaska and Canada), we mapped and cosmogenic isotope-dated river terraces along the Charley River. Results imply widespread Yukon River incision that drove increased Bering Sea sedimentation and carbon sequestration during global climate changes 2.6 and 1 million years ago. Such erosion may have fed back to late Cenozoic climate change by reducing atmospheric carbon as observed in many records worldwide.
Mirjam Schaller and Todd A. Ehlers
Earth Surf. Dynam., 10, 131–150, https://doi.org/10.5194/esurf-10-131-2022, https://doi.org/10.5194/esurf-10-131-2022, 2022
Short summary
Short summary
Soil production, chemical weathering, and physical erosion rates from the large climate and vegetation gradient of the Chilean Coastal Cordillera (26 to 38° S) are investigated. Rates are generally lowest in the sparsely vegetated and arid north, increase southward toward the Mediterranean climate, and then decrease slightly, or possible stay the same, further south in the temperate humid zone. This trend is compared with global data from similar soil-mantled hillslopes in granitic lithologies.
Thomas Croissant, Robert G. Hilton, Gen K. Li, Jamie Howarth, Jin Wang, Erin L. Harvey, Philippe Steer, and Alexander L. Densmore
Earth Surf. Dynam., 9, 823–844, https://doi.org/10.5194/esurf-9-823-2021, https://doi.org/10.5194/esurf-9-823-2021, 2021
Short summary
Short summary
In mountain ranges, earthquake-derived landslides mobilize large amounts of organic carbon (OC) by eroding soil from hillslopes. We propose a model to explore the role of different parameters in the post-seismic redistribution of soil OC controlled by fluvial export and heterotrophic respiration. Applied to the Southern Alps, our results suggest that efficient OC fluvial export during the first decade after an earthquake promotes carbon sequestration.
Yoni Israeli and Simon Emmanuel
Earth Surf. Dynam., 6, 319–327, https://doi.org/10.5194/esurf-6-319-2018, https://doi.org/10.5194/esurf-6-319-2018, 2018
Short summary
Short summary
We used a numerical model to assess the effect of grain size and rock composition on chemical weathering and grain detachment. Our simulations showed that grain detachment represents more than a third of the overall weathering rate. We also found that as grain size increases, the weathering rate initially decreases; however, beyond a critical size, the rate became approximately constant. Our results could help predict the sometimes complex relationship between rock type and weathering rate.
Robert Emberson, Niels Hovius, Albert Galy, and Odin Marc
Earth Surf. Dynam., 4, 727–742, https://doi.org/10.5194/esurf-4-727-2016, https://doi.org/10.5194/esurf-4-727-2016, 2016
Short summary
Short summary
Rapid dissolution of bedrock and regolith mobilised by landslides can be an important control on rates of overall chemical weathering in mountain ranges. In this study we analysed a number of landslides and rivers in Taiwan to better understand why this occurs. We find that sulfuric acid resulting from rapid oxidation of highly reactive sulfides in landslide deposits drives the intense weathering and can set catchment-scale solute budgets. This could be a CO2 source in fast-eroding mountains.
M. Rogerson, H. M. Pedley, A. Kelham, and J. D Wadhawan
Earth Surf. Dynam., 2, 197–216, https://doi.org/10.5194/esurf-2-197-2014, https://doi.org/10.5194/esurf-2-197-2014, 2014
D. M. Krzeminska, T. A. Bogaard, T.-H. Debieche, F. Cervi, V. Marc, and J.-P. Malet
Earth Surf. Dynam., 2, 181–195, https://doi.org/10.5194/esurf-2-181-2014, https://doi.org/10.5194/esurf-2-181-2014, 2014
Cited articles
ACCA: Weather data San Pedro station, Asociación para la
concervación de la cuenca Amazónica, 2012.
Asner, G. P., Powell, G. V., Mascaro, J., Knapp, D. E., Clark, J. K.,
Jacobson, J., Kennedy-Bowdoin, T., Balaji, A., Paez-Acosta, G., and
Victoria, E.: High-resolution forest carbon stocks and emissions in the
Amazon, P. Natl. Acad. Sci. USA, 107, 16738–16742, https://doi.org/10.1073/pnas.1004875107,
2010.
Asner, G. P., Knapp, D. E., Boardman, J., Green, R. O., Kennedy-Bowdoin, T.,
Eastwood, M., Martin, R. E., Anderson, C., and Field, C. B.: Carnegie
Airborne Observatory-2: Increasing science data dimensionality via
high-fidelity multi-sensor fusion, Remote Sens. Environ., 124, 454–465,
https://doi.org/10.1016/j.rse.2012.06.012, 2012.
Asner, G. P., Knapp, D. E., Martin, R. E., Tupayachi, R., Anderson, C. B.,
Mascaro, J., Sinca, F., Chadwick, K. D., Higgins, M., Farfan, W., Llactayo,
W., and Silman, M. R.: Targeted carbon conservation at national scales with
high-resolution monitoring, P. Natl. Acad. Sci. USA, 111, E5016–E5022,
https://doi.org/10.1073/pnas.1419550111, 2014.
Barke, R. and Lamb, S.: Late Cenozoic uplift of the Eastern Cordillera,
Bolivian Andes, Earth Planet Sc. Lett., 249, 350–367,
https://doi.org/10.1016/j.epsl.2006.07.012, 2006.
Bilderback, E. L., Pettinga, J. R., Litchfield, N. J., Quigley, M., Marden,
M., Roering, J. J., and Palmer, A. S.: Hillslope response to
climate-modulated river incision in the Waipaoa catchment, East Coast North
Island, New Zealand, Geol. Soc. Am. Bull., 127, 131–148, https://doi.org/10.1130/B31015.1,
2015.
Blodgett, T. A. and Isacks, B. L.: Landslide erosion rate in the eastern
cordillera of northern Bolivia, Earth Interact., 11, 1–30,
https://doi.org/10.1175/2007EI222.1, 2007.
Bookhagen, B.: High resolution spatiotemporal distribution of rainfall
seasonality and extreme events based on a 12-year TRMM time series
http://www.geog.ucsb.edu/~bodo/TRMM/index.php, last access:
06 June 2013.
Bouchez, J., Galy, V., Hilton, R. G., Gaillardet, J., Moreira-Turcq, P.,
Pérez, M. A., France-Lanord, C., and Maurice, L.: Source, transport and
fluxes of Amazon River particulate organic carbon: insights from river
sediment depth-profiles, Geochim. Cosmochim. Ac., 133, 280–298,
https://doi.org/10.1016/j.gca.2014.02.032, 2014.
Brozović, N., Burbank, D. W., and Meigs, A. J.: Climatic limits on
landscape development in the Northwestern Himalaya, Science, 276, 571–574,
https://doi.org/10.1126/science.276.5312.571, 1997.
Burbank, D. W., Leland, J., Fielding, E., Anderson, R. S., Brozovic, N.,
Reid, M. R., and Duncan, C.: Bedrock incision, rock uplift and threshold
hillslopes in the northwestern Himalayas, Nature, 379, 505–510,
https://doi.org/10.1038/379505a0, 1996.
Bussmann, R. W., Wilcke, W., and Richter, M.: Landslides as important
disturbance regimes – Causes and regeneration, in: Gradients in a tropical
mountain ecosystem of Ecuador, edited by: Beck, E., Bendix, J., Kottke, I.,
Makeschin, F., and Mosandl, R., Ecological Studies, 198, Springer-Verlag,
Berlin Heildelburg, Germany, 321–330, 2008.
Cabrera, J., Sébrier, M., and Mercier, J. L.: Plio-Quaternary geodynamic
evolution of a segment of the Peruvian Andean Cordillera located above the
change in the subduction geometry: The Cuzco region, Tectonophysics, 190,
331–362, https://doi.org/10.1016/0040-1951(91)90437-W, 1991.
Carlotto Caillaux, V. S., Rodriguez, G., Fernando, W., Roque, C., Dionicio,
J., and Chávez, R.: Geología de los cuadrángulos de Urubamba y
Calca, Instituto Geológica Nacional, Lima, Peru, 1996.
Casagli, N., Dapporto, S., Ibsen, M. L., Tofani, V., and Vannocci, P.:
Analysis of the landslide triggering mechanism during the storm of
20th–21st November 2000, in Northern Tuscany, Landslides, 3, 13–21,
https://doi.org/10.1007/s10346-005-0007-y, 2006.
Clark, K. E., Hilton, R. G., West, A. J., Malhi, Y., Gröcke, D. R.,
Bryant, C. L., Ascough, P. L., Robles Caceres, A., and New, M.: New views on
“old” carbon in the Amazon River: Insight from the source of organic
carbon eroded from the Peruvian Andes, Geochem. Geophy. Geosy., 14,
1644–1659, https://doi.org/10.1002/ggge.20122, 2013.
Clark, K. E., Torres, M. A., West, A. J., Hilton, R. G., New, M., Horwath, A. B., Fisher, J. B., Rapp, J. M.,
Robles Caceres, A., and Malhi, Y.: The hydrological regime of a forested tropical Andean catchment,
Hydrol. Earth Syst. Sci., 18, 5377–5397, https://doi.org/10.5194/hess-18-5377-2014, 2014.
Clark, M. K., Royden, L. H., Whipple, K. X., Burchfiel, B. C., Zhang, X.,
and Tang, W.: Use of a regional, relict landscape to measure vertical
deformation of the eastern Tibetan Plateau, J. Geophys. Res.-Earth, 111,
1–23, https://doi.org/10.1029/2005JF000294, 2006.
Connell, J. H.: Diversity in tropical rain forests and coral reefs, Science,
199, 1302–1310, https://doi.org/10.1126/science.199.4335.1302, 1978.
Consbio: Ecosistemas Terrestres de Peru (Data Basin Dataset) for ArcGIS,
Covallis, Oregon, USA, 2011.
Crosby, B. T., Whipple, K. X., Gasparini, N. M., and Wobus, C. W.: Formation
of fluvial hanging valleys: Theory and simulation, J. Geophys. Res.-Earth,
112, 1–20, https://doi.org/10.1029/2006JF000566, 2007.
Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Lin, J.-C., Hsu, M.-L.,
Lin, C.-W., Horng, M.-J., Chen, T.-C., Milliman, J., and Stark, C. P.:
Earthquake-triggered increase in sediment delivery from an active mountain
belt, Geology, 32, 733–736, https://doi.org/10.1130/G20639.1, 2004.
Densmore, A. L. and Hovius, N.: Topographic fingerprints of bedrock
landslides, Geology, 28, 371–374, https://doi.org/10.1130/0091-7613(2000)?28< 371:TFOBL> ?2.0.CO;2, 2000.
DiBiase, R. A. and Whipple, K. X.: The influence of erosion thresholds and
runoff variability on the relationships among topography, climate, and
erosion rate, J. Geophys. Res.-Earth, 116, 1–17, https://doi.org/10.1029/2011JF002095, 2011.
Dislich, C. and Huth, A.: Modelling the impact of shallow landslides on
forest structure in tropical montane forests, Ecol. Model., 239, 40–53,
https://doi.org/10.1016/j.ecolmodel.2012.04.016, 2012.
Dixon, R. K., Brown, S., Houghton, R., Solomon, A., Trexler, M., and
Wisniewski, J.: Carbon pools and flux of global forest ecosystems, Science,
263, 185–189, 1994.
Egholm, D. L., Knudsen, M. F., and Sandiford, M.: Lifespan of mountain
ranges scaled by feedbacks between landsliding and erosion by rivers,
Nature, 498, 475–478, https://doi.org/10.1038/nature12218, 2013.
Ekström, G. and Stark, C. P.: Simple scaling of catastrophic landslide
dynamics, Science, 339, 1416–1419, https://doi.org/10.1126/science.1232887, 2013.
Engemann, K., Enquist, B. J., Sandel, B., Boyle, B., Jørgensen, P. M.,
Morueta-Holme, N., Peet, R. K., Violle, C., and Svenning, J.-C.: Limited
sampling hampers “big data” estimation of species richness in a tropical
biodiversity hotspot, Ecol. Evol., 5, 807–820, https://doi.org/10.1002/ece3.1405, 2015.
Espinoza, J. C., Chavez, S., Ronchail, J., Junquas, C., Takahashi, K., and
Lavado, W.: Rainfall hotspots over the southern tropical Andes: Spatial
distribution, rainfall intensity, and relations with large-scale atmospheric
circulation, Water Resour. Res., 51, 1–17, https://doi.org/10.1002/2014WR016273, 2015.
Eswaran, H., Van Den Berg, E., and Reich, P.: Organic Carbon in Soils of the
World, Soil Sci. Soc. Am. J., 57, 192–194,
https://doi.org/10.2136/sssaj1993.03615995005700010034x, 1993.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S.,
Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S.,
Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf,
D.: The Shuttle Radar Topography Mission, Rev. Geophys., 45, RG2004,
https://doi.org/10.1029/2005RG000183, 2007.
Ferrier, K. L., Huppert, K. L., and Perron, J. T.: Climatic control of
bedrock river incision, Nature, 496, 206–209, https://doi.org/10.1038/nature11982, 2013.
Gallen, S. F., Clark, M. K., and Godt, J. W.: Coseismic landslides reveal
near-surface rock strength in a high-relief tectonically active setting,
Geology, 43, 70–70, https://doi.org/10.1130/G36080.1, 2015.
Galy, V., Peucker-Ehrenbrink, B., and Eglinton, T.: Global carbon export
from the terrestrial biosphere controlled by erosion, Nature, 521, 204–207,
https://doi.org/10.1038/nature14400, 2015.
Gasparini, N. M. and Whipple, K. X.: Diagnosing climatic and tectonic
controls on topography: Eastern flank of the northern Bolivian Andes,
Lithosphere, 6, 230–250, https://doi.org/10.1130/l322.1, 2014.
Gibbon, A., Silman, M. R., Malhi, Y., Fisher, J. B., Meir, P., Zimmermann,
M., Dargie, G. C., Farfan, W. R., and Garcia, K. C.: Ecosystem carbon
storage across the grassland-forest transition in the high Andes of Manu
National Park, Peru, Ecosystems, 13, 1097–1111, https://doi.org/10.1007/s10021-010-9376-8,
2010.
Gilbert, G. K.: Geology of the Henry Mountains, Geology of the Henry
Mountains, Washington, D.C., Report, i-160 pp., 1877.
Girardin, C. A. J., Malhi, Y., Aragao, L. E. O. C., Mamani, M., Huasco, W.
H., Durand, L., Feeley, K. J., Rapp, J., Silva-Espejo, J. E., Silman, M.,
Salinas, N., and Whittaker, R. J.: Net primary productivity allocation and
cycling of carbon along a tropical forest elevational transect in the
Peruvian Andes, Glob. Change Biol., 16, 3176–3192,
https://doi.org/10.1111/j.1365-2486.2010.02235.x, 2010.
Girardin, C. A. J., Aragão, L. E. O. C., Malhi, Y., Huaraca Huasco, W.,
Metcalfe, D. B., Durand, L., Mamani, M., Silva-Espejo, J. E., and Whittaker,
R. J.: Fine root dynamics along an elevational gradient in tropical
Amazonian and Andean forests, Global Biogeochem. Cy., 27, 252–264,
https://doi.org/10.1029/2011GB004082, 2013.
Girardin, C. A. J., Malhi, Y., Feeley, K. J., Rapp, J. M., Silman, M. R.,
Meir, P., Huaraca Huasco, W., Salinas, N., Mamani, M., Silva-Espejo, J. E.,
García Cabrera, K., Farfan Rios, W., Metcalfe, D. B., Doughty, C. E.,
and Aragão, L. E. O. C.: Seasonality of above-ground net primary
productivity along an Andean altitudinal transect in Peru, J. Trop. Ecol.,
30, 503–519, https://doi.org/10.1017/S0266467414000443, 2014a.
Girardin, C. A. J., Silva-Espejo, J. E., Doughty, C. E., Huaraca Huasco, W.,
Metcalfe, D. B., Durand-Baca, L., Marthews, T. R., Aragao, L. E. O. C.,
Farfan Rios, W., García Cabrera, K., Halladay, K., Fisher, J. B.,
Galiano-Cabrera, D. F., Huaraca-Quispe, L. P., Alzamora-Taype, I.,
Equiluz-Mora, L., Salinas-Revilla, N., Silman, M., Meir, P., and Malhi, Y.:
Productivity and carbon allocation in a tropical montane cloud forest of the
Peruvian Andes, Plant Ecol. Divers., 7, 107–123,
https://doi.org/10.1080/17550874.2013.820222, 2014b.
Glade, T.: Establishing the frequency and magnitude of landslide-triggering
rainstorm events in New Zealand, Eng. Geol., 35, 160–174,
https://doi.org/10.1007/s002540050302, 1998.
Gregory-Wodzicki, K. M.: Uplift history of the Central and Northern Andes: A
review, Geol. Soc. Am. Bull., 112, 1091–1105,
https://doi.org/10.1130/0016-7606(2000)112< 1091:UHOTCA> 2.0.CO;2, 2000.
Gubbels, T. L., Isacks, B. L., and Farrar, E.: High-level surfaces, plateau
uplift, and foreland development, Bolivian central Andes, Geology, 21,
695–698, https://doi.org/10.1130/0091-7613(1993)021< 0695:hlspua> 2.3.co;2, 1993.
Gurdak, D. J., Aragao, L. E. O. C., Rozas-Dávila, A., Huaraca Huasco,
W., García Cabrera, K., Doughty, C. E., Farfan-Rios, W., Silva-Espejo,
J. E., Metcalfe, D. B., Silman, M. R., and Malhi, Y.: Assessing above-ground
woody debris dynamics along a gradient of elevation in Amazonian cloud
forests in Peru: balancing above-ground inputs and respriation outputs,
Plant Ecol. Divers., 7, 143–160, https://doi.org/10.1080/17550874.2013.818073, 2014.
Guzzetti, F., Peruccacci, S., Rossi, M., and Stark, C. P.: Rainfall
thresholds for the initiation of landslides in central and southern Europe,
Meteorol. Atmos. Phys., 98, 239–267, https://doi.org/10.1007/s00703-007-0262-7, 2007.
Halladay, K., Malhi, Y., and New, M.: Cloud frequency climatology at the
Andes/Amazon transition: 1. Seasonal and diurnal cycles, J. Geophys. Res.,
117, D23102, https://doi.org/10.1029/2012JD017770, 2012.
Hilton, R. G., Galy, A., and Hovius, N.: Riverine particulate organic carbon
from an active mountain belt: Importance of landslides, Global Biogeochem.
Cy., 22, BG1017, https://doi.org/10.1029/2006GB002905, 2008a.
Hilton, R. G., Galy, A., Hovius, N., Chen, M.-C., Horng, M.-J., and Chen,
H.: Tropical-cyclone-driven erosion of the terrestrial biosphere from
mountains, Nat. Geosci., 1, 759–762, https://doi.org/10.1038/ngeo333, 2008b.
Hilton, R. G., Meunier, P., Hovius, N., Bellingham, P. J., and Galy, A.:
Landslide impact on organic carbon cycling in a temperate montane forest,
Earth Surf. Proc. Land., 36, 1670–1679, https://doi.org/10.1002/esp.2191, 2011.
Hilton, R. G., Gaillardet, J., Calmels, D., and Birck, J.-L.: Geological
respiration of a mountain belt revealed by the trace element rhenium, Earth
Planet Sc. Lett., 403, 27–36, https://doi.org/10.1016/j.epsl.2014.06.021, 2014.
Horwath, A.: Epiphytic bryophytes as cloud forest indicators: Stable
isotopes, biomass and diversity along an altitudinal gradient in Peru,
Doctor of Philosophy, Plant Sciences, University of Cambridge, Cambridge,
260 pp., 2011.
Hovius, N., Stark, C. P., and Allen, P. A.: Sediment flux from a mountain
belt derived by landslide mapping, Geology, 25, 231–234,
https://doi.org/10.1130/0091-7613(1997)025< 0231:sffamb> 2.3.co;2, 1997.
Hovius, N., Stark, C. P., Chu, H. T., and Lin, J. C.: Supply and removal of
sediment in a landslide-dominated mountain belt: Central Range, Taiwan, J.
Geol., 108, 73–89, https://doi.org/10.1086/314387, 2000.
Huaraca Huasco, W., Girardin, C. A. J., Doughty, C. E., Metcalfe, D. B.,
Baca, L. D., Silva-Espejo, J. E., Cabrera, D. G., Aragão, L. E. O.,
Davila, A. R., Marthews, T. R., Huaraca-Quispe, L. P., Alzamora-Taype, I.,
Eguiluz-Mora, L., Farfan-Rios, W., Cabrera, K. G., Halladay, K.,
Salinas-Revilla, N., Silman, M., Meir, P., and Malhi, Y.: Seasonal
production, allocation and cycling of carbon in two mid-elevation tropical
montane forest plots in the Peruvian Andes, Plant Ecol. Divers., 1–2,
125–142, https://doi.org/10.1080/17550874.2013.819042, 2014.
Hupp, C. R.: Seedling establishment on a landslide site, Castanea, 48,
89–98, 1983.
INGEMMET: GEOCATMIN – Geologia integrada por proyectos regionales, Lima,
Peru, 2013.
Keefer, D. K.: The importance of earthquake-induced landslides to long-term
slope erosion and slope-failure hazards in seismically active regions,
Geomorphology, 10, 265–284, https://doi.org/10.1016/0169-555X(94)90021-3, 1994.
Kessler, M.: Plant species richness and endemism during natural landslide
succession in a perhumid montane forest in the Bolivian Andes, Ecotropica,
5, 123–136, 1999.
Lague, D., Hovius, N., and Davy, P.: Discharge, discharge variability, and
the bedrock channel profile, J. Geophys. Res.-Earth, 110, 1–17,
https://doi.org/10.1029/2004JF000259, 2005.
Larsen, I. J., Montgomery, D. R., and Korup, O.: Landslide erosion
controlled by hillslope material, Nat. Geosci., 3, 247–251, https://doi.org/10.1038/ngeo776,
2010.
Larsen, I. J. and Montgomery, D. R.: Landslide erosion coupled to tectonics
and river incision, Nat. Geosci., 5, 468–473, https://doi.org/10.1038/ngeo1479, 2012.
Larsen, M. C. and Simon, A.: A rainfall intensity-duration threshold for
landslides in a humid-tropical environment, Puerto Rico, Geogr. Ann. A., 75,
13–23, https://doi.org/10.2307/521049, 1993.
Li, G., West, A. J., Densmore, A. L., Jin, Z., Parker, R. N., and Hilton, R.
G.: Seismic mountain building: Landslides associated with the 2008 Wenchuan
earthquake in the context of a generalized model for earthquake volume
balance, Geochem. Geophy. Geosy., 15, 833–844, https://doi.org/10.1002/2013GC005067, 2014.
Lin, G.-W., Chen, H., Hovius, N., Horng, M.-J., Dadson, S., Meunier, P., and
Lines, M.: Effects of earthquake and cyclone sequencing on landsliding and
fluvial sediment transfer in a mountain catchment, Earth Surf. Proc. Land.,
33, 1354–1373, https://doi.org/10.1002/esp.1716, 2008.
Lowman, L. E. L. and Barros, A. P.: Investigating links between climate and
orography in the Central Andes: Coupling erosion and precipitation using a
physical-statistical model, J. Geophys. Res.-Earth, 119, 1322–1353,
https://doi.org/10.1002/2013JF002940, 2014.
Malamud, B. D., Turcotte, D. L., Guzzetti, F., and Reichenbach, P.:
Landslide inventories and their statistical properties, Earth Surf. Proc.
Land., 29, 687–711, https://doi.org/10.1002/esp.1064, 2004.
Malhi, Y., Silman, M., Salinas, N., Bush, M., Meir, P., and Saatchi, S.:
Introduction: Elevation gradients in the tropics: Laboratories for ecosystem
ecology and global change research, Glob. Change Biol., 16, 3171–3175,
https://doi.org/10.1111/j.1365-2486.2010.02323.x, 2010.
Marc, O. and Hovius, N.: Amalgamation in landslide maps: effects and automatic detection,
Nat. Hazards Earth Syst. Sci., 15, 723–733, https://doi.org/10.5194/nhess-15-723-2015, 2015.
Marengo, J. A., Soares, W. R., Saulo, C., and Nicolini, M.: Climatology of
the low-level jet east of the Andes as derived from the NCEP-NCAR
reanalyses: Characteristics and temporal variability, J. Climate, 17,
2261–2280, https://doi.org/10.1175/1520-0442(2004)017< 2261:COTLJE> 2.0.CO;2, 2004.
Marvin, D. C., Asner, G. P., Knapp, D. E., Anderson, C. B., Martin, R. E.,
Sinca, F., and Tupayachi, R.: Amazonian landscapes and the bias in field
studies of forest structure and biomass, P. Natl. Acad. Sci. USA, 111,
E5224–E5232, https://doi.org/10.1073/pnas.1412999111, 2014.
Mendívil Echevarría, S., and Dávila Manrique, D.:
Geología de los cuadrángulos de Cuzco y Livitaca, Instituto
Geológica Nacional, Lima, Peru, 1994.
METI/NASA: ASTER Global DEM product, NASA EOSDIS Land Processes DAAC USGS
Earth Resources Observation and Science (EROS) Center Sioux Falls, South
Dakota, USA, 2009.
Meunier, P., Hovius, N., and Haines, J. A.: Topographic site effects and the
location of earthquake induced landslides, Earth Planet Sc. Lett., 275,
221–232, https://doi.org/10.1016/j.epsl.2008.07.020, 2008.
Montgomery, D. R. and Buffington, J. M.: Channel-reach morphology in
mountain drainage basins, Geol. Soc. Am. Bull., 109, 596–611,
https://doi.org/10.1130/0016-7606(1997)109< 0596:CRMIMD> 2.3.CO;2, 1997.
Montgomery, D. R.: Slope distributions, threshold hillslopes, and
steady-state topography, Am. J. Sci., 301, 432–454, https://doi.org/10.2475/ajs.301.4-5.432,
2001.
Montgomery, D. R. and Brandon, M. T.: Topographic controls on erosion rates
in tectonically active mountain ranges, Earth Planet Sc. Lett., 201,
481–489, https://doi.org/10.1016/S0012-821X(02)00725-2, 2002.
Moon, S., Chamberlain, C. P., Blisniuk, K., Levine, D. H., Rood, D. H., and
Hilley, G. E.: Climatic control of denudation in the deglaciated landscape
of the Washington Cascades, Nat. Geosci., 4, 469–473, https://doi.org/10.1038/ngeo1159,
2011.
Oskin, M. and Burbank, D. W.: Alpine landscape evolution dominated by
cirque retreat, Geology, 33, 933–936, https://doi.org/10.1130/G21957.1, 2005.
Peltzer, D. A., Wardle, D. A., Allison, V. J., Baisden, W. T., Bardgett, R.
D., Chadwick, O. A., Condron, L. M., Parfitt, R. L., Porder, S., and
Richardson, S. J.: Understanding ecosystem retrogression, Ecol. Mongr., 80,
509–529, https://doi.org/10.1890/09-1552.1, 2010.
Pepin, E., Guyot, J. L., Armijos, E., Bazan, H., Fraizy, P., Moquet, J. S.,
Noriega, L., Lavado, W., Pombosa, R., and Vauchel, P.: Climatic control on
eastern Andean denudation rates (Central Cordillera from Ecuador to
Bolivia), J. S. Am. Earth Sci., 44, 85–93, https://doi.org/10.1016/j.jsames.2012.12.010,
2013.
Ponton, C., West, A. J., Feakins, S. J., and Galy, V.: Leaf wax biomarkers
in transit record river catchment composition, Geophys. Res. Lett., 41,
6420–6427, https://doi.org/10.1002/2014GL061328, 2014.
Quesada, C. A., Lloyd, J., Schwarz, M., Patiño, S., Baker, T. R., Czimczik, C., Fyllas, N. M., Martinelli, L.,
Nardoto, G. B., Schmerler, J., Santos, A. J. B., Hodnett, M. G., Herrera, R., Luizão, F. J., Arneth, A., Lloyd, G.,
Dezzeo, N., Hilke, I., Kuhlmann, I., Raessler, M., Brand, W. A., Geilmann, H., Moraes Filho, J. O., Carvalho, F. P.,
Araujo Filho, R. N., Chaves, J. E., Cruz Junior, O. F., Pimentel, T. P., and Paiva, R.: Variations in chemical and
physical properties of Amazon forest soils in relation to their genesis, Biogeosciences, 7, 1515–1541, https://doi.org/10.5194/bg-7-1515-2010, 2010.
Raich, J. W., Russell, A. E., Kitayama, K., Parton, W. J., and Vitousek, P.
M.: Temperature influences carbon accumulation in moist tropical forests,
Ecology, 87, 76–87, https://doi.org/10.1890/05-0023, 2006.
Ramos Scharrón, C. E., Castellanos, E. J., and Restrepo, C.: The
transfer of modern organic carbon by landslide activity in tropical montane
ecosystems, J. Geophys. Res.-Biogeo., 117, G03016, https://doi.org/10.1029/2011JG001838,
2012.
Rao, Y.: Variation in plant carbon and nitrogen isotopes along an
altitudinal gradient in the Peruvian Andes, B. Sc., Department of Earth
Sciences, Durham University, Durham, 60 pp., 2011.
Restrepo, C., Vitousek, P., and Neville, P.: Landslides significantly alter
land cover and the distribution of biomass: an example from the Ninole
ridges of Hawai'i, Plant Ecol., 166, 131–143, https://doi.org/10.1023/A:1023225419111, 2003.
Restrepo, C. and Alvarez, N.: Landslides and their contribution to
land-cover change in the mountains of Mexico and Central America,
Biotropica, 38, 446–457, https://doi.org/10.1111/j.1744-7429.2006.00178.x, 2006.
Restrepo, C., Walker, L. R., Shiels, A. B., Bussmann, R., Claessens, L.,
Fisch, S., Lozano, P., Negi, G., Paolini, L., and Poveda, G.: Landsliding
and its multiscale influence on mountainscapes, Bioscience, 59, 685–698,
https://doi.org/10.1525/bio.2009.59.8.10, 2009.
Roering, J. J., Kirchner, J. W., and Dietrich, W. E.: Characterizing
structural and lithologic controls on deep-seated landsliding: Implications
for topographic relief and landscape evolution in the Oregon Coast Range,
USA, Geol. Soc. Am. Bull., 117, 654–668, https://doi.org/10.1130/B25567.1, 2005.
Roering, J. J., Mackey, B. H., Handwerger, A. L., Booth, A. M., Schmidt, D.
A., Bennett, G. L., and Cerovski-Darriau, C.: Beyond the angle of repose: A
review and synthesis of landslide processes in response to rapid uplift, Eel
River, Northern California, Geomorphology, 236, 109–131,
https://doi.org/10.1016/j.geomorph.2015.02.013, 2015.
Rohrmann, A., Strecker, M. R., Bookhagen, B., Mulch, A., Sachse, D., Pingel,
H., Alonso, R. N., Schildgen, T. F., and Montero, C.: Can stable isotopes
ride out the storms? The role of convection for water isotopes in models,
records, and paleoaltimetry studies in the central Andes, Earth Planet Sc.
Lett., 407, 187–195, https://doi.org/10.1016/j.epsl.2014.09.021, 2014.
Saatchi, S. S., Houghton, R. A., Dos Santos AlvalÁ, R. C., Soares, J.
V., and Yu, Y.: Distribution of aboveground live biomass in the Amazon
basin, Glob. Change Biol., 13, 816–837, https://doi.org/10.1111/j.1365-2486.2007.01323.x,
2007.
Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T.,
Salas, W., Zutta, B. R., Buermann, W., Lewis, S. L., and Hagen, S.:
Benchmark map of forest carbon stocks in tropical regions across three
continents, P. Natl. Acad. Sci. USA, 108, 9899–9904,
https://doi.org/10.1073/pnas.1019576108, 2011.
Safran, E. B., Bierman, P. R., Aalto, R., Dunne, T., Whipple, K. X., and
Caffee, M.: Erosion rates driven by channel network incision in the Bolivian
Andes, Earth Surf. Proc. Land., 30, 1007–1024, https://doi.org/10.1002/esp.1259, 2005.
Salazar, L., Homeier, J., Kessler, M., Abrahamczyk, S., Lehnert, M.,
Krömer, T., and Kluge, J.: Diversity patterns of ferns along elevational
gradients in Andean tropical forests, Plant Ecol. Divers., 8, 13–24,
https://doi.org/10.1080/17550874.2013.843036, 2015.
Schmidt, K. M. and Montgomery, D. R.: Limits to relief, Science, 270,
617–620, https://doi.org/10.1126/science.270.5236.617, 1995.
Sébrier, M., Mercier, J. L., Mégard, F., Laubacher, G., and
Carey-Gailhardis, E.: Quaternary normal and reverse faulting and the state
of stress in the central Andes of south Peru, Tectonics, 4, 739–780,
https://doi.org/10.1029/TC004i007p00739, 1985.
Selby, M.: Hillslope materials and processes, Oxford University Press,
Oxford, UK, 289 pp., 1993.
Stallard, R. F.: River chemistry, geology, geomorphology, and soils in the
Amazon and Orinoco Basins, The chemistry of weathering, Rodez, France,
293–316, 1985.
Stallard, R. F.: Terrestrial sedimentation and the carbon cycle: Coupling
weathering and erosion to carbon burial, Global Biogeochem. Cy., 12,
231–257, https://doi.org/10.1029/98gb00741, 1998.
Stark, C. P. and Hovius, N.: The characterization of landslide size
distributions, Geophys. Res. Lett., 28, 1091–1094, https://doi.org/10.1029/2000GL008527,
2001.
Stock, J. and Dietrich, W. E.: Valley incision by debris flows: Evidence of
a topographic signature, Water Resour. Res., 39, 1–24, https://doi.org/10.1029/2001WR001057,
2003.
Stoyan, R.: Aktivität, Ursachen und Klassifikation der Rutschungen in
San Francisco/Süd Ecuador, Diploma, University of Erlangen-Nuremberg,
Erlangen, Germany, 2000.
Strecker, M. R., Alonso, R. N., Bookhagen, B., Carrapa, B., Hilley, G. E.,
Sobel, E. R., and Trauth, M. H.: Tectonics and climate of the Southern
Central Andes, Annu. Rev. Earth Pl. Sc., 35, 747–787,
https://doi.org/10.1146/annurev.earth.35.031306.140158, 2007.
Tavera, H. and Buforn, E.: Source mechanism of earthquakes in Perú, J.
Seismol., 5, 519–540, https://doi.org/10.1023/A:1012027430555, 2001.
Terzaghi, K.: Mechanism of landslides, Harvard University, Department of
Engineering, Cambridge, Massachusetts, USA, 41 pp., 1951.
USGS: Earthquakes v3.6, 2013-07-02, USGS, http://earthquake.usgs.gov/earthquakes/map/, last access: 2 July 2013a.
USGS: Landsat Processing Details, United States Geological Survey, U.S.
Deptarment of the Interior, http://landsat.usgs.gov/Landsat_Processing_Details.php, last access: 16 July 2013b.
Vargas Vilchez, L. and Hipolito Romero, A.: Geología de los
cuadrángulos de Río Pinquén, Pilcopata y Chontachaca. Hojas:
25-t, 26-t y 27-t, Instituto Geológica Nacional, Lima, Peru, 1998.
Walker, L. R., Zarin, D. J., Fetcher, N., Myster, R. W., and Johnson, A. H.:
Ecosystem development and plant succession on landslides in the Caribbean,
Biotropica, 28, 566–576, https://doi.org/10.2307/2389097, 1996.
Walker, L. R., Shiels, A. B., Bellingham, P. J., Sparrow, A. D., Fetcher,
N., Landau, F. H., and Lodge, D. J.: Changes in abiotic influences on seed
plants and ferns during 18 years of primary succession on Puerto Rican
landslides, J. Ecol., 101, 650–661, https://doi.org/10.1111/1365-2745.12071, 2013.
Wang, G. and Sassa, K.: Pore-pressure generation and movement of
rainfall-induced landslides: effects of grain size and fine-particle
content, Eng. Geol., 69, 109–125, https://doi.org/10.1016/S0013-7952(02)00268-5, 2003.
Wang, J., Jin, Z., Hilton, R. G., Zhang, F., Densmore, A. L., Li, G., and
West, A. J.: Controls on fluvial evacuation of sediment from
earthquake-triggered landslides, Geology, 43, 115–118, https://doi.org/10.1130/G36157.1,
2015.
West, A. J., Lin, C. W., Lin, T. C., Hilton, R. G., Liu, S. H., Chang, C.
T., Lin, K. C., Galy, A., Sparkes, R. B., and Hovius, N.: Mobilization and
transport of coarse woody debris to the oceans triggered by an extreme
tropical storm, Limnol. Oceanogr., 56, 77–85, https://doi.org/10.4319/lo.2011.56.1.0077,
2011.
Whipple, K. X.: Fluvial landscape response time: How plausible is
steady-state denudation?, Am. J. Sci., 301, 313–325,
https://doi.org/10.2475/ajs.301.4-5.313, 2001.
Whipple, K. X.: Bedrock rivers and the geomorphology of active orogens,
Annu. Rev. Earth Pl. Sc., 32, 151–185,
https://doi.org/10.1146/annurev.earth.32.101802.120356, 2004.
Whipple, K. X. and Gasparini, N. M.: Tectonic control of topography,
rainfall patterns, and erosion during rapid post–12 Ma uplift of the
Bolivian Andes, Lithosphere, 6, 251–268, https://doi.org/10.1130/l325.1, 2014.
Wittmann, H., von Blanckenburg, F., Guyot, J. L., Maurice, L., and Kubik,
P.: From source to sink: Preserving the cosmogenic 10Be-derived
denudation rate signal of the Bolivian Andes in sediment of the Beni and
Mamoré foreland basins, Earth Planet Sc. Lett., 288, 463–474,
https://doi.org/10.1016/j.epsl.2009.10.008, 2009.
Wohl, E. and Ogden, F. L.: Organic carbon export in the form of wood during
an extreme tropical storm, Upper Rio Chagres, Panama, Earth Surf. Proc.
Land., 38, 1407–1416, https://doi.org/10.1002/esp.3389, 2013.
Wolman, M. G. and Miller, J. P.: Magnitude and frequency of forces in
geomorphic processes, J. Geol., 68, 54–74, 1960.
Yang, R., Willett, S. D., and Goren, L.: In situ low-relief landscape
formation as a result of river network disruption, Nature, 520, 526–529,
https://doi.org/10.1038/nature14354, 2015.
Yoo, K., Amundson, R., Heimsath, A. M., and Dietrich, W. E.: Erosion of
upland hillslope soil organic carbon: Coupling field measurements with a
sediment transport model, Global Biogeochem. Cy., 19, GB3003,
https://doi.org/10.1029/2004GB002271, 2005.
Zhang, W. and Montgomery, D. R.: Digital elevation model grid size,
landscape representation, Water Resour. Res., 30, 1019–1028, 1994.
Zimmermann, M., Meir, P., Bird, M. I., Malhi, Y., and Ccahuana, A. J. Q.:
Climate dependence of heterotrophic soil respiration from a
soil-translocation experiment along a 3000 m tropical forest altitudinal
gradient, Eur. J. Soil Sci., 60, 895–906, https://doi.org/10.1111/j.1365-2389.2009.01175.x,
2009.
Short summary
The key findings of this paper are that landslides in the eastern Andes of Peru in the Kosñipata Valley rapidly turn over the landscape in ~1320 years, with a rate of 0.076% yr-1. Additionally, landslides were concentrated at lower elevations, due to an intense storm in 2010 accounting for ~1/4 of the total landslide area over the 25-year remote sensing study. Valley-wide carbon stocks were determined, and we estimate that 26 tC km-2 yr-1 of soil and biomass are stripped by landslides.
The key findings of this paper are that landslides in the eastern Andes of Peru in the...