Articles | Volume 5, issue 3
https://doi.org/10.5194/esurf-5-479-2017
https://doi.org/10.5194/esurf-5-479-2017
Research article
 | 
24 Aug 2017
Research article |  | 24 Aug 2017

Quantifying the controls on potential soil production rates: a case study of the San Gabriel Mountains, California

Jon D. Pelletier

Related authors

Controls on the hydraulic geometry of alluvial channels: bank stability to gravitational failure, the critical-flow hypothesis, and conservation of mass and energy
Jon D. Pelletier
Earth Surf. Dynam., 9, 379–391, https://doi.org/10.5194/esurf-9-379-2021,https://doi.org/10.5194/esurf-9-379-2021, 2021
Short summary
A probabilistic approach to quantifying soil physical properties via time-integrated energy and mass input
Christopher Shepard, Marcel G. Schaap, Jon D. Pelletier, and Craig Rasmussen
SOIL, 3, 67–82, https://doi.org/10.5194/soil-3-67-2017,https://doi.org/10.5194/soil-3-67-2017, 2017
Short summary
Constraining frequency–magnitude–area relationships for rainfall and flood discharges using radar-derived precipitation estimates: example applications in the Upper and Lower Colorado River basins, USA
Caitlin A. Orem and Jon D. Pelletier
Hydrol. Earth Syst. Sci., 20, 4483–4501, https://doi.org/10.5194/hess-20-4483-2016,https://doi.org/10.5194/hess-20-4483-2016, 2016
Short summary
The influence of Holocene vegetation changes on topography and erosion rates: a case study at Walnut Gulch Experimental Watershed, Arizona
Jon D. Pelletier, Mary H. Nichols, and Mark A. Nearing
Earth Surf. Dynam., 4, 471–488, https://doi.org/10.5194/esurf-4-471-2016,https://doi.org/10.5194/esurf-4-471-2016, 2016
Short summary
Predicting the roughness length of turbulent flows over landscapes with multi-scale microtopography
Jon D. Pelletier and Jason P. Field
Earth Surf. Dynam., 4, 391–405, https://doi.org/10.5194/esurf-4-391-2016,https://doi.org/10.5194/esurf-4-391-2016, 2016
Short summary

Related subject area

Cross-cutting themes: Critical zone processes
Probing the exchange of CO2 and O2 in the shallow critical zone during weathering of marl and black shale
Tobias Roylands, Robert G. Hilton, Erin L. McClymont, Mark H. Garnett, Guillaume Soulet, Sébastien Klotz, Mathis Degler, Felipe Napoleoni, and Caroline Le Bouteiller
Earth Surf. Dynam., 12, 271–299, https://doi.org/10.5194/esurf-12-271-2024,https://doi.org/10.5194/esurf-12-271-2024, 2024
Short summary
Sediment export in marly badland catchments modulated by frost-cracking intensity, Draix–Bléone Critical Zone Observatory, SE France
Coline Ariagno, Caroline Le Bouteiller, Peter van der Beek, and Sébastien Klotz
Earth Surf. Dynam., 10, 81–96, https://doi.org/10.5194/esurf-10-81-2022,https://doi.org/10.5194/esurf-10-81-2022, 2022
Short summary
A hybrid data–model approach to map soil thickness in mountain hillslopes
Qina Yan, Haruko Wainwright, Baptiste Dafflon, Sebastian Uhlemann, Carl I. Steefel, Nicola Falco, Jeffrey Kwang, and Susan S. Hubbard
Earth Surf. Dynam., 9, 1347–1361, https://doi.org/10.5194/esurf-9-1347-2021,https://doi.org/10.5194/esurf-9-1347-2021, 2021
Short summary
Sediment size on talus slopes correlates with fracture spacing on bedrock cliffs: implications for predicting initial sediment size distributions on hillslopes
Joseph P. Verdian, Leonard S. Sklar, Clifford S. Riebe, and Jeffrey R. Moore
Earth Surf. Dynam., 9, 1073–1090, https://doi.org/10.5194/esurf-9-1073-2021,https://doi.org/10.5194/esurf-9-1073-2021, 2021
Short summary
Designing a network of critical zone observatories to explore the living skin of the terrestrial Earth
Susan L. Brantley, William H. McDowell, William E. Dietrich, Timothy S. White, Praveen Kumar, Suzanne P. Anderson, Jon Chorover, Kathleen Ann Lohse, Roger C. Bales, Daniel D. Richter, Gordon Grant, and Jérôme Gaillardet
Earth Surf. Dynam., 5, 841–860, https://doi.org/10.5194/esurf-5-841-2017,https://doi.org/10.5194/esurf-5-841-2017, 2017
Short summary

Cited articles

Chester, J. S., Chester, F. M., and Kronenberg, A. K.: Fracture surface energy of the Punchbowl fault, San Andreas system, Nature, 437, 133–136, https://doi.org/10.1038/nature03942, 2005.
Daly, C., Taylor, G. H., Gibson, W. P., Parzybok, T. W., Johnson, G. L., and Pasteris, P.: High-quality spatial climate data sets for the United States and beyond, T. Am. Soc. Ag. Eng., 43, 1957–1962, https://doi.org/10.13031/2013.3101, 2001.
DiBiase, R. A. and Whipple, K. X.: The influence of erosion thresholds and runoff variability on the relationships among topography, climate, and erosion rate, J. Geophys. Res.-Earth, 116, F04036, https://doi.org/10.1029/2011JF002095, 2011.
DiBiase, R. A., Whipple, K. X., and Heimsath, A. M.: Landscape form and millennial erosion rates in the San Gabriel Mountains, CA, Earth Planet. Sc. Lett., 289, 134–144, https://doi.org/10.1016/j.epsl.2009.10.036, 2010.
DiBiase, R. A., Heimsath, A. M., and Whipple, K. X.: Hillslope response to tectonic forcing in threshold landscapes, Earth Surf. Proc. Land., 37, 855–865, https://doi.org/10.1002/esp.3205, 2012.
Download
Short summary
The rate at which bedrock can be converted into transportable material is a fundamental control on the topographic evolution of mountain ranges. Using the San Gabriel Mountains, California, as an example, in this paper I demonstrate that this rate depends on topographic slope in mountain ranges with large compressive stresses via the influence of topographically induced stresses on fractures. Bedrock and climate both control this rate, but topography influences bedrock in an interesting new way.