Research article 30 Oct 2019
Research article | 30 Oct 2019
Permafrost distribution in steep rock slopes in Norway: measurements, statistical modelling and implications for geomorphological processes
Florence Magnin et al.
Related authors
Juditha Undine Schmidt, Bernd Etzelmüller, Thomas Vikhamar Schuler, Florence Magnin, Julia Boike, Moritz Langer, and Sebastian Westermann
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-340, https://doi.org/10.5194/tc-2020-340, 2020
Revised manuscript under review for TC
Short summary
Short summary
This study presents rock surface temperatures (RST) of steep high Arctic rock walls on Svalbard from 2016 to 2020. The field data shows that coastal cliffs are characterized by warmer RST than inland locations during winter season. By running model simulations, we analyze factors leading to that effect, calculate the surface energy balance and simulate different future scenarios. Both field data and model results can contribute to a further understanding of RST in high Arctic rock walls.
Florence Magnin, Jean-Yves Josnin, Ludovic Ravanel, Julien Pergaud, Benjamin Pohl, and Philip Deline
The Cryosphere, 11, 1813–1834, https://doi.org/10.5194/tc-11-1813-2017, https://doi.org/10.5194/tc-11-1813-2017, 2017
Short summary
Short summary
Permafrost degradation in high mountain rock walls provokes destabilisation, constituting a threat for human activities. In the Mont Blanc massif, more than 700 rockfalls have been inventoried in recent years (2003, 2007–2015). Understanding permafrost evolution is thus crucial to sustain this densely populated area. This study investigates the changes in rock wall permafrost from 1850 to the recent period and possible optimistic or pessimistic evolutions during the 21st century.
F. Magnin, P. Deline, L. Ravanel, J. Noetzli, and P. Pogliotti
The Cryosphere, 9, 109–121, https://doi.org/10.5194/tc-9-109-2015, https://doi.org/10.5194/tc-9-109-2015, 2015
Simone Maria Stuenzi, Julia Boike, William Cable, Ulrike Herzschuh, Stefan Kruse, Luidmila A. Pestryakova, Thomas Schneider von Deimling, Sebastian Westermann, Evgenii S. Zakharov, and Moritz Langer
Biogeosciences, 18, 343–365, https://doi.org/10.5194/bg-18-343-2021, https://doi.org/10.5194/bg-18-343-2021, 2021
Short summary
Short summary
Boreal forests in eastern Siberia are an essential component of global climate patterns. We use a physically based model and field measurements to study the interactions between forests, permanently frozen ground and the atmosphere. We find that forests exert a strong control on the thermal state of permafrost through changing snow cover dynamics and altering the surface energy balance, through absorbing most of the incoming solar radiation and suppressing below-canopy turbulent fluxes.
Léo C. P. Martin, Jan Nitzbon, Johanna Scheer, Kjetil S. Aas, Trond Eiken, Moritz Langer, Simon Filhol, Bernd Etzelmüller, and Sebastian Westermann
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-338, https://doi.org/10.5194/tc-2020-338, 2020
Preprint under review for TC
Short summary
Short summary
It is important to understand how permafrost landscapes respond to climate changes because their thaw can contribute to global warming. We investigate how a common permafrost morphology degrades using both field observations of the surface elevation and numerical modeling. We show that numerical models accounting for topographic changes related to permafrost degradation can reproduce the observed changes in the Nature and help to understand how parameters such as snow influence this phenomenon.
Lei Cai, Hanna Lee, Kjetil Schanke Aas, and Sebastian Westermann
The Cryosphere, 14, 4611–4626, https://doi.org/10.5194/tc-14-4611-2020, https://doi.org/10.5194/tc-14-4611-2020, 2020
Short summary
Short summary
A sub-grid representation of excess ground ice in the Community Land Model (CLM) is developed as novel progress in modeling permafrost thaw and its impacts under the warming climate. The modeled permafrost degradation with sub-grid excess ice follows the pathway that continuous permafrost transforms into discontinuous permafrost before it disappears, including surface subsidence and talik formation, which are highly permafrost-relevant landscape changes excluded from most land models.
Juditha Undine Schmidt, Bernd Etzelmüller, Thomas Vikhamar Schuler, Florence Magnin, Julia Boike, Moritz Langer, and Sebastian Westermann
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-340, https://doi.org/10.5194/tc-2020-340, 2020
Revised manuscript under review for TC
Short summary
Short summary
This study presents rock surface temperatures (RST) of steep high Arctic rock walls on Svalbard from 2016 to 2020. The field data shows that coastal cliffs are characterized by warmer RST than inland locations during winter season. By running model simulations, we analyze factors leading to that effect, calculate the surface energy balance and simulate different future scenarios. Both field data and model results can contribute to a further understanding of RST in high Arctic rock walls.
Thierry Oppikofer, Reginald L. Hermanns, Vegard U. Jakobsen, Martina Böhme, Pierrick Nicolet, and Ivanna Penna
Nat. Hazards Earth Syst. Sci., 20, 3179–3196, https://doi.org/10.5194/nhess-20-3179-2020, https://doi.org/10.5194/nhess-20-3179-2020, 2020
Short summary
Short summary
Damming of rivers is an important secondary effect of landslides due to upstream flooding and possible outburst floods in case of dam failure. For preliminary regional hazard and risk assessment of dams formed by rock slope failures in Norway, we developed semi-empirical relationships to assess the height and stability of dams based on an inventory of 69 dams formed by rock slope failures in southwestern Norway and published landslide dam inventories from other parts of the world.
Thomas Schneider von Deimling, Hanna Lee, Thomas Ingeman-Nielsen, Sebastian Westermann, Vladimir Romanovsky, Scott Lamoureux, Donald A. Walker, Sarah Chadburn, Lei Cai, Erin Trochim, Jan Nitzbon, Stephan Jacobi, and Moritz Langer
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-192, https://doi.org/10.5194/tc-2020-192, 2020
Revised manuscript under review for TC
Short summary
Short summary
Climate warming puts infrastructure built on permafrost at risk of failure. There is a growing need for appropriate model-based risk assessments. Here we present a modelling study and show an exemplary case of how a gravel road in a cold permafrost environment in Alaska might suffer from degrading permafrost under a scenario of intense climate warming. We use this case study to discuss the broader-scale applicability of our model for simulating future Arctic infrastructure failure.
Anita Verpe Dyrrdal, Ketil Isaksen, Jens Kristian Steen Jacobsen, and Irene Brox Nilsen
Nat. Hazards Earth Syst. Sci., 20, 1847–1865, https://doi.org/10.5194/nhess-20-1847-2020, https://doi.org/10.5194/nhess-20-1847-2020, 2020
Short summary
Short summary
We have studied changes in winter weather known to trigger road closures and isolation of small seaside communities in northern Norway. We find that snow amounts and heavy snowfall events have increased in the past, while future projections for 2040–2100 show a decrease in snow-related indices. Events of heavy water supply and zero crossings are expected to increase. Our results imply fewer dry-snow-related access disruptions in the future, while wet-snow avalanches and slushflows may increase.
Jan Nitzbon, Moritz Langer, Léo C. P. Martin, Sebastian Westermann, Thomas Schneider von Deimling, and Julia Boike
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-137, https://doi.org/10.5194/tc-2020-137, 2020
Revised manuscript accepted for TC
Jaroslav Obu, Sebastian Westermann, Gonçalo Vieira, Andrey Abramov, Megan Ruby Balks, Annett Bartsch, Filip Hrbáček, Andreas Kääb, and Miguel Ramos
The Cryosphere, 14, 497–519, https://doi.org/10.5194/tc-14-497-2020, https://doi.org/10.5194/tc-14-497-2020, 2020
Short summary
Short summary
Little is known about permafrost in the Antarctic outside of the few research stations. We used a simple equilibrium permafrost model to estimate permafrost temperatures in the whole Antarctic. The lowest permafrost temperature on Earth is −36 °C in the Queen Elizabeth Range in the Transantarctic Mountains. Temperatures are commonly between −23 and −18 °C in mountainous areas rising above the Antarctic Ice Sheet, between −14 and −8 °C in coastal areas, and up to 0 °C on the Antarctic Peninsula.
Joel Fiddes, Kristoffer Aalstad, and Sebastian Westermann
Hydrol. Earth Syst. Sci., 23, 4717–4736, https://doi.org/10.5194/hess-23-4717-2019, https://doi.org/10.5194/hess-23-4717-2019, 2019
Short summary
Short summary
In this paper we address one of the big challenges in snow hydrology, namely the accurate simulation of the seasonal snowpack in ungauged regions. We do this by assimilating satellite observations of snow cover into a modelling framework. Importantly (and a novelty of the paper), we include a clustering approach that permits highly efficient ensemble simulations. Efficiency gains and dependency on purely global datasets, means that this method can be applied over large areas anywhere on Earth.
Lei Cai, Hanna Lee, Sebastian Westermann, and Kjetil Schanke Aas
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-230, https://doi.org/10.5194/tc-2019-230, 2019
Preprint withdrawn
Short summary
Short summary
We develop a sub-grid representation of excess ground ice in the Community Land Model (CLM) by adding three landunits to the original CLM sub-grid hierarchy, in order to prescribe three different excess ice conditions in one grid cell. Single-grid simulations verify the potential of the model development on better projecting excess ice melt in a warming climate. Global simulations recommend the proper way of applying the model development with the existing excess ice dataset.
Jan Nitzbon, Moritz Langer, Sebastian Westermann, Léo Martin, Kjetil Schanke Aas, and Julia Boike
The Cryosphere, 13, 1089–1123, https://doi.org/10.5194/tc-13-1089-2019, https://doi.org/10.5194/tc-13-1089-2019, 2019
Short summary
Short summary
We studied the stability of ice wedges (massive bodies of ground ice in permafrost) under recent climatic conditions in the Lena River delta of northern Siberia. For this we used a novel modelling approach that takes into account lateral transport of heat, water, and snow and the subsidence of the ground surface due to melting of ground ice. We found that wetter conditions have a destabilizing effect on the ice wedges and associated our simulation results with observations from the study area.
Nicholas J. Roberts, Bernhard T. Rabus, John J. Clague, Reginald L. Hermanns, Marco-Antonio Guzmán, and Estela Minaya
Nat. Hazards Earth Syst. Sci., 19, 679–696, https://doi.org/10.5194/nhess-19-679-2019, https://doi.org/10.5194/nhess-19-679-2019, 2019
Short summary
Short summary
La Paz, Bolivia, experiences frequent damaging landslides. We quantify creep before and after the city’s largest modern landslide using spaceborne InSAR. Creep of ancient landslide deposits increased in rate and extent following failure and extended into adjacent intact materials. Accelerated steady-state creep reflects complex post-failure stress redistribution. Landslide risk in La Paz, which is underlain by many large ancient landslides, may be even greater than previously thought.
Kjetil S. Aas, Léo Martin, Jan Nitzbon, Moritz Langer, Julia Boike, Hanna Lee, Terje K. Berntsen, and Sebastian Westermann
The Cryosphere, 13, 591–609, https://doi.org/10.5194/tc-13-591-2019, https://doi.org/10.5194/tc-13-591-2019, 2019
Short summary
Short summary
Many permafrost landscapes contain large amounts of excess ground ice, which gives rise to small-scale elevation differences. This results in lateral fluxes of snow, water, and heat, which we investigate and show how it can be accounted for in large-scale models. Using a novel model technique which can account for these differences, we are able to model both the current state of permafrost and how these landscapes change as permafrost thaws, in a way that could not previously be achieved.
Regula Frauenfelder, Ketil Isaksen, Matthew J. Lato, and Jeannette Noetzli
The Cryosphere, 12, 1531–1550, https://doi.org/10.5194/tc-12-1531-2018, https://doi.org/10.5194/tc-12-1531-2018, 2018
Short summary
Short summary
On 26 June 2008, a rock avalanche with a volume of ca. 500 000 m3 detached in the north-east facing slope of Polvartinden, a high-alpine peak in northern Norway. Ice was observed in the failure zone shortly after the rock avalanche, leading to the assumption that degrading permafrost might have played an important role in the detaching of the Signaldalen rock avalanche. Here, we present a four-year series of temperature measurements from the site and subsequent temperature modelling results.
Julia Boike, Inge Juszak, Stephan Lange, Sarah Chadburn, Eleanor Burke, Pier Paul Overduin, Kurt Roth, Olaf Ippisch, Niko Bornemann, Lielle Stern, Isabelle Gouttevin, Ernst Hauber, and Sebastian Westermann
Earth Syst. Sci. Data, 10, 355–390, https://doi.org/10.5194/essd-10-355-2018, https://doi.org/10.5194/essd-10-355-2018, 2018
Short summary
Short summary
A 20-year data record from the Bayelva site at Ny-Ålesund, Svalbard, is presented on meteorology, energy balance components, surface and subsurface observations. This paper presents the data set, instrumentation, calibration, processing and data quality control. The data show that mean annual, summer and winter soil temperature data from shallow to deeper depths have been warming over the period of record, indicating the degradation and loss of permafrost at this site.
John Kochendorfer, Rodica Nitu, Mareile Wolff, Eva Mekis, Roy Rasmussen, Bruce Baker, Michael E. Earle, Audrey Reverdin, Kai Wong, Craig D. Smith, Daqing Yang, Yves-Alain Roulet, Tilden Meyers, Samuel Buisan, Ketil Isaksen, Ragnar Brækkan, Scott Landolt, and Al Jachcik
Hydrol. Earth Syst. Sci., 22, 1437–1452, https://doi.org/10.5194/hess-22-1437-2018, https://doi.org/10.5194/hess-22-1437-2018, 2018
Short summary
Short summary
Due to the effects of wind, precipitation gauges typically underestimate the amount of precipitation that occurs as snow. Measurements recorded during a World Meteorological Organization intercomparison of precipitation gauges were used to evaluate and improve the adjustments that are available to address this issue. Adjustments for specific types of precipitation gauges and wind shields were tested and recommended.
Kristoffer Aalstad, Sebastian Westermann, Thomas Vikhamar Schuler, Julia Boike, and Laurent Bertino
The Cryosphere, 12, 247–270, https://doi.org/10.5194/tc-12-247-2018, https://doi.org/10.5194/tc-12-247-2018, 2018
Short summary
Short summary
We demonstrate how snow cover data from satellites can be used to constrain estimates of snow distributions at sites in the Arctic. In this effort, we make use of data assimilation to combine the information contained in the snow cover data with a simple snow model. By comparing our snow distribution estimates to independent observations, we find that this method performs favorably. Being modular, this method could be applied to other areas as a component of a larger reanalysis system.
Regula Frauenfelder, Anders Solheim, Ketil Isaksen, Bård Romstad, Anita V. Dyrrdal, Kristine H. H. Ekseth, Alf Harbitz, Carl B. Harbitz, Jan Erik Haugen, Hans Olav Hygen, Hilde Haakenstad, Christian Jaedicke, Árni Jónsson, Ronny Klæboe, Johanna Ludvigsen, Nele M. Meyer, Trude Rauken, Reidun G. Skaland, Kjetil Sverdrup-Thygeson, Asbjørn Aaheim, Heidi Bjordal, and Per-Anton Fevang
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2017-437, https://doi.org/10.5194/nhess-2017-437, 2017
Preprint withdrawn
Short summary
Short summary
We present results from the project
Impacts of extreme weather events on infrastructure in Norway. Our analyses document an increase in frequency and intensity of e.g. precipitation and wind during the last decades, and that these observed changes will continue throughout the 21st century. We could show that ≥ 27 % of main roads and 31 % of railroads are exposed to rockfall and avalanches. Pro-actively facing such risks will increase resilience and cost-efficiency of the transport infrastructure.
Sarah E. Chadburn, Gerhard Krinner, Philipp Porada, Annett Bartsch, Christian Beer, Luca Belelli Marchesini, Julia Boike, Altug Ekici, Bo Elberling, Thomas Friborg, Gustaf Hugelius, Margareta Johansson, Peter Kuhry, Lars Kutzbach, Moritz Langer, Magnus Lund, Frans-Jan W. Parmentier, Shushi Peng, Ko Van Huissteden, Tao Wang, Sebastian Westermann, Dan Zhu, and Eleanor J. Burke
Biogeosciences, 14, 5143–5169, https://doi.org/10.5194/bg-14-5143-2017, https://doi.org/10.5194/bg-14-5143-2017, 2017
Short summary
Short summary
Earth system models (ESMs) are our main tools for understanding future climate. The Arctic is important for the future carbon cycle, particularly due to the large carbon stocks in permafrost. We evaluated the performance of the land component of three major ESMs at Arctic tundra sites, focusing on the fluxes and stocks of carbon.
We show that the next steps for model improvement are to better represent vegetation dynamics, to include mosses and to improve below-ground carbon cycle processes.
Florence Magnin, Jean-Yves Josnin, Ludovic Ravanel, Julien Pergaud, Benjamin Pohl, and Philip Deline
The Cryosphere, 11, 1813–1834, https://doi.org/10.5194/tc-11-1813-2017, https://doi.org/10.5194/tc-11-1813-2017, 2017
Short summary
Short summary
Permafrost degradation in high mountain rock walls provokes destabilisation, constituting a threat for human activities. In the Mont Blanc massif, more than 700 rockfalls have been inventoried in recent years (2003, 2007–2015). Understanding permafrost evolution is thus crucial to sustain this densely populated area. This study investigates the changes in rock wall permafrost from 1850 to the recent period and possible optimistic or pessimistic evolutions during the 21st century.
John Kochendorfer, Rodica Nitu, Mareile Wolff, Eva Mekis, Roy Rasmussen, Bruce Baker, Michael E. Earle, Audrey Reverdin, Kai Wong, Craig D. Smith, Daqing Yang, Yves-Alain Roulet, Samuel Buisan, Timo Laine, Gyuwon Lee, Jose Luis C. Aceituno, Javier Alastrué, Ketil Isaksen, Tilden Meyers, Ragnar Brækkan, Scott Landolt, Al Jachcik, and Antti Poikonen
Hydrol. Earth Syst. Sci., 21, 3525–3542, https://doi.org/10.5194/hess-21-3525-2017, https://doi.org/10.5194/hess-21-3525-2017, 2017
Short summary
Short summary
Precipitation measurements were combined from eight separate precipitation testbeds to create multi-site transfer functions for the correction of unshielded and single-Alter-shielded precipitation gauge measurements. Site-specific errors and more universally applicable corrections were created from these WMO-SPICE measurements. The importance and magnitude of such wind speed corrections were demonstrated.
Sebastian Westermann, Maria Peter, Moritz Langer, Georg Schwamborn, Lutz Schirrmeister, Bernd Etzelmüller, and Julia Boike
The Cryosphere, 11, 1441–1463, https://doi.org/10.5194/tc-11-1441-2017, https://doi.org/10.5194/tc-11-1441-2017, 2017
Short summary
Short summary
We demonstrate a remote-sensing-based scheme estimating the evolution of ground temperature and active layer thickness by means of a ground thermal model. A comparison to in situ observations from the Lena River delta in Siberia indicates that the model is generally capable of reproducing the annual temperature regime and seasonal thawing of the ground. The approach could hence be a first step towards remote detection of ground thermal conditions in permafrost areas.
John Kochendorfer, Roy Rasmussen, Mareile Wolff, Bruce Baker, Mark E. Hall, Tilden Meyers, Scott Landolt, Al Jachcik, Ketil Isaksen, Ragnar Brækkan, and Ronald Leeper
Hydrol. Earth Syst. Sci., 21, 1973–1989, https://doi.org/10.5194/hess-21-1973-2017, https://doi.org/10.5194/hess-21-1973-2017, 2017
Short summary
Short summary
Snowfall measurements recorded using precipitation gauges are subject to significant underestimation due to the effects of wind. Using measurements recorded at two different precipitation test beds, corrections for unshielded gauges and gauges within different types of windshields were developed and tested. Using the new corrections, uncorrectable errors were quantified, and measurement biases were successfully eliminated.
Luc Girod, Christopher Nuth, Andreas Kääb, Bernd Etzelmüller, and Jack Kohler
The Cryosphere, 11, 827–840, https://doi.org/10.5194/tc-11-827-2017, https://doi.org/10.5194/tc-11-827-2017, 2017
Short summary
Short summary
While gathering data on a changing environment is often a costly and complicated endeavour, it is also the backbone of all research. What if one could measure elevation change by just strapping a camera and a hiking GPS under an helicopter or a small airplane used for transportation and gather data on the ground bellow the flight path? In this article, we present a way to do exactly that and show an example survey where it helped compute the volume of ice lost by a glacier in Svalbard.
Amund F. Borge, Sebastian Westermann, Ingvild Solheim, and Bernd Etzelmüller
The Cryosphere, 11, 1–16, https://doi.org/10.5194/tc-11-1-2017, https://doi.org/10.5194/tc-11-1-2017, 2017
Short summary
Short summary
Palsas and peat plateaus are permafrost landforms in subarctic mires which constitute sensitive ecosystems with strong significance for vegetation, wildlife, hydrology and carbon cycle. We have systematically mapped the occurrence of palsas and peat plateaus in northern Norway by interpretation of aerial images from the 1950s until today. The results show that about half of the area of palsas and peat plateaus has disappeared due to lateral erosion and melting of ground ice in the last 50 years.
Rune Strand Ødegård, Atle Nesje, Ketil Isaksen, Liss Marie Andreassen, Trond Eiken, Margit Schwikowski, and Chiara Uglietti
The Cryosphere, 11, 17–32, https://doi.org/10.5194/tc-11-17-2017, https://doi.org/10.5194/tc-11-17-2017, 2017
Short summary
Short summary
Despite numerous spectacular archaeological discoveries worldwide related to melting ice, governing processes related to ice patch development are still largely unexplored. We present new results from Jotunheimen in central southern Norway showing that the Juvfonne ice patch has existed continuously since ca. 7600 cal years BP. This is the oldest dating of ice in mainland Norway. Moss mats along the margin of Juvfonne in 2014 were covered by the expanding ice patch about 2000 years ago.
Kjersti Gisnås, Sebastian Westermann, Thomas Vikhamar Schuler, Kjetil Melvold, and Bernd Etzelmüller
The Cryosphere, 10, 1201–1215, https://doi.org/10.5194/tc-10-1201-2016, https://doi.org/10.5194/tc-10-1201-2016, 2016
Short summary
Short summary
In wind exposed areas snow redistribution results in large spatial variability in ground temperatures. In these areas, the ground temperature of a grid cell must be determined based on the distribution, and not the average, of snow depths. We employ distribution functions of snow in a regional permafrost model, showing highly improved representation of ground temperatures. By including snow distributions, we find the permafrost area to be nearly twice as large as what is modelled without.
S. Westermann, M. Langer, J. Boike, M. Heikenfeld, M. Peter, B. Etzelmüller, and G. Krinner
Geosci. Model Dev., 9, 523–546, https://doi.org/10.5194/gmd-9-523-2016, https://doi.org/10.5194/gmd-9-523-2016, 2016
Short summary
Short summary
Thawing of permafrost is governed by a complex interplay of different processes, of which only conductive heat transfer is taken into account in most model studies. We present a new land-surface scheme designed for permafrost applications, CryoGrid 3, which constitutes a flexible platform to explore new parameterizations for a range of permafrost processes.
S. Westermann, T. I. Østby, K. Gisnås, T. V. Schuler, and B. Etzelmüller
The Cryosphere, 9, 1303–1319, https://doi.org/10.5194/tc-9-1303-2015, https://doi.org/10.5194/tc-9-1303-2015, 2015
Short summary
Short summary
We use remotely sensed land surface temperature and land cover in conjunction with air temperature and snowfall from a reanalysis product as input for a simple permafrost model. The scheme is applied to the permafrost regions bordering the North Atlantic. A comparison with ground temperatures in boreholes suggests a modeling accuracy of 2 to 2.5 °C.
S. Westermann, B. Elberling, S. Højlund Pedersen, M. Stendel, B. U. Hansen, and G. E. Liston
The Cryosphere, 9, 719–735, https://doi.org/10.5194/tc-9-719-2015, https://doi.org/10.5194/tc-9-719-2015, 2015
Short summary
Short summary
The development of ground temperatures in permafrost areas is influenced by many factors varying on different spatial and temporal scales. We present numerical simulations of ground temperatures for the Zackenberg valley in NE Greenland, which take into account the spatial variability of snow depths, surface and ground properties at a scale of 10m. The ensemble of the model grid cells suggests a spatial variability of annual average ground temperatures of up to 5°C.
M. A. Wolff, K. Isaksen, A. Petersen-Øverleir, K. Ødemark, T. Reitan, and R. Brækkan
Hydrol. Earth Syst. Sci., 19, 951–967, https://doi.org/10.5194/hess-19-951-2015, https://doi.org/10.5194/hess-19-951-2015, 2015
Short summary
Short summary
The article reports on measurements, analysis and results of a Norwegian field study aimed to adjust automatic precipitation measurements for under-catch during windy conditions. An unique data set could be collected, documenting the under-catch of snow at very high wind speeds for the first time. A new continuous adjustment function for precipitation measured by an automated gauge covering all three precipitation types (snow, mixed and rain) was established.
M. Langer, S. Westermann, K. Walter Anthony, K. Wischnewski, and J. Boike
Biogeosciences, 12, 977–990, https://doi.org/10.5194/bg-12-977-2015, https://doi.org/10.5194/bg-12-977-2015, 2015
Short summary
Short summary
Methane production rates of Arctic ponds during the freezing period within a typical tundra landscape in northern Siberia are presented. Production rates were inferred by inverse modeling based on measured methane concentrations in the ice cover. Results revealed marked differences in early winter methane production among ponds showing different stages of shore degradation. This suggests that shore erosion can increase methane production of Arctic ponds by 2 to 3 orders of magnitude.
F. Magnin, P. Deline, L. Ravanel, J. Noetzli, and P. Pogliotti
The Cryosphere, 9, 109–121, https://doi.org/10.5194/tc-9-109-2015, https://doi.org/10.5194/tc-9-109-2015, 2015
J. Lüers, S. Westermann, K. Piel, and J. Boike
Biogeosciences, 11, 6307–6322, https://doi.org/10.5194/bg-11-6307-2014, https://doi.org/10.5194/bg-11-6307-2014, 2014
K. Gisnås, S. Westermann, T. V. Schuler, T. Litherland, K. Isaksen, J. Boike, and B. Etzelmüller
The Cryosphere, 8, 2063–2074, https://doi.org/10.5194/tc-8-2063-2014, https://doi.org/10.5194/tc-8-2063-2014, 2014
S. Westermann, T. V. Schuler, K. Gisnås, and B. Etzelmüller
The Cryosphere, 7, 719–739, https://doi.org/10.5194/tc-7-719-2013, https://doi.org/10.5194/tc-7-719-2013, 2013
Related subject area
Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
How do modeling choices and erosion zone locations impact the representation of connectivity and the dynamics of suspended sediments in a multi-source soil erosion model?
Different coastal marsh sites reflect similar topographic conditions under which bare patches and vegetation recovery occur
Coupling threshold theory and satellite-derived channel width to estimate the formative discharge of Himalayan foreland rivers
Inertial drag and lift forces for coarse grains on rough alluvial beds measured using in-grain accelerometers
GERALDINE (Google Earth Engine supRaglAciaL Debris INput dEtector): a new tool for identifying and monitoring supraglacial landslide inputs
Short communication: Multiscalar roughness length decomposition in fluvial systems using a transform-roughness correlation (TRC) approach
Evolution of events before and after the 17 June 2017 rock avalanche at Karrat Fjord, West Greenland – a multidisciplinary approach to detecting and locating unstable rock slopes in a remote Arctic area
Quantifying Thresholds of Barrier Geomorphic Change in a Cross-Shore Sediment Partitioning Model
Complementing scale experiments of rivers and estuaries with numerically modelled hydrodynamics
Characterization of morphological units in a small, forested stream using close-range remotely piloted aircraft imagery
Laboratory observations on meltwater meandering rivulets on ice
Topographic controls on divide migration, stream capture, and diversification in riverine life
Ice sheet and palaeoclimate controls on drainage network evolution: an example from Dogger Bank, North Sea
Experimental study of sediment supply control on step formation, evolution, and stability
Development of smart boulders to monitor mass movements via the Internet of Things: A pilot study in Nepal
A bed load transport equation based on the spatial distribution of shear stress – Oak Creek revisited
Morphometric properties of alternate bars and water discharge: a laboratory investigation
Timing of exotic, far-traveled boulder emplacement and paleo-outburst flooding in the central Himalayas
A 6-year lidar survey reveals enhanced rockwall retreat and modified rockfall magnitudes/frequencies in deglaciating cirques
Short communication: Field data reveal that the transport probability of clasts in Peruvian and Swiss streams mainly depends on the sorting of the grains
Growing topography due to contrasting rock types in a tectonically dead landscape
Alluvial cover on bedrock channels: applicability of existing models
How Hack distributions of rill networks contribute to nonlinear slope length–soil loss relationships
Scale breaks of suspended sediment rating in large rivers in Germany induced by organic matter
Modelling impacts of spatially variable erosion drivers on suspended sediment dynamics
Mātauranga Māori in geomorphology: existing frameworks, case studies, and recommendations for incorporating Indigenous knowledge in Earth science
The impact of earthquakes on orogen-scale exhumation
Implications of present ground temperatures and relict stone stripes in the Ethiopian Highlands for the palaeoclimate of the tropics
Quantifying sediment mass redistribution from joint time-lapse gravimetry and photogrammetry surveys
Controls on the hydraulic geometry of alluvial channels: bank stability to gravitational failure, the critical-flow hypothesis, and conservation of mass and energy
Parameterization of river incision models requires accounting for environmental heterogeneity: insights from the tropical Andes
Measuring river planform changes from remotely sensed data – a Monte Carlo approach to assessing the impact of spatially variable error
Entrainment and suspension of sand and gravel
Morphological evolution of bifurcations in tide-influenced deltas
Short communication: Landlab v2.0: a software package for Earth surface dynamics
Earthquake-induced debris flows at Popocatépetl Volcano, Mexico
Storm-induced sediment supply to coastal dunes on sand flats
Emerging crescentic patterns in modelled double sandbar systems under normally incident waves
Experimental evidence for bifurcation angles control on abandoned channel fill geometry
Large wood as a confounding factor in interpreting the width of spring-fed streams
River patterns reveal two stages of landscape evolution at an oblique convergent margin, Marlborough Fault System, New Zealand
Estimating sand bed load in rivers by tracking dunes: a comparison of methods based on bed elevation time series
Mass balance, grade, and adjustment timescales in bedrock channels
Determining flow directions in river channel networks using planform morphology and topology
Stabilising large grains in self-forming steep channels
Dynamic allometry in coastal overwash morphology
Potential links between Baltic Sea submarine terraces and groundwater seeping
Estimating the disequilibrium in denudation rates due to divide migration at the scale of river basins
Reconstruction of river valley evolution before and after the emplacement of the giant Seymareh rock avalanche (Zagros Mts., Iran)
Experiments on patterns of alluvial cover and bedrock erosion in a meandering channel
Magdalena Uber, Guillaume Nord, Cédric Legout, and Luis Cea
Earth Surf. Dynam., 9, 123–144, https://doi.org/10.5194/esurf-9-123-2021, https://doi.org/10.5194/esurf-9-123-2021, 2021
Short summary
Short summary
Understanding soil erosion and suspended sediment transport is an important issue in terms of soil and water resources management. This study analyzes the impact of choices made during numerical model setup on the modeled suspended sediment dynamics at the outlet of two mesoscale watersheds. While the modeled liquid and solid discharges were found to be sensitive to these choices, the actual location of sediment sources in each catchment was the most important feature.
Chen Wang, Lennert Schepers, Matthew L. Kirwan, Enrica Belluco, Andrea D'Alpaos, Qiao Wang, Shoujing Yin, and Stijn Temmerman
Earth Surf. Dynam., 9, 71–88, https://doi.org/10.5194/esurf-9-71-2021, https://doi.org/10.5194/esurf-9-71-2021, 2021
Short summary
Short summary
Coastal marshes are valuable natural habitats with normally dense vegetation. The presence of bare patches is a symptom of habitat degradation. We found that the occurrence of bare patches and regrowth of vegetation is related to spatial variations in soil surface elevation and to the distance and connectivity to tidal creeks. These relations are similar in three marshes at very different geographical locations. Our results may help nature managers to conserve and restore coastal marshes.
Kumar Gaurav, François Métivier, A V Sreejith, Rajiv Sinha, Amit Kumar, and Sampat Kumar Tandon
Earth Surf. Dynam., 9, 47–70, https://doi.org/10.5194/esurf-9-47-2021, https://doi.org/10.5194/esurf-9-47-2021, 2021
Short summary
Short summary
This study demonstrates an innovative methodology to estimate the formative discharge of alluvial rivers from remote sensing images. We have developed an automated algorithm in Python 3 to extract the width of a river channel from satellite images. Finally, this channel width is translated into discharge using a semi-empirical regime equation developed from field measurements and threshold channel theory that explains the first-order geometry of alluvial channels.
Georgios Maniatis, Trevor Hoey, Rebecca Hodge, Dieter Rickenmann, and Alexandre Badoux
Earth Surf. Dynam., 8, 1067–1099, https://doi.org/10.5194/esurf-8-1067-2020, https://doi.org/10.5194/esurf-8-1067-2020, 2020
Short summary
Short summary
One of the most interesting problems in geomorphology concerns the conditions that mobilise sediments grains in rivers. Newly developed
smartpebbles allow for the measurement of those conditions directly if a suitable framework for analysis is followed. This paper connects such a framework with the physics used to described sediment motion and presents a series of laboratory and field smart-pebble deployments. Those quantify how grain shape affects the motion of coarse sediments in rivers.
William D. Smith, Stuart A. Dunning, Stephen Brough, Neil Ross, and Jon Telling
Earth Surf. Dynam., 8, 1053–1065, https://doi.org/10.5194/esurf-8-1053-2020, https://doi.org/10.5194/esurf-8-1053-2020, 2020
Short summary
Short summary
Glacial landslides are difficult to detect and likely underestimated due to rapid covering or dispersal. Without improved detection rates we cannot constrain their impact on glacial dynamics or their potential climatically driven increases in occurrence. Here we present a new open-access tool (GERALDINE) that helps a user detect 92 % of these events over the past 38 years on a global scale. We demonstrate its ability by identifying two new, large glacial landslides in the Hayes Range, Alaska.
David L. Adams and Andrea Zampiron
Earth Surf. Dynam., 8, 1039–1051, https://doi.org/10.5194/esurf-8-1039-2020, https://doi.org/10.5194/esurf-8-1039-2020, 2020
Short summary
Short summary
This paper presents a novel method of estimating the relative contribution of different physical scales of river bed topography to the total roughness length, based on thalweg elevation profiles. By providing more detailed information regarding the interaction between surface topography and fluid dynamics, the proposed technique may contribute to advances in hydraulics, channel morphodynamics, and bedload transport. Also, it may provide alternatives to existing representative roughness metrics.
Kristian Svennevig, Trine Dahl-Jensen, Marie Keiding, John Peter Merryman Boncori, Tine B. Larsen, Sara Salehi, Anne Munck Solgaard, and Peter H. Voss
Earth Surf. Dynam., 8, 1021–1038, https://doi.org/10.5194/esurf-8-1021-2020, https://doi.org/10.5194/esurf-8-1021-2020, 2020
Short summary
Short summary
The 17 June 2017 Karrat landslide in Greenland caused a tsunami that killed four people. We apply a multidisciplinary workflow to reconstruct a timeline of events and find that three historic landslides occurred in 2009, 2016, and 2017. We also find evidence of much older periods of landslide activity. Three newly discovered active slopes might pose a future hazard. We speculate that the trigger for the recent events is melting permafrost due to a warming climate.
Daniel J. Ciarletta, Jennifer L. Miselis, Justin L. Shawler, and Christopher J. Hein
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2020-88, https://doi.org/10.5194/esurf-2020-88, 2020
Revised manuscript accepted for ESurf
Short summary
Short summary
The world's sandy coastlines are increasingly altered by humans and sea-level rise, yet quantitative relationships between coastal landscapes and sediment availability remain poorly described. Using a novel modeling framework, we explore the evolution of coastal barrier islands under varying rates of sea-level rise and sediment availability. Our model results suggest that as sea levels increase, minor changes in sediment availability could result in rapid changes to barrier coasts.
Steven A. H. Weisscher, Marcio Boechat-Albernaz, Jasper R. F. W. Leuven, Wout M. Van Dijk, Yasuyuki Shimizu, and Maarten G. Kleinhans
Earth Surf. Dynam., 8, 955–972, https://doi.org/10.5194/esurf-8-955-2020, https://doi.org/10.5194/esurf-8-955-2020, 2020
Short summary
Short summary
Accurate and continuous data collection is challenging in physical scale experiments. A novel means to augment measurements is to numerically model flow over the experimental digital elevation maps. We tested this modelling approach for one tidal and two river scale experiments and showed that modelled water depth and flow velocity closely resemble the measurements. The implication is that conducting experiments requires fewer measurements and results in flow data of better overall quality.
Carina Helm, Marwan A. Hassan, and David Reid
Earth Surf. Dynam., 8, 913–929, https://doi.org/10.5194/esurf-8-913-2020, https://doi.org/10.5194/esurf-8-913-2020, 2020
Short summary
Short summary
Forested, gravel-bed streams possess complex channel morphologies which are difficult to objectively characterize. This paper describes a novel technique using a remotely piloted aircraft (RPA) to characterize these systems below the forest canopy. The results demonstrate the accuracy and coverage of RPAs for objectively characterizing and classifying these systems relative to more traditional, time-consuming techniques that are generally used in these environments.
Roberto Fernández and Gary Parker
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2020-90, https://doi.org/10.5194/esurf-2020-90, 2020
Revised manuscript accepted for ESurf
Short summary
Short summary
We present a set of observations from laboratory experiments on meltwater meandering rivulets on ice and compare them (qualitatively and quantitatively) to patterns commonly found in meandering channels flowing over different materials. Our channels display great similarities with real rivers in spite of being much smaller. Higher temperature differences between water and ice create deeper and less sinuous channels with bends that preferentially point downstream and are not as rounded.
Nathan J. Lyons, Pedro Val, James S. Albert, Jane K. Willenbring, and Nicole M. Gasparini
Earth Surf. Dynam., 8, 893–912, https://doi.org/10.5194/esurf-8-893-2020, https://doi.org/10.5194/esurf-8-893-2020, 2020
Short summary
Short summary
Organisms evolve in ever-changing environments under complex process interactions. We applied a new software modelling tool to assess how changes in river course impact the evolution of riverine species. Models illustrate the climatically and tectonically forced landscape changes that can drive riverine biodiversity, especially where topographic relief is low. This research demonstrates that river course changes can contribute to the high riverine biodiversity found in real-world lowland basins.
Andy R. Emery, David M. Hodgson, Natasha L. M. Barlow, Jonathan L. Carrivick, Carol J. Cotterill, Janet C. Richardson, Ruza F. Ivanovic, and Claire L. Mellett
Earth Surf. Dynam., 8, 869–891, https://doi.org/10.5194/esurf-8-869-2020, https://doi.org/10.5194/esurf-8-869-2020, 2020
Short summary
Short summary
During the last ice age, sea level was lower, and the North Sea was land. The margin of a large ice sheet was at Dogger Bank in the North Sea. This ice sheet formed large rivers. After the ice sheet retreated down from the high point of Dogger Bank, the rivers had no water supply and dried out. Increased precipitation during the 15 000 years of land exposure at Dogger Bank formed a new drainage network. This study shows how glaciation and climate changes can control how drainage networks evolve.
Matteo Saletti and Marwan A. Hassan
Earth Surf. Dynam., 8, 855–868, https://doi.org/10.5194/esurf-8-855-2020, https://doi.org/10.5194/esurf-8-855-2020, 2020
Short summary
Short summary
Mountain streams often display a stepped morphology but the conditions under which these steps form, remain stable, and eventually collapse are still not entirely clear. We run flume experiments to study how (a) the amount of sediment input and (b) channel width variations affect step dynamics in steep channels. Steps form preferentially in areas of flow convergence (channel narrowing) and their frequency is higher when sediment supply is larger than zero but smaller than the transport capacity.
Benedetta Dini, Georgina L. Bennett, Aldina M. A. Franco, Michael R. Z. Whitworth, Kristen L. Cook, Andreas Senn, and John M. Reynolds
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2020-78, https://doi.org/10.5194/esurf-2020-78, 2020
Revised manuscript accepted for ESurf
Short summary
Short summary
We use Long Range smart sensors connected to a network based on the Internet of Things to explore the possibility of detecting hazardous boulder movements in real time. Prior to the 2019 monsoon season we inserted the devices in 23 boulders spread over debris flow channels and a landslide in northeastern Nepal. The data obtained in this pilot study shows the potential of this technology to be used in remote, hazard prone areas in future early warning systems.
Angel Monsalve, Catalina Segura, Nicole Hucke, and Scott Katz
Earth Surf. Dynam., 8, 825–839, https://doi.org/10.5194/esurf-8-825-2020, https://doi.org/10.5194/esurf-8-825-2020, 2020
Short summary
Short summary
Part of the inaccuracies when estimating bed load transport in
gravel-bed rivers is because we are not considering the wide distributions of shear stress in these systems. We modified a subsurface-based bed load transport equation to include these distributions. By doing so, our approach accurately predicts bed load transport rates when the pavement layer is still present, while the original one predicts zero transport. For high flows, our method had similar performance to the original equation.
Marco Redolfi, Matilde Welber, Mattia Carlin, Marco Tubino, and Walter Bertoldi
Earth Surf. Dynam., 8, 789–808, https://doi.org/10.5194/esurf-8-789-2020, https://doi.org/10.5194/esurf-8-789-2020, 2020
Short summary
Short summary
Alternate bars are large sediment deposits that tend to naturally form in rivers when the channel width is sufficiently large. Our laboratory experiments on a scaled model reveal that equilibrium properties of self-formed alternate bars highly depend on the water discharge with respect to the relevant theoretical thresholds. This work provides fundamental information for predicting the response of rivers to natural or human alterations of the flow regime.
Marius L. Huber, Maarten Lupker, Sean F. Gallen, Marcus Christl, and Ananta P. Gajurel
Earth Surf. Dynam., 8, 769–787, https://doi.org/10.5194/esurf-8-769-2020, https://doi.org/10.5194/esurf-8-769-2020, 2020
Short summary
Short summary
Large boulders found in two Himalayan valleys show signs of long fluvial transport (>10 km). Paleo-discharges required to mobilize these boulders exceed typical monsoon discharges. Exposure dating shows that a cluster of these boulders was emplaced ca. 5 kyr ago. This period is coeval with a weakening of the Indian monsoon and glacier retreat in the area. We, therefore, suggest that glacier lake outburst floods are likely mechanisms that can explain these exceptional transport processes.
Ingo Hartmeyer, Markus Keuschnig, Robert Delleske, Michael Krautblatter, Andreas Lang, Lothar Schrott, Günther Prasicek, and Jan-Christoph Otto
Earth Surf. Dynam., 8, 753–768, https://doi.org/10.5194/esurf-8-753-2020, https://doi.org/10.5194/esurf-8-753-2020, 2020
Short summary
Short summary
Rockfall size and frequency in two deglaciating cirques in the Central Alps, Austria, is analysed based on 6-year rockwall monitoring with terrestrial lidar (2011–2017). The erosion rates derived from this dataset are very high due to a frequent occurrence of large rockfalls in freshly deglaciated areas. The results obtained are important for rockfall hazard assessments, as, in rockwalls affected by glacier retreat, historical rockfall patterns are not good predictors of future events.
Fritz Schlunegger, Romain Delunel, and Philippos Garefalakis
Earth Surf. Dynam., 8, 717–728, https://doi.org/10.5194/esurf-8-717-2020, https://doi.org/10.5194/esurf-8-717-2020, 2020
Short summary
Short summary
We calculated the probability of sediment transport in coarse-grained mountainous streams in the Alps and the Andes where data on water discharge is available. We find a positive correlation between the predicted probability of sediment transport and the grain size sorting of the bed material. We suggest that besides sediment discharge, the bedload sorting exerts a significant influence on the mobility of sediment and thus on the stability of gravel bars in mountainous streams.
Daniel Peifer, Cristina Persano, Martin D. Hurst, Paul Bishop, and Derek Fabel
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2020-68, https://doi.org/10.5194/esurf-2020-68, 2020
Revised manuscript accepted for ESurf
Short summary
Short summary
Plate tectonics drives the formation of mountain ranges. Yet when tectonic forces cease, mountain ranges persist for hundreds of millions of years, forming major Earth surface features. Our contribution presents denudation rate estimates from one such ancient mountain range that show that denudation is strongly tied to rock type. Resistant rocks are denuding more slowly despite having much steeper topography and contrasts in rock type cause increasing relief in the absence of active tectonics.
Jagriti Mishra and Takuya Inoue
Earth Surf. Dynam., 8, 695–716, https://doi.org/10.5194/esurf-8-695-2020, https://doi.org/10.5194/esurf-8-695-2020, 2020
Short summary
Short summary
This study provides an extensive review of field- and laboratory-scale studies and mathematical models used for predicting the sediment processes in bedrock river channels. We tested the model capabilities by reproducing and comparing the results with laboratory-scale experiments. This study provides an insight into the strengths and shortcomings of various available models.
Tyler H. Doane, Jon D. Pelletier, and Mary H. Nichols
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2020-63, https://doi.org/10.5194/esurf-2020-63, 2020
Revised manuscript under review for ESurf
Short summary
Short summary
This paper explores how the geometry of rill networks contributes to observed nonlinear relationships between soil loss and hillslope length. This work develops probability functions of geometrical quantities of the networks and then extends the theory to hydraulic variables by relying on well-known relationships. Theory is complemented by numerical modeling on numerical and natural surfaces. Results suggest that the particular arrangement of rill networks contributes to nonlinear relationships.
Thomas O. Hoffmann, Yannik Baulig, Helmut Fischer, and Jan Blöthe
Earth Surf. Dynam., 8, 661–678, https://doi.org/10.5194/esurf-8-661-2020, https://doi.org/10.5194/esurf-8-661-2020, 2020
Short summary
Short summary
We study the dynamics of suspended matter and associated nutrients in large rivers in Germany. The relationship between suspended sediment concentration and discharge is diagnostic of the processes and sources of suspended matter. We show that suspended matter originates from organic growth within the river at low flow and from soil erosion at high flow. In a warmer climate with increased frequency of droughts, low flow states are likely to be more prolonged, affecting the behavior of rivers.
Giulia Battista, Peter Molnar, and Paolo Burlando
Earth Surf. Dynam., 8, 619–635, https://doi.org/10.5194/esurf-8-619-2020, https://doi.org/10.5194/esurf-8-619-2020, 2020
Short summary
Short summary
Suspended sediment load in rivers is highly uncertain because of spatial and temporal variability. By means of a hydrology and suspended sediment transport model, we investigated the effect of spatial variability in precipitation and surface erodibility on catchment sediment fluxes in a mesoscale river basin.
We found that sediment load depends on the spatial variability in erosion drivers, as this affects erosion rates and the location and connectivity to the channel of the erosion areas.
Clare Wilkinson, Daniel C. H. Hikuroa, Angus H. Macfarlane, and Matthew W. Hughes
Earth Surf. Dynam., 8, 595–618, https://doi.org/10.5194/esurf-8-595-2020, https://doi.org/10.5194/esurf-8-595-2020, 2020
Short summary
Short summary
This review highlights potential contributions that Indigenous knowledge can make to geomorphic research. We evaluate several frameworks and models for including Indigenous knowledge in geomorphic research and discuss how they can be adapted for use with Indigenous communities across the world. We propose that weaving Indigenous knowledge with geomorphic science has the potential to create new solutions and understandings that neither body of knowledge could produce in isolation.
Oliver R. Francis, Tristram C. Hales, Daniel E. J. Hobley, Xuanmei Fan, Alexander J. Horton, Gianvito Scaringi, and Runqiu Huang
Earth Surf. Dynam., 8, 579–593, https://doi.org/10.5194/esurf-8-579-2020, https://doi.org/10.5194/esurf-8-579-2020, 2020
Short summary
Short summary
Large earthquakes can build mountains by uplifting bedrock, but they also erode them by triggering large volumes of coseismic landsliding. Using a zero-dimensional numerical model, we identify that the storage of sediment produced by earthquakes can affect surface uplift and exhumation rates across the mountain range. However, the storage also reduces the time span at which the impact of the earthquake can be measured, preventing the recognition of single earthquakes in many long-term records.
Alexander R. Groos, Janik Niederhauser, Luise Wraase, Falk Hänsel, Thomas Nauss, Naki Akçar, and Heinz Veit
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2020-53, https://doi.org/10.5194/esurf-2020-53, 2020
Revised manuscript accepted for ESurf
Short summary
Short summary
The magnitude of cooling in tropical high mountains during the last glacial period is controversially debated. Here, we report on enigmatic large sorted stone polygons and stripes from the ~ 4000 m high Sanetti Plateau in Ethiopia. Geomorphological features of that size are associated with seasonal or permanent frost and have yet only been described for few locations in the mid and high latitudes. The presence of these features implies a strong tropical cooling at high elevations in the past.
Maxime Mouyen, Philippe Steer, Kuo-Jen Chang, Nicolas Le Moigne, Cheinway Hwang, Wen-Chi Hsieh, Louise Jeandet, Laurent Longuevergne, Ching-Chung Cheng, Jean-Paul Boy, and Frédéric Masson
Earth Surf. Dynam., 8, 555–577, https://doi.org/10.5194/esurf-8-555-2020, https://doi.org/10.5194/esurf-8-555-2020, 2020
Short summary
Short summary
Land erosion creates sediment particles that are redistributed from mountains to oceans through climatic, tectonic and human activities, but measuring the mass of redistributed sediment is difficult. Here we describe a new method combining gravity and photogrammetry measurements, which make it possible to weigh the mass of sediment redistributed by a landslide and a river in Taiwan from 2015 to 2017. Trying this method in other regions will help us to better understand the erosion process.
Jon D. Pelletier
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2020-44, https://doi.org/10.5194/esurf-2020-44, 2020
Revised manuscript accepted for ESurf
Short summary
Short summary
The sizes and shapes of alluvial channels vary in a systematic way with the water flow they must convey during large floods. It is demonstrated that the depth of alluvial channels is controlled by the resistance of channel bank material to slumping which in turn is controlled by clay content. Deeper channels have faster water flow in a manner controlled by a critical hydraulic state to which channels tend to evolve. Channel width and slope can be further quantified using conservation principles.
Benjamin Campforts, Veerle Vanacker, Frédéric Herman, Matthias Vanmaercke, Wolfgang Schwanghart, Gustavo E. Tenorio, Patrick Willems, and Gerard Govers
Earth Surf. Dynam., 8, 447–470, https://doi.org/10.5194/esurf-8-447-2020, https://doi.org/10.5194/esurf-8-447-2020, 2020
Short summary
Short summary
In this contribution, we explore the spatial determinants of bedrock river incision in the tropical Andes. The model results illustrate the problem of confounding between climatic and lithological variables, such as rock strength. Incorporating rock strength explicitly into river incision models strongly improves the explanatory power of all tested models and enables us to clarify the role of rainfall variability in controlling river incision rates.
Timothée Jautzy, Pierre-Alexis Herrault, Valentin Chardon, Laurent Schmitt, and Gilles Rixhon
Earth Surf. Dynam., 8, 471–484, https://doi.org/10.5194/esurf-8-471-2020, https://doi.org/10.5194/esurf-8-471-2020, 2020
Short summary
Short summary
Remote sensing is widely used to document historical fluvial dynamics. However, the geometric error affecting the inferred planform changes can result in undesired geomorphological misinterpretation. Here, we present a novel approach to quantify the uncertainty associated with eroded/deposited surfaces. Concluding that this uncertainty depends on the magnitude and the shape of the surficial changes, restoration programs targeting lateral mobility of streams can benefit from our approach.
Jan de Leeuw, Michael P. Lamb, Gary Parker, Andrew J. Moodie, Daniel Haught, Jeremy G. Venditti, and Jeffrey A. Nittrouer
Earth Surf. Dynam., 8, 485–504, https://doi.org/10.5194/esurf-8-485-2020, https://doi.org/10.5194/esurf-8-485-2020, 2020
Arya P. Iwantoro, Maarten van der Vegt, and Maarten G. Kleinhans
Earth Surf. Dynam., 8, 413–429, https://doi.org/10.5194/esurf-8-413-2020, https://doi.org/10.5194/esurf-8-413-2020, 2020
Short summary
Short summary
We investigated the effect of tides on the morphodynamic evolution of bifurcations in tide-influenced deltas. Using results from a numerical morphodynamic model (Delft3D), we found that tides cause less asymmetric bifurcations and thereby keep both downstream channels open. Our results explain why avulsion rarely occurs in tide-influenced deltas, whereas it occurs more often in river-dominated deltas.
Katherine R. Barnhart, Eric W. H. Hutton, Gregory E. Tucker, Nicole M. Gasparini, Erkan Istanbulluoglu, Daniel E. J. Hobley, Nathan J. Lyons, Margaux Mouchene, Sai Siddhartha Nudurupati, Jordan M. Adams, and Christina Bandaragoda
Earth Surf. Dynam., 8, 379–397, https://doi.org/10.5194/esurf-8-379-2020, https://doi.org/10.5194/esurf-8-379-2020, 2020
Short summary
Short summary
Landlab is a Python package to support the creation of numerical models in Earth surface dynamics. Since the release of the 1.0 version in 2017, Landlab has grown and evolved: it contains 31 new process components, a refactored model grid, and additional utilities. This contribution describes the new elements of Landlab, discusses why certain backward-compatiblity-breaking changes were made, and reflects on the process of community open-source software development.
Velio Coviello, Lucia Capra, Gianluca Norini, Norma Dávila, Dolores Ferrés, Víctor Hugo Márquez-Ramirez, and Eduard Pico
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2020-36, https://doi.org/10.5194/esurf-2020-36, 2020
Revised manuscript under review for ESurf
Short summary
Short summary
The Puebla-Morelos earthquake (19 September 2017) was the most damaging event in central Mexico since 1985. The seismic shaking produced hundreds of shallow landslides on the slopes of Popocatépetl volcano. The larger landslides transformed into large flows of sediment and water that travelled for kilometres. We describe this dramatic mass-wasting cascade and its predisposing factors, which have important implications for both the evolution of the volcanic edifices and for hazard assessment.
Filipe Galiforni-Silva, Kathelijne M. Wijnberg, and Suzanne J. M. H. Hulscher
Earth Surf. Dynam., 8, 335–350, https://doi.org/10.5194/esurf-8-335-2020, https://doi.org/10.5194/esurf-8-335-2020, 2020
Short summary
Short summary
Storm surges are often related to coastal dune erosion. We found that, for specific coastal settings, storm surges may enhance dune growth rather than only undermine it. Using a computer model and elevation data, we noticed that storm surges could deposit sand onto the sand flat from sand previously deposited closer to the sea. As they move to areas farther from the sea, it becomes easier for the wind to move this sand to the dunes. These findings may help coastal managers and policymakers.
Giovanni Coco, Daniel Calvete, Francesca Ribas, Huib E. de Swart, and Albert Falqués
Earth Surf. Dynam., 8, 323–334, https://doi.org/10.5194/esurf-8-323-2020, https://doi.org/10.5194/esurf-8-323-2020, 2020
Short summary
Short summary
Sandbars are ubiquitous features of the surf zone. They are rarely straight and often develop crescentic shapes. Double sandbar systems are also common, but the possibility of feedback between inner and outer sandbars has not been fully explored. The presence of double sandbar systems affects wave transformation and can result in a variety of spatial patterns. Here we model the conditions, waves and initial bathymetry that lead to the emergence of different patterns.
Léo Szewczyk, Jean-Louis Grimaud, and Isabelle Cojan
Earth Surf. Dynam., 8, 275–288, https://doi.org/10.5194/esurf-8-275-2020, https://doi.org/10.5194/esurf-8-275-2020, 2020
Dana Ariel Lapides and Michael Manga
Earth Surf. Dynam., 8, 195–210, https://doi.org/10.5194/esurf-8-195-2020, https://doi.org/10.5194/esurf-8-195-2020, 2020
Short summary
Short summary
Spring-fed streams throughout volcanic regions of the western United States are wider than runoff-fed streams with similar flow levels. We used high-resolution satellite imagery in combination with flow and climate data to examine the relationship between wood loading and stream width in 38 spring-fed and 20 runoff-fed streams. This study identifies distinct wood dynamics in spring-fed and runoff-fed streams and a strong correlation between stream width and wood length in spring-fed streams.
Alison R. Duvall, Sarah A. Harbert, Phaedra Upton, Gregory E. Tucker, Rebecca M. Flowers, and Camille Collett
Earth Surf. Dynam., 8, 177–194, https://doi.org/10.5194/esurf-8-177-2020, https://doi.org/10.5194/esurf-8-177-2020, 2020
Short summary
Short summary
In this study, we examine river patterns and the evolution of the landscape within the Marlborough Fault System, South Island, New Zealand, where the Australian and Pacific tectonic plates collide. We find that faulting, uplift, river capture and the long-lived nature of the drainage network all dictate river patterns at this site. Based on these results and a wealth of previous geologic studies, we propose two broad stages of landscape evolution over the last 25 million years of orogenesis.
Kate C. P. Leary and Daniel Buscombe
Earth Surf. Dynam., 8, 161–172, https://doi.org/10.5194/esurf-8-161-2020, https://doi.org/10.5194/esurf-8-161-2020, 2020
Jens Martin Turowski
Earth Surf. Dynam., 8, 103–122, https://doi.org/10.5194/esurf-8-103-2020, https://doi.org/10.5194/esurf-8-103-2020, 2020
Short summary
Short summary
Bedrock channels are the conveyor belts of mountain regions, evacuating sediment produced by erosion. Bedrock channel morphology and dynamics affect sediment transport rates and local erosion and set the base level for hillslope response. Here, using mechanistic considerations of the processes of fluvial erosion and transport, and considerations of the mass balance of sediment and bedrock, I discuss the principles governing steady-state channel morphology and the dynamic paths to achieve it.
Jon Schwenk, Anastasia Piliouras, and Joel C. Rowland
Earth Surf. Dynam., 8, 87–102, https://doi.org/10.5194/esurf-8-87-2020, https://doi.org/10.5194/esurf-8-87-2020, 2020
Short summary
Short summary
Standing on a riverbank, it is usually obvious which direction the river flows. However, when observing a river from space, we cannot see the flowing water and must use other clues to determine flow directions. For complicated river channel networks like those of deltas and braided rivers, determining the flow direction of each channel within the network is not trivial. We present and demonstrate a method to automatically determine flow directions for each link in aerially viewed river channels.
William H. Booker and Brett C. Eaton
Earth Surf. Dynam., 8, 51–67, https://doi.org/10.5194/esurf-8-51-2020, https://doi.org/10.5194/esurf-8-51-2020, 2020
Short summary
Short summary
Using experiments, we found that the form and behaviour of a river depends on its ability to move the larger of its constituents. The manner in which all particles move depends upon the rate and calibre of the supplied material, as well as the rate of supplied water. This goes against the prevailing theory of a single important and representative grain size under depositing conditions, and these results may alter how we interpret river deposits to explain their formation.
Eli D. Lazarus, Kirstin L. Davenport, and Ana Matias
Earth Surf. Dynam., 8, 37–50, https://doi.org/10.5194/esurf-8-37-2020, https://doi.org/10.5194/esurf-8-37-2020, 2020
Short summary
Short summary
Scaling relationships mathematically describe how two geometric traits of a geomorphic feature change relative to each other in a systematic way (how length changes with area in drainage basins and sedimentary deposits, for example). Here we demonstrate the emergence of scaling relationships in coastal overwash morphology. These findings may help to predict overwash deposition and offer insight into how spatial patterns in overwash morphology may self-organise.
Martin Jakobsson, Matt O'Regan, Carl-Magnus Mörth, Christian Stranne, Elizabeth Weidner, Jim Hansson, Richard Gyllencreutz, Christoph Humborg, Tina Elfwing, Alf Norkko, Joanna Norkko, Björn Nilsson, and Arne Sjöström
Earth Surf. Dynam., 8, 1–15, https://doi.org/10.5194/esurf-8-1-2020, https://doi.org/10.5194/esurf-8-1-2020, 2020
Short summary
Short summary
We studied coastal sea floor terraces in parts of the Baltic Sea using various types of sonar data, sediment cores, and video. Terraces (~1 m high, > 100 m long) are widespread in depths < 15 m and are formed in glacial clay. Our study supports an origin from groundwater flow through silty layers, undermining overlying layers when discharged at the sea floor. Submarine groundwater discharge like this may be a significant source of freshwater to the Baltic Sea that needs to be studied further.
Timothée Sassolas-Serrayet, Rodolphe Cattin, Matthieu Ferry, Vincent Godard, and Martine Simoes
Earth Surf. Dynam., 7, 1041–1057, https://doi.org/10.5194/esurf-7-1041-2019, https://doi.org/10.5194/esurf-7-1041-2019, 2019
Short summary
Short summary
The topographic steady-state assumption is often used in geomorphology. However, recent studies suggest that a drainage network is more mobile than previously thought. Using landscape evolution models, we show that those migrations have a significant impact on basin-wide denudation rates even if an overall topographic steady state is achieved at large scale. Our approach provides new tools to derive minimal uncertainties in basin-scale denudation rates due to this topographic disequilibrium.
Michele Delchiaro, Marta Della Seta, Salvatore Martino, Maryam Dehbozorgi, and Reza Nozaem
Earth Surf. Dynam., 7, 929–947, https://doi.org/10.5194/esurf-7-929-2019, https://doi.org/10.5194/esurf-7-929-2019, 2019
Short summary
Short summary
This study provides insights into the causes and effects of the largest landslide and related damming that occurred on the emerged Earth surface. Understanding the hazard conditions is important for refining risk mitigation strategies for extreme landslide scenarios. We mapped and dated lacustrine and fluvial terrace sediments constraining the evolutionary model of the valley, thus providing the basis for future studies on the possible seismic trigger for such an extreme case study.
Roberto Fernández, Gary Parker, and Colin P. Stark
Earth Surf. Dynam., 7, 949–968, https://doi.org/10.5194/esurf-7-949-2019, https://doi.org/10.5194/esurf-7-949-2019, 2019
Short summary
Short summary
This paper describes the case of a meandering bedrock river with loose sediment on the bed. In such rivers, the sediment hits and erodes the bed as it moves with the flow. We did experiments in a laboratory flume to identify the areas where the sediment moves and those where it deposits. We discovered that the size and location of those areas change with the amount of sediment in the channel and its curvature. The fluctuations of sediment cover over the bed drive the erosion potential.
Cited articles
Allen, S. K., Gruber, S., and Owens, I. F.: Exploring steep bedrock
permafrost and its relationship with recent slope failures in the Southern
Alps of New Zealand, Permafrost Periglac., 20, 345–356,
https://doi.org/10.1002/ppp.658, 2009.
Berthling, I. and Etzelmüller, B.: The concept of cryo-conditioning in
landscape evolution, Quaternary Res., 75, 378–384, 2011.
Blikra, L. H. and Christiansen, H. H.: A field-based model of
permafrost-controlled rockslide deformation in northern Norway,
Geomorphology, 208, 34–49, https://doi.org/10.1016/j.geomorph.2013.11.014, 2014.
Boeckli, L., Brenning, A., Gruber, S., and Noetzli, J.: A statistical approach to modelling permafrost distribution in the European Alps or similar mountain ranges, The Cryosphere, 6, 125–140, https://doi.org/10.5194/tc-6-125-2012, 2012a.
Boeckli, L., Brenning, A., Gruber, S., and Noetzli, J.: Permafrost distribution in the European Alps: calculation and evaluation of an index map and summary statistics, The Cryosphere, 6, 807–820, https://doi.org/10.5194/tc-6-807-2012, 2012b.
Bohme, M., Oppikofer, T., Longva, O., Jaboyedoff, M., Hermanns, R. L., and
Derron, M.-H.: Analyses of past and present rock slope instabilities in a
fjord valley: Implications for hazard estimations, Geomorphology, 248,
464–474, 2015.
Borge, A. F., Westermann, S., Solheim, I., and Etzelmüller, B.: Strong degradation of palsas and peat plateaus in northern Norway during the last 60 years, The Cryosphere, 11, 1–16, https://doi.org/10.5194/tc-11-1-2017, 2017.
Bowling, S. R., Khasawneh, M. T., Kaewkuekool, S., and Cho, B. R.: A logistic approximation to the cumulative normal distribution, J. Ind. Engineering Manage., 2, 114–127, https://doi.org/10.3926/jiem.2009.v2n1.p114-127, 2009.
Brown, J., Ferrians, O. J., Heginbottom, J. A., Melnikov, E.S.: International
Permafrost Association Circum-Arctic Map of Permafrost and Ground Ice
Conditions, Map CP-45. US Geological Survey, available at: https://pubs.er.usgs.gov/publication/cp45 (last access: 25 October 2019), 1997.
Bunkholt, H., Nordahl, B., Hermanns, R. L., Oppikofer, T., Fischer, L.,
Blikra, L. H., Anda, E., Dahle, H., and Sætre, S. Database of unstable
rock slopes of Norway, in: Landslide science and practice, edited by: Margottini, C., Canuti, P., and Sassa, K., 423–428, Springer, Berlin, Heidelberg, Germany, 2013.
Christiansen, H. H., Etzelmüller, B., Isaksen, K., Juliussen, H.,
Farbrot, H., Humlum, O., Johansson, M., Ingeman-Nielsen, T., Kristensen, L.,
Hjort, J., Holmlund, P., Sannel, A. B. K., Sigsgaard, C., Åkerman, J.,
Foged, N., Blirka, L. H., Pernosky, M. A., and Ødegård, R. S.: The
thermal state of permafrost in the nordic area during the international
polar year 2007–2009, Permafrost Periglac., 21, 156–181, https://doi.org/10.1002/ppp.687, 2010.
Deline, P., Gruber, S., Delaloye, R., Fischer, L., Geertsema, M., Giardino,
M., Hasler, A., Kirkbride, M., Krautblatter, M., Magnin, F., McColl, S.,
Ravanel, L., and Schoeneich. P.: Ice Loss and Slope Stability in
High-Mountain Regions, Snow and Ice-Related Hazards, Risks and Disasters, 521–561,
https://doi.org/10.1016/B978-0-12-394849-6.00015-9, 2015.
Department of Geosciences, University of Oslo: Permafrost distribution in steep slopes in Norway, Data set, Norstore, https://doi.org/10.11582/2019.00026, 2019.
Draebing, D., Krautblatter, M., and T. Hoffmann.: Thermo-cryogenic controls
of fracture kinematics in permafrost rockwalls, Geophys. Res. Lett.,
44, 3535–3544, https://doi.org/10.1002/2016GL072050, 2017.
Egholm, D. L., Andersen, J. L., Knudsen, M. F., Jansen, J. D., and Nielsen, S. B.: The periglacial engine of mountain erosion – Part 2: Modelling large-scale landscape evolution, Earth Surf. Dynam., 3, 463–482, https://doi.org/10.5194/esurf-3-463-2015, 2015.
Etzelmüller, B., Berthling, I., and Sollid, J. L.: Aspects and concepts on the
geomorphological significance of Holocene permafrost in southern Norway,
Geomorphology, 52, 87–104, https://doi.org/10.1016/s0169-555x(02)00250-7, 2003a.
Etzelmuller, B., Romstad, B., and Fjellanger, J.: Automatic regional
classification of topography in Norway, Norw. J. Geol. – Norsk
Geol. Tidsskr., 87, 167–180, 2007.
Farbrot, H., Hipp, T. F., Etzelmüller, B., Isaksen, K., Ødegård,
R. S., Schuler, T. V., and Humlum, O.: Air and Ground Temperature Variations
Observed along Elevation and Continentality Gradients in Southern Norway, Permafrost Periglac., 22, 343–360, https://doi.org/10.1002/ppp.733, 2011.
Farbrot, H., Isaksen, K., Etzelmüller, B., and Gisnås, K.: Ground
Thermal Regime and Permafrost Distribution under a Changing Climate in
Northern Norway, Permafrost Periglac., 24, 20–38, https://doi.org/10.1002/ppp.1763, 2013.
Fischer, L., Kääb, A., Huggel, C., and Noetzli, J.: Geology, glacier retreat and permafrost degradation as controlling factors of slope instabilities in a high-mountain rock wall: the Monte Rosa east face, Nat. Hazards Earth Syst. Sci., 6, 761–772, https://doi.org/10.5194/nhess-6-761-2006, 2006.
Fischer, L., Amann, F., Moore, J. R., and Huggel, C.: Assessment of
periglacial slope stability for the 1988 Tschierva rock avalanche (Piz
Morteratsch, Switzerland), Eng. Geol., 116, 32–43,
https://doi.org/10.1016/j.enggeo.2010.07.005, 2010.
Frauenfelder, R., Isaksen, K., Lato, M. J., and Noetzli, J.: Ground thermal and geomechanical conditions in a permafrost-affected high-latitude rock avalanche site (Polvartinden, northern Norway), The Cryosphere, 12, 1531–1550, https://doi.org/10.5194/tc-12-1531-2018, 2018.
Gareth, J. Witten, D., Hastie, T., and Tibshirani, R.: An Introduction to
Statistical Learning: With Applications in R, Springer Publishing Company,
Incorporated, New York, Heidelberg, Dordrecht, London, 426 pp., 2014.
Gisnås, K., Etzelmüller, B., Schuler, T. V., and Westermann, S.:
CryoGRID 1.0: Permafrost Distribution in Norway estimated by a Spatial
Numerical Model, Permafrost Periglac., 24, 2–19, https://doi.org/10.1002/ppp.1765, 2013.
Gisnås, K., Westermann, S., Schuler, T. V., Melvold, K., and Etzelmüller, B.: Small-scale variation of snow in a regional permafrost model, The Cryosphere, 10, 1201–1215, https://doi.org/10.5194/tc-10-1201-2016, 2016.
Gisnås, K., Etzelmüller, B., Lussana, C., Hjort, J., Sannel, A. B.
K., Isaksen, K., Westermann, S., Kuhry, P., Christiansen, H. H., Frampton,
A., and Åkerman, J.: Permafrost Map for Norway, Sweden and Finland,
Permafrost Periglac., 28, 359–378, https://doi.org/10.1002/ppp.1922,
2017.
Gruber, S. and Haeberli, W.: Mountain
Permafrost, Permafrost soils, edited by: Margesin, R., Springer, Berlin, Heidelberg, Germany, 33–44, https://doi.org/10.1007/978-3-540-69371-0, 2009.
Gruber, S., Hoelzle, M., and Haeberli, W.: Permafrost thaw and
destabilization of Alpine rock walls in the hot summer of 2003, Geophys. Res. Lett.,
31, L13504, https://doi.org/10.1029/2004GL020051, 2004a.
Gruber, S., Hoelzle, M., and Haeberli, W.: Rock-wall temperatures in the
Alps: modelling their topographic distribution and regional differences,
Permafrost Periglac., 15, 299–307, https://doi.org/10.1002/ppp.501,
2004b.
Haberkorn, A., Phillips, M., Kenner, R., Rhyner, H., Bavay, M., Galos, S. P.,
and Hoelzle, M.: Thermal regime of rock and its relation to snow cover in
steep alpine rock walls: Gemsstock, Central Swiss Alps, Geogr. Ann. A, 97, 579–597, https://doi.org/10.1111/geoa.12101, 2015.
Haberkorn, A., Wever, N., Hoelzle, M., Phillips, M., Kenner, R., Bavay, M., and Lehning, M.: Distributed snow and rock temperature modelling in steep rock walls using Alpine3D, The Cryosphere, 11, 585–607, https://doi.org/10.5194/tc-11-585-2017, 2017.
Haeberli, W.: Die Basis-Temperatur der winter-lichen Schneedecke als
moglicher Indikator fur die Verbreitung von Permafrost in den Alpen,
Zeitschrift fur Gletscherkunde und Glazialgeologie, 9, 221–227, 1973.
Haeberli, W., Huggel, C., Kääb, A., Zgraggen-Oswald, S., Polkvoj,
A., Galushkin, I., Zotikov, I., and Osokin, N.: The Kolka-Karmadon rock/ice
slide of 20 September 2002: an extraordinary event of historical dimensions
in North Ossetia, Russian Caucasus, J. Glaciol., 50),
533–546, https://doi.org/10.3189/172756504781829710, 2004.
Hales, T. C. and Roering, J. J.: Climatic controls on frost cracking and
implications for the evolution of bedrock landscapes, J. Geophys.
Res.-Earth, 112, F02033, https://doi.org/10.1029/2006JF000616, 2007.
Hales, T. C. and Roering, J. J.: A frost “buzzsaw” mechanism for erosion of the eastern Southern Alps, New Zealand, Geomorphology, 107, 241–253, https://doi.org/10.1016/j.geomorph.2008.12.012, 2009.
Hallet, B., J. Walder, and Stubbs, C. W.: Weathering by segregation ice
growth in microcracks at sustained sub-zero temperatures: Verification from
an experimental study using acoustic emissions, Permafrost Periglac., 2, 283–300, 1991.
Hanson, S. and Hoelzle, M.: The thermal regime of the active layer at the
Murtèl rock glacier based on data from 2002, Permafrost Periglac., 15, 273–282, https://doi.org/10.1002/ppp.499, 2004.
Harris, C., Haeberli, W., Mühll, D. V., and King, L.: Permafrost
monitoring in the high mountains of Europe: the PACE Project in its global
context, Permafrost Periglac., 12, 3–11,
https://doi.org/10.1002/ppp.377, 2001.
Hasler, A., Gruber, S., Font, M., and Dubois, A.: Advective Heat Transport in
Frozen Rock Clefts: Conceptual Model, Laboratory Experiments and Numerical
Simulation, Permafrost Periglac., 22, 378–389,
https://doi.org/10.1002/ppp.737, 2011a.
Hasler, A., Gruber, S., and Haeberli, W.: Temperature variability and offset in steep alpine rock and ice faces, The Cryosphere, 5, 977–988, https://doi.org/10.5194/tc-5-977-2011, 2011b.
Hasler, A., Geertsema, M., Foord, V., Gruber, S., and Noetzli, J.: The influence of surface characteristics, topography and continentality on mountain permafrost in British Columbia, The Cryosphere, 9, 1025–1038, https://doi.org/10.5194/tc-9-1025-2015, 2015.
Heggem, E. S., Juliussen, H., and Etzelmüller, B.: Mountain permafrost in
Central-Eastern Norway, Norsk Geogr. Tidsskr. – Norw. J.
Geogr., 59, 94–108, https://doi.org/10.1080/00291950510038377, 2005.
Hermanns, R., Hansen, L., Sletten, K., Böhme, M., Bunkholt, H., Dehls,
J., Eilertsen, R., Fischer, L., L'Heureux, J-.S., Høgaas, F., Nordahl,
B., Oppikofer, T., Rubensdotter, L., Solberg, I.-L., Stalsberg, K., and
Molina, F. X. Y.: Systematic geological mapping for landslide understanding
in the Norwegian context, Landslide and engineered slopes: protecting
society through improved understanding, Taylor & Francis Group, London, UK,
265–271, 2012.
Hermanns, R. L., Dahle, H., Bjerke, P. L., Crosta, G. B., Anda, E., Blikra,
L. H., Saintot, A., Longva, O., and Eiken, T.: Rock slide dams in Møre og
Romsdal county, Norway: Examples for the hazard and potential of rock slide
dams, in: Landslide science and
practice, 6: Risk Assessment, Management and Mitigation, edited by: Margottini, C., Canuti, P., and Sassa, K., Springer-Verlag,
Berlin Heidelberg, Germany, 3–12, https://doi.org/10.1007/978-3-642-31319-6, 2013.
Hermanns, R. L., Oppikofer, T., Roberts, N. J., and Sandøy, G.: Catalogue
of historical displacement waves and landslide-triggered tsunamis in Norway,
Engineering Geology for Society and Territory-Volume 4, Springer International Publishing, Switzerland, 63–66,
ISBN 3319086596, 2014.
Hermanns, R. L, Schleier, M., Bohme, M. Blikra, L. H., Gosse, J., Ivy-Ochs,
S., and Hilger, P.: Rock-avalanche activity in W and S Norway peaks after the
retreat of the Scandinavian Ice Sheet, in: Advancing Culture of Living with Landslides, edited by: Mikoš, M., Vilimek, V., Yin, Y., and Sassa, K., Springer, Cham, Switzerland, 331–338, 2017.
Hilger, P., Hermanns, R.. L., Gosse, J. C., Jacobs, B., Etzelmüller, B., and
Krautblatter, M.: Multiple rock-slope failures from Mannen in Romsdal
Valley, western Norway, revealed from Quaternary geological mapping and 10Be
exposure dating, The Holocene, 28, 1841–1854, https://doi.org/10.1177/0959683618798165, 2018.
Hipp, T., Etzelmüller, B., Farbrot, H., Schuler, T. V., and Westermann, S.: Modelling borehole temperatures in Southern Norway – insights into permafrost dynamics during the 20th and 21st century, The Cryosphere, 6, 553–571, https://doi.org/10.5194/tc-6-553-2012, 2012.
Hipp, T., Etzelmüller, B., and Westermann, S.: Permafrost in Alpine Rock
Faces from Jotunheimen and Hurrungane, Southern Norway, Permafrost Periglac., 25, 1–13, https://doi.org/10.1002/ppp.1799, 2014.
Huggel, C., Zgraggen-Oswald, S., Haeberli, W., Kääb, A., Polkvoj, A., Galushkin, I., and Evans, S. G.: The 2002 rock/ice avalanche at Kolka/Karmadon, Russian Caucasus: assessment of extraordinary avalanche formation and mobility, and application of QuickBird satellite imagery, Nat. Hazards Earth Syst. Sci., 5, 173–187, https://doi.org/10.5194/nhess-5-173-2005, 2005.
Isaksen, K., Hauck, C., Gudevang, E., Ødegård, R. S., and Sollid, J.
L.: Mountain permafrost distribution in Dovrefjell and Jotunheimen, southern
Norway, based on BTS and DC resistivity tomography data, Norsk Geogr.
Tidsskr. – Norw. J. Geogr., 56, 122–136,
https://doi.org/10.1080/002919502760056459, 2002.
Isaksen, K., Farbrot, H., Blikra, L. H. Johansen, B., and Sollid, J. L.:
Five-year ground surface temperature measurements in Finnmark, northern
Norway, Proceedings of the Ninth International Conference on Permafrost,
edited by: Kane, D. L. and Hinkel, K. M., Institute of Northern Engineering,
University of Alaska Fairbanks, Fairbanks, Alaska, USA, 789–794, 2008.
Isaksen, K., Ødegård, R. S., Etzelmüller, B., Hilbich, C., Hauck,
C., Farbrot, H., Eiken, T., Hygen, H. O., and Hipp, T. F.: Degrading Mountain
Permafrost in Southern Norway: Spatial and Temporal Variability of Mean
Ground Temperatures, 1999–2009, Permafrost Periglac.,
22, 361–377, https://doi.org/10.1002/ppp.728, 2011.
Kellerer-Pirklbauer, A.: Potential weathering by freeze-thaw action in
alpine rocks in the European Alps during a nine year monitoring period,
Geomorphology, 296, 113–131, https://doi.org/10.1016/j.geomorph.2017.08.020, 2017.
King, L.: High mountain permafrost in Scandinavia, 4th International
Conference on Permafrost, Proceedings, National Academy Press, Washington,
DC, USA, 612–617, 1983.
King, L.: Zonation and ecology of high mountain permafrost in Scandinavia,
Geogr. Ann. A, 68, 131–139, 1986.
Kleman, J. and Hättestrand, C.: Frozen-bed Fennoscandian and Laurentide
ice sheets during the Last Glacial Maximum, Nature, 402, 63–66, 1999.
Kleman, J., Stroeven, A. P., and Lundqvist, J.: Patterns of Quaternary ice sheet
erosion and deposition in Fennoscandia and a theoretical framework for
explanation, Geomorphology, 97, 73–90, 2008.
Korup, O.: Linking landslides, hillslope erosion, and landscape evolution,
Earth Surf. Proc. Land., 34, 1315–1317,
https://doi.org/10.1002/esp.1830, 2009.
Krautblatter, M., Funk, D., and Günzel, F. K.: Why permafrost rocks
become unstable: a rock–ice-mechanical model in time and space, Earth Surf. Proc. Land.,
38, 876–887, https://doi.org/10.1002/esp.3374, 2013.
Lussana, C., Tveito, O. E., and Uboldi, F.: Three-dimensional spatial
interpolation of 2 m temperature over Norway, Q. J. Roy.
Meteor. Soc., 144, 344–364, https://doi.org/10.1002/qj.3208, 2017.
Magnin, F., Deline, P., Ravanel, L., Noetzli, J., and Pogliotti, P.: Thermal characteristics of permafrost in the steep alpine rock walls of the Aiguille du Midi (Mont Blanc Massif, 3842 m a.s.l), The Cryosphere, 9, 109–121, https://doi.org/10.5194/tc-9-109-2015, 2015a.
Magnin, F., Brenning, A., Bodin, X., Deline, P., and Ravanel, L.:
Modélisation statistique de la distribution du permafrost de paroi?:
application au massif du Mont Blanc, Géomorphologie: relief, processus,
environnement, 21, 145–162,
https://doi.org/10.4000/geomorphologie.10965, 2015b.
Magnin, F., Westermann, S., Pogliotti, P., Ravanel, L., Deline, P., and
Malet, E.: Snow control on active layer thickness in steep alpine rock walls
(Aiguille du Midi, 3842 m a.s.l., Mont Blanc massif), Catena, 149,
648–662, 2017a.
Magnin, F., Josnin, J.-Y., Ravanel, L., Pergaud, J., Pohl, B., and Deline, P.: Modelling rock wall permafrost degradation in the Mont Blanc massif from the LIA to the end of the 21st century, The Cryosphere, 11, 1813–1834, https://doi.org/10.5194/tc-11-1813-2017, 2017b.
Mamot, P., Weber, S., Schröder, T., and Krautblatter, M.: A temperature- and stress-controlled failure criterion for ice-filled permafrost rock joints, The Cryosphere, 12, 3333–3353, https://doi.org/10.5194/tc-12-3333-2018, 2018.
McColl, S. T.: Paraglacial rock-slope stability,- Geomorphology, 153-154, 1–16,
2012.
Myhra, K. S., Westermann, S., and Etzelmüller, B.: Modelled Distribution
and Temporal Evolution of Permafrost in Steep Rock Walls Along a Latitudinal
Transect in Norway by CryoGrid 2D, Permafrost Periglac.,
28, 172–182, https://doi.org/10.1002/ppp.1884, 2017.
Noetzli, J. and Gruber, S.: Transient thermal effects in Alpine permafrost, The Cryosphere, 3, 85–99, https://doi.org/10.5194/tc-3-85-2009, 2009.
Ødegård, R. S., Sollid, J. L., and Liestøl, O.: Ground temperature
measurements in mountain permafrost, Jotunheimen, southern Norway,
Permafrost Periglac., 3, 231–234,
https://doi.org/10.1002/ppp.3430030310, 1992.
Oppikofer, T., Nordahl, B., Bunkholt, H., Nicolaisen, M., Jarna, A.,
Iversen, S., Hermanns, R. L., Böhme, M., and Yugsi Molina, F. X.:
Database and online map service on unstable rock slopes in Norway – From
data perpetuation to public information, Geomorphology, 249, 69–81,
https://doi.org/10.1016/j.geomorph.2015.08.005, 2015.
Ravanel, L., Magnin, F., and Deline, P.: Impacts of the 2003 and 2015 summer
heatwaves on permafrost-affected rock-walls in the Mont Blanc massif,
Sci. Total Environ., 609, 132–143,
https://doi.org/10.1016/j.scitotenv.2017.07.055, 2017.
R Core Team: R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria, 2013.
Romstad, B., Harbitz, C. B., and Domaas, U.: A GIS method for assessment of rock slide tsunami hazard in all Norwegian lakes and reservoirs, Nat. Hazards Earth Syst. Sci., 9, 353–364, https://doi.org/10.5194/nhess-9-353-2009, 2009.
Savi, S., Delunel, R., and Schlunegger, F.: Efficiency of frost-cracking
processes through space and time: An example from the eastern Italian Alps, Geomorphology, 232, 248–260, https://doi.org/10.1016/j.geomorph.2015.01.009, 2015.
Sellier, D.: Le felsenmeer du Mont Gausta (Telemark, Norvège):
environnement, caractères morphologiques et significations
paléogéographiques, Géogr. Phys. Quatern., 49,
185–205, https://doi.org/10.7202/033036ar, 1995.
Sollid, J., Isaksen, K., Eiken, T., and Ødegård, R.: The transition
zone of mountain permafrost on Dovrefjell, southern Norway, in: Proceedings, vol. 2, Eigth International COnference on Permafrost, 21–25 July 2003, Zurich, Switzerland, edited by: Phillips, M., Springmann, S. M., and Arenson, L. U., Swets & Zeitlinger, Lisse, the Netherlands, ISBN 9058095827, 1085–1090, 2003.
Sosio, R., Crosta, G. B., and Hungr, O.: Complete dynamic modeling
calibration for the Thurwieser rock avalanche (Italian Central Alps),
Eng. Geol., 100, 11–26, https://doi.org/10.1016/j.enggeo.2008.02.012, 2008.
Steiger, C., Etzelmüller, B., Westermann, S., and Myhra, K. S.: Modelling
the permafrost distribution in steep rock walls, Norw. J.
Geol., 4, 329–342, https://doi.org/10.17850/njg96-4-04, 2016.
Westermann, S., Schuler, T. V., Gisnås, K., and Etzelmüller, B.: Transient thermal modeling of permafrost conditions in Southern Norway, The Cryosphere, 7, 719–739, https://doi.org/10.5194/tc-7-719-2013, 2013.
Short summary
This study proposes the first permafrost (i.e. ground with temperature permanently < 0 °C) map covering the steep rock slopes of Norway. It was created by using rock temperature data collected at the near surface of 25 rock walls spread across the country between 2010 and 2018. The map shows that permafrost mostly exists above 1300–1400 m a.s.l. in southern Norway and close to sea level in northern Norway. The results have strong potential for the study of rock wall sliding and failure.
This study proposes the first permafrost (i.e. ground with temperature permanently 0 °C) map...