Articles | Volume 7, issue 4
https://doi.org/10.5194/esurf-7-1019-2019
https://doi.org/10.5194/esurf-7-1019-2019
Research article
 | 
30 Oct 2019
Research article |  | 30 Oct 2019

Permafrost distribution in steep rock slopes in Norway: measurements, statistical modelling and implications for geomorphological processes

Florence Magnin, Bernd Etzelmüller, Sebastian Westermann, Ketil Isaksen, Paula Hilger, and Reginald L. Hermanns

Related authors

Water flow timing, quantity, and sources in a fractured high mountain permafrost rock wall
Matan Ben-Asher, Antoine Chabas, Jean-Yves Josnin, Josué Bock, Emmanuel Malet, Amaël Poulain, Yves Perrette, and Florence Magnin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2450,https://doi.org/10.5194/egusphere-2025-2450, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Rockwall permafrost dynamics evidenced by Automated Electrical Resistivity Tomography at Aiguille du Midi (3842 m a.s.l., French Alps)
Feras Abdulsamad, Josué Bock, Florence Magnin, Emmanuel Malet, André Revil, Matan Ben-Asher, Jessy Richard, Pierre-Allain Duvillard, Marios Karaoulis, Thomas Condom, Ludovic Ravanel, and Philip Deline
EGUsphere, https://doi.org/10.5194/egusphere-2025-637,https://doi.org/10.5194/egusphere-2025-637, 2025
Short summary
Estimating surface water availability in high mountain rock slopes using a numerical energy balance model
Matan Ben-Asher, Florence Magnin, Sebastian Westermann, Josué Bock, Emmanuel Malet, Johan Berthet, Ludovic Ravanel, and Philip Deline
Earth Surf. Dynam., 11, 899–915, https://doi.org/10.5194/esurf-11-899-2023,https://doi.org/10.5194/esurf-11-899-2023, 2023
Short summary
Post-Little Ice Age rock wall permafrost evolution in Norway
Justyna Czekirda, Bernd Etzelmüller, Sebastian Westermann, Ketil Isaksen, and Florence Magnin
The Cryosphere, 17, 2725–2754, https://doi.org/10.5194/tc-17-2725-2023,https://doi.org/10.5194/tc-17-2725-2023, 2023
Short summary
Effects of topographic and meteorological parameters on the surface area loss of ice aprons in the Mont Blanc massif (European Alps)
Suvrat Kaushik, Ludovic Ravanel, Florence Magnin, Yajing Yan, Emmanuel Trouve, and Diego Cusicanqui
The Cryosphere, 16, 4251–4271, https://doi.org/10.5194/tc-16-4251-2022,https://doi.org/10.5194/tc-16-4251-2022, 2022
Short summary

Related subject area

Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
AI-based tracking of fast-moving alpine landforms using high-frequency monoscopic time-lapse imagery
Hanne Hendrickx, Melanie Elias, Xabier Blanch, Reynald Delaloye, and Anette Eltner
Earth Surf. Dynam., 13, 705–721, https://doi.org/10.5194/esurf-13-705-2025,https://doi.org/10.5194/esurf-13-705-2025, 2025
Short summary
Use of simple analytical solutions in the calibration of shallow water equation debris flow models
Riccardo Bonomelli, Marco Pilotti, and Gabriele Farina
Earth Surf. Dynam., 13, 665–681, https://doi.org/10.5194/esurf-13-665-2025,https://doi.org/10.5194/esurf-13-665-2025, 2025
Short summary
Localised geomorphic response to channel-spanning leaky wooden dams
Joshua M. Wolstenholme, Christopher J. Skinner, David Milan, Robert E. Thomas, and Daniel R. Parsons
Earth Surf. Dynam., 13, 647–663, https://doi.org/10.5194/esurf-13-647-2025,https://doi.org/10.5194/esurf-13-647-2025, 2025
Short summary
Surface grain-size mapping of braided channels from SfM photogrammetry
Loïs Ribet, Frédéric Liébault, Laurent Borgniet, Michaël Deschâtres, and Gabriel Melun
Earth Surf. Dynam., 13, 607–627, https://doi.org/10.5194/esurf-13-607-2025,https://doi.org/10.5194/esurf-13-607-2025, 2025
Short summary
Spatiotemporal denudation rates of the Swabian Alb escarpment (southwestern Germany) dominated by anthropogenic impact, lithology, and base-level lowering
Mirjam Schaller, Daniel Peifer, Alexander B. Neely, Thomas Bernard, Christoph Glotzbach, Alexander R. Beer, and Todd A. Ehlers
Earth Surf. Dynam., 13, 571–591, https://doi.org/10.5194/esurf-13-571-2025,https://doi.org/10.5194/esurf-13-571-2025, 2025
Short summary

Cited articles

Allen, S. K., Gruber, S., and Owens, I. F.: Exploring steep bedrock permafrost and its relationship with recent slope failures in the Southern Alps of New Zealand, Permafrost Periglac., 20, 345–356, https://doi.org/10.1002/ppp.658, 2009. 
Berthling, I. and Etzelmüller, B.: The concept of cryo-conditioning in landscape evolution, Quaternary Res., 75, 378–384, 2011. 
Blikra, L. H. and Christiansen, H. H.: A field-based model of permafrost-controlled rockslide deformation in northern Norway, Geomorphology, 208, 34–49, https://doi.org/10.1016/j.geomorph.2013.11.014, 2014. 
Boeckli, L., Brenning, A., Gruber, S., and Noetzli, J.: A statistical approach to modelling permafrost distribution in the European Alps or similar mountain ranges, The Cryosphere, 6, 125–140, https://doi.org/10.5194/tc-6-125-2012, 2012a. 
Boeckli, L., Brenning, A., Gruber, S., and Noetzli, J.: Permafrost distribution in the European Alps: calculation and evaluation of an index map and summary statistics, The Cryosphere, 6, 807–820, https://doi.org/10.5194/tc-6-807-2012, 2012b. 
Download
Short summary
This study proposes the first permafrost (i.e. ground with temperature permanently < 0 °C) map covering the steep rock slopes of Norway. It was created by using rock temperature data collected at the near surface of 25 rock walls spread across the country between 2010 and 2018. The map shows that permafrost mostly exists above 1300–1400 m a.s.l. in southern Norway and close to sea level in northern Norway. The results have strong potential for the study of rock wall sliding and failure.
Share