Articles | Volume 7, issue 3
https://doi.org/10.5194/esurf-7-841-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-7-841-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantifying the restoration success of wood introductions to increase coho salmon winter habitat
Russell T. Bair
Forest Engineering, Resources, and Management, Oregon State
University, 201 Peavy Hall Corvallis, Oregon 97331, USA
Forest Engineering, Resources, and Management, Oregon State
University, 201 Peavy Hall Corvallis, Oregon 97331, USA
Christopher M. Lorion
Oregon Department of Fish & Wildlife, 4034 Fairview Industrial
Drive SE, Salem, OR 97302, USA
Related authors
No articles found.
Angel Monsalve, Catalina Segura, Nicole Hucke, and Scott Katz
Earth Surf. Dynam., 8, 825–839, https://doi.org/10.5194/esurf-8-825-2020, https://doi.org/10.5194/esurf-8-825-2020, 2020
Short summary
Short summary
Part of the inaccuracies when estimating bed load transport in
gravel-bed rivers is because we are not considering the wide distributions of shear stress in these systems. We modified a subsurface-based bed load transport equation to include these distributions. By doing so, our approach accurately predicts bed load transport rates when the pavement layer is still present, while the original one predicts zero transport. For high flows, our method had similar performance to the original equation.
Adam S. Ward, Steven M. Wondzell, Noah M. Schmadel, Skuyler Herzog, Jay P. Zarnetske, Viktor Baranov, Phillip J. Blaen, Nicolai Brekenfeld, Rosalie Chu, Romain Derelle, Jennifer Drummond, Jan H. Fleckenstein, Vanessa Garayburu-Caruso, Emily Graham, David Hannah, Ciaran J. Harman, Jase Hixson, Julia L. A. Knapp, Stefan Krause, Marie J. Kurz, Jörg Lewandowski, Angang Li, Eugènia Martí, Melinda Miller, Alexander M. Milner, Kerry Neil, Luisa Orsini, Aaron I. Packman, Stephen Plont, Lupita Renteria, Kevin Roche, Todd Royer, Catalina Segura, James Stegen, Jason Toyoda, Jacqueline Wells, and Nathan I. Wisnoski
Hydrol. Earth Syst. Sci., 23, 5199–5225, https://doi.org/10.5194/hess-23-5199-2019, https://doi.org/10.5194/hess-23-5199-2019, 2019
Short summary
Short summary
The movement of water and solutes between streams and their shallow, connected subsurface is important to many ecosystem functions. These exchanges are widely expected to vary with stream flow across space and time, but these assumptions are seldom tested across basin scales. We completed more than 60 experiments across a 5th-order river basin to document these changes, finding patterns in space but not time. We conclude space-for-time and time-for-space substitutions are not good assumptions.
Adam S. Ward, Jay P. Zarnetske, Viktor Baranov, Phillip J. Blaen, Nicolai Brekenfeld, Rosalie Chu, Romain Derelle, Jennifer Drummond, Jan H. Fleckenstein, Vanessa Garayburu-Caruso, Emily Graham, David Hannah, Ciaran J. Harman, Skuyler Herzog, Jase Hixson, Julia L. A. Knapp, Stefan Krause, Marie J. Kurz, Jörg Lewandowski, Angang Li, Eugènia Martí, Melinda Miller, Alexander M. Milner, Kerry Neil, Luisa Orsini, Aaron I. Packman, Stephen Plont, Lupita Renteria, Kevin Roche, Todd Royer, Noah M. Schmadel, Catalina Segura, James Stegen, Jason Toyoda, Jacqueline Wells, Nathan I. Wisnoski, and Steven M. Wondzell
Earth Syst. Sci. Data, 11, 1567–1581, https://doi.org/10.5194/essd-11-1567-2019, https://doi.org/10.5194/essd-11-1567-2019, 2019
Short summary
Short summary
Studies of river corridor exchange commonly focus on characterization of the physical, chemical, or biological system. As a result, complimentary systems and context are often lacking, which may limit interpretation. Here, we present a characterization of all three systems at 62 sites in a 5th-order river basin, including samples of surface water, hyporheic water, and sediment. These data will allow assessment of interacting processes in the river corridor.
Giovanny M. Mosquera, Catalina Segura, Kellie B. Vaché, David Windhorst, Lutz Breuer, and Patricio Crespo
Hydrol. Earth Syst. Sci., 20, 2987–3004, https://doi.org/10.5194/hess-20-2987-2016, https://doi.org/10.5194/hess-20-2987-2016, 2016
Short summary
Short summary
This study focuses on the investigation of baseflow mean transit times (MTTs) in a high-elevation tropical ecosystem (páramo) using stable water isotopes. Results showed short MTTs (< 9 months) and topographic controls on their spatial variability. We conclude that (1) the hydrology of the ecosystem is dominated by shallow subsurface flow and (2) the interplay between the high storage capacity of the páramo soils and the catchments' slopes provides the ecosystem with high regulation capacity.
Related subject area
Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Geology and vegetation control landsliding on forest-managed slopes in scarplands
Entrainment and deposition of boulders in a gravel bed river
Coupling between downstream variations of channel width and local pool–riffle bed topography
A combined approach of experimental and numerical modeling for 3D hydraulic features of a step-pool unit
Combining seismic signal dynamic inversion and numerical modeling improves landslide process reconstruction
Response of modern fluvial sediments to regional tectonic activity along the upper Min River, eastern Tibet
Geophysical evidence of massive hyperconcentrated push waves with embedded toma hills caused by the Flims rockslide, Switzerland
Comparison of calibration characteristics of different acoustic impact systems for measuring bedload transport in mountain streams
Episodic sediment supply to alluvial fans: implications for fan incision and morphometry
Exploring the transition between water and wind-dominated landscapes in Deep Springs, California as an analog for transitioning landscapes on Mars
Failure mode of rainfall-induced landslide of granite residual soil, southeastern Guangxi Province, China
Exploring exogenous controls on short- versus long-term erosion rates globally
The effects of late Cenozoic climate change on the global distribution of frost cracking
Transitional rock glaciers at sea level in northern Norway
Grain size of fluvial gravel bars from close-range UAV imagery – uncertainty in segmentation-based data
Toward a general calibration of the Swiss plate geophone system for fractional bedload transport
Quantification of post-glacier bedrock surface erosion in the European Alps using 10Be and optically stimulated luminescence exposure dating
A comparison of 1D and 2D bedload transport functions under high excess shear stress conditions in laterally constrained gravel-bed rivers: a laboratory study
Modeling the Inhibition Effect of Straw Checkerboard Barriers on Wind-blown Sand
Back to pristine levels: a meta-analysis of suspended sediment transport in large German river channels
The story of a summit nucleus: Hillslope boulders and their effect on erosional patterns and landscape morphology in the Chilean Coastal Cordillera
Short communication: Forward and inverse analytic models relating river long profile to tectonic uplift history, assuming a nonlinear slope–erosion dependency
Probabilistic description of bedload fluxes from the aggregate dynamics of individual grains
Effect of debris-flow sediment grain-size distribution on fan morphology
Controls on earthflow formation in the Teanaway River basin, central Washington State, USA
Linking levee-building processes with channel avulsion: geomorphic analysis for assessing avulsion frequency and channel reoccupation
The imprint of erosion by glacial lake outburst floods in the topography of central Himalayan rivers
Volume, evolution, and sedimentation of future glacier lakes in Switzerland over the 21st century
Theoretical and numerical considerations of rivers in a tectonically inactive foreland
Suspended sediment and discharge dynamics in a glaciated alpine environment: identifying crucial areas and time periods on several spatial and temporal scales in the Ötztal, Austria
A multi-proxy assessment of terrace formation in the lower Trinity River valley, Texas
Alpine rock glacier activity over Holocene to modern timescales (western French Alps)
Arctic Delta Reduced Complexity Model and its Reproduction of Key Geomorphological Structures
Spatio-temporal variability and controlling factors for postglacial denudation rates in the Dora Baltea catchment (western Italian Alps)
Continuous measurements of valley floor width in mountainous landscapes
Organic carbon burial by river meandering partially offsets bank erosion carbon fluxes in a discontinuous permafrost floodplain
Estuarine morphodynamics and development modified by floodplain formation
Convolutional neural networks for image-based sediment detection applied to a large terrestrial and airborne dataset
A geomorphic-process-based cellular automata model of colluvial wedge morphology and stratigraphy
Signal response of the Swiss plate geophone monitoring system impacted by bedload particles with different transport modes
Morphodynamic styles: characterising the behaviour of gravel-bed rivers using a novel, quantitative index
Rapid Holocene bedrock canyon incision of Beida River, North Qilian Shan, China
The landslide velocity
An analytical model for beach erosion downdrift of groins: case study of Jeongdongjin Beach, Korea
Permafrost in monitored unstable rock slopes in Norway – new insights from temperature and surface velocity measurements, geophysical surveying, and ground temperature modelling
The role of geological mouth islands on the morphodynamics of back-barrier tidal basins
From apex to shoreline: fluvio-deltaic architecture for the Holocene Rhine–Meuse delta, the Netherlands
Intensified paraglacial slope failures due to accelerating downwasting of a temperate glacier in Mt. Gongga, southeastern Tibetan Plateau
Breaking down chipping and fragmentation in sediment transport: the control of material strength
Multi-objective optimisation of a rock coast evolution model with cosmogenic 10Be analysis for the quantification of long-term cliff retreat rates
Daniel Draebing, Tobias Gebhard, and Miriam Pheiffer
Earth Surf. Dynam., 11, 71–88, https://doi.org/10.5194/esurf-11-71-2023, https://doi.org/10.5194/esurf-11-71-2023, 2023
Short summary
Short summary
Scarpland formation produced low-inclined slopes susceptible to deep-seated landsliding on geological scales. These landslide-affected slopes are often used for forestry activities today, and interaction between geology and vegetation controls shallow landsliding. Our data show that Feuerletten clays control deep-seated landsliding processes that can be reactivated. When trees are sufficiently dense to provide lateral root cohesion, trees can prevent the occurrence of shallow landslides.
Pascal Allemand, Eric Lajeunesse, Olivier Devauchelle, and Vincent J. Langlois
Earth Surf. Dynam., 11, 21–32, https://doi.org/10.5194/esurf-11-21-2023, https://doi.org/10.5194/esurf-11-21-2023, 2023
Short summary
Short summary
We recorded yearly images of a bar of the Vieux-Habitants river, a river located on Basse-Terre (Guadeloupe). These images, combined with measurements of the river discharge, allow us to monitor the evolution of the population of boulders. We estimate the smallest discharge that can move the boulders and calculate the effective transport time. We show that the likelihood of a given boulder remaining at the same location decreases exponentially, with an effective residence time of 17 h.
Shawn M. Chartrand, A. Mark Jellinek, Marwan A. Hassan, and Carles Ferrer-Boix
Earth Surf. Dynam., 11, 1–20, https://doi.org/10.5194/esurf-11-1-2023, https://doi.org/10.5194/esurf-11-1-2023, 2023
Short summary
Short summary
Rivers with alternating patterns of shallow and deep flows are commonly observed where a river widens and then narrows, respectively. But what if width changes over time? We use a lab experiment to address this question and find it is possible to decrease and then increase river width at a specific location and observe that flows deepen and then shallow consistent with expectations. Our observations can inform river restoration and climate adaptation programs that emphasize river corridors.
Chendi Zhang, Yuncheng Xu, Marwan A. Hassan, Mengzhen Xu, and Pukang He
Earth Surf. Dynam., 10, 1253–1272, https://doi.org/10.5194/esurf-10-1253-2022, https://doi.org/10.5194/esurf-10-1253-2022, 2022
Short summary
Short summary
Step-pool morphology is common in mountain streams. The geomorphic processes of step-pool features closely interact with hydraulic properties, which have limited access due to measurement difficulties. We established a combined approach using both physical experiments and numerical simulations to acquire detailed three-dimensional hydraulics for step-pool morphology, which improves the understanding of the links between hydraulics and morphology for a step-pool feature.
Yan Yan, Yifei Cui, Xinghui Huang, Jiaojiao Zhou, Wengang Zhang, Shuyao Yin, Jian Guo, and Sheng Hu
Earth Surf. Dynam., 10, 1233–1252, https://doi.org/10.5194/esurf-10-1233-2022, https://doi.org/10.5194/esurf-10-1233-2022, 2022
Short summary
Short summary
Landslides present a significant hazard for humans, but continuous landslide monitoring is not yet possible due to their unpredictability. Our study has demonstrated that combing landslide seismic signal analysis, dynamic inversion, and numerical simulation provides a comprehensive and accurate method for studying the landslide process. The approach outlined in this study could be used to support hazard prevention and control in sensitive areas.
Wei Shi, Hanchao Jiang, Hongyan Xu, Siyuan Ma, Jiawei Fan, Siqi Zhang, Qiaoqiao Guo, and Xiaotong Wei
Earth Surf. Dynam., 10, 1195–1209, https://doi.org/10.5194/esurf-10-1195-2022, https://doi.org/10.5194/esurf-10-1195-2022, 2022
Short summary
Short summary
Alpine valleys reduce the preservation potential of Quaternary sediment in bedrock valley regions, which seriously hinders the study of modern tectonic activity. We report a new method to reveal regional tectonic activity by analyzing fluvial sediments in tectonically active regions. Our analyses identify three segments of different tectonic activities along the upper Min River, eastern Tibet. This method provides a key framework to reveal tectonic activity in other regions of the world.
Sibylle Knapp, Michael Schwenk, and Michael Krautblatter
Earth Surf. Dynam., 10, 1185–1193, https://doi.org/10.5194/esurf-10-1185-2022, https://doi.org/10.5194/esurf-10-1185-2022, 2022
Short summary
Short summary
The Flims area in the Swiss Alps has fascinated the researchers with its complex geological history ever since. Especially the order of events related to the Tamins and Flims rockslides has long been debated. This paper presents novel results based on up to 160 m deep geophysical profiles, which show onlaps of the Bonaduz Formation onto the Tamins deposits (Ils Aults) and thus indicate that the Tamins rockslide occurred first. The consecutive evolution of this landscape is shown in four phases.
Dieter Rickenmann, Lorenz Ammann, Tobias Nicollier, Stefan Boss, Bruno Fritschi, Gilles Antoniazza, Nicolas Steeb, Zheng Chen, Carlos Wyss, and Alexandre Badoux
Earth Surf. Dynam., 10, 1165–1183, https://doi.org/10.5194/esurf-10-1165-2022, https://doi.org/10.5194/esurf-10-1165-2022, 2022
Short summary
Short summary
The Swiss plate geophone system has been installed and tested in more than 20 steep gravel-bed streams. It is an indirect bedload transport measuring system. We compare the performance of this system with three alternative surrogate measuring systems, using calibration measurements with direct bedload samples from three field sites and an outdoor flume facility. Three of the four systems resulted in robust calibration relations between signal impulse counts and transported bedload mass.
Anya S. Leenman and Brett C. Eaton
Earth Surf. Dynam., 10, 1097–1114, https://doi.org/10.5194/esurf-10-1097-2022, https://doi.org/10.5194/esurf-10-1097-2022, 2022
Short summary
Short summary
The supply of sediment (sand and gravel) carried by a stream out of a steep mountain valley is widely thought to control the gradient of the fan-shaped landforms that streams often build where they leave their valley. We tested this idea in a set of
sandboxexperiments with oscillating high and low sediment supply. Even though the average sediment supply never changed, longer oscillations built flatter fans, indicating how wetter climates might affect these mountain landforms.
Taylor Dorn and Mackenzie Day
EGUsphere, https://doi.org/10.5194/egusphere-2022-1040, https://doi.org/10.5194/egusphere-2022-1040, 2022
Short summary
Short summary
Planetary surfaces are shaped by both wind and water were their resulting surface features are commonly observed by aerial images. Deep Springs playa, CA provides an comparable wet-to-dry transitioning landscape as experienced in Mars' past. Our results, made through collected weather data and drone footage, showed that some features, when observed solely by aerial imagery might be interpreted as being formed by wind when in fact other processes were more influential in their formation.
Shanbai Wu, Ruihua Zhao, Liping Liao, Yunchuan Yang, Yao Wei, and Wenzhi Wei
Earth Surf. Dynam., 10, 1079–1096, https://doi.org/10.5194/esurf-10-1079-2022, https://doi.org/10.5194/esurf-10-1079-2022, 2022
Short summary
Short summary
Granite residual soil landslides are widely distributed in southeastern Guangxi Province, China. To understand the failure mode, the landslide can provide a scientific basis for early warning and prevention. In this study, we conducted artificial flume model tests to investigate the failure mode of granite residual soil landslide. The research provides valuable references for the prevention and early warning of granite residual soil landslide in the southeast of Guangxi.
Shiuan-An Chen, Katerina Michaelides, David A. Richards, and Michael Bliss Singer
Earth Surf. Dynam., 10, 1055–1078, https://doi.org/10.5194/esurf-10-1055-2022, https://doi.org/10.5194/esurf-10-1055-2022, 2022
Short summary
Short summary
Drainage basin erosion rates influence landscape evolution through controlling land surface lowering and sediment flux, but gaps remain in understanding their large-scale patterns and drivers between timescales. We analysed global erosion rates and show that long-term erosion rates are controlled by rainfall, former glacial processes, and basin landform, whilst human activities enhance short-term erosion rates. The results highlight the complex interplay of controls on land surface processes.
Hemanti Sharma, Sebastian G. Mutz, and Todd A. Ehlers
Earth Surf. Dynam., 10, 997–1015, https://doi.org/10.5194/esurf-10-997-2022, https://doi.org/10.5194/esurf-10-997-2022, 2022
Short summary
Short summary
We estimate global changes in frost cracking intensity (FCI) using process-based models for four time slices in the late Cenozoic ranging from the Pliocene (∼ 3 Ma) to pre-industrial (∼ 1850 CE, PI). For all time slices, results indicate that FCI was most prevalent in middle to high latitudes and high-elevation lower-latitude areas such as Tibet. Larger deviations (relative to PI) were observed in colder (LGM) and warmer climates (Pliocene) due to differences in temperature and glaciation.
Karianne S. Lilleøren, Bernd Etzelmüller, Line Rouyet, Trond Eiken, Gaute Slinde, and Christin Hilbich
Earth Surf. Dynam., 10, 975–996, https://doi.org/10.5194/esurf-10-975-2022, https://doi.org/10.5194/esurf-10-975-2022, 2022
Short summary
Short summary
In northern Norway we have observed several rock glaciers at sea level. Rock glaciers are landforms that only form under the influence of permafrost, which is frozen ground. Our investigations show that the rock glaciers are probably not active under the current climate but most likely were active in the recent past. This shows how the Arctic now changes due to climate changes and also how similar areas in currently colder climates will change in the future.
David Mair, Ariel Henrique Do Prado, Philippos Garefalakis, Alessandro Lechmann, Alexander Whittaker, and Fritz Schlunegger
Earth Surf. Dynam., 10, 953–973, https://doi.org/10.5194/esurf-10-953-2022, https://doi.org/10.5194/esurf-10-953-2022, 2022
Short summary
Short summary
Grain size data are important for studying and managing rivers, but they are difficult to obtain in the field. Therefore, methods have been developed that use images from small and remotely piloted aircraft. However, uncertainty in grain size data from such image-based products is understudied. Here we present a new way of uncertainty estimation that includes fully modeled errors. We use this technique to assess the effect of several image acquisition aspects on grain size uncertainty.
Tobias Nicollier, Gilles Antoniazza, Lorenz Ammann, Dieter Rickenmann, and James W. Kirchner
Earth Surf. Dynam., 10, 929–951, https://doi.org/10.5194/esurf-10-929-2022, https://doi.org/10.5194/esurf-10-929-2022, 2022
Short summary
Short summary
Monitoring sediment transport is relevant for flood safety and river restoration. However, the spatial and temporal variability of sediment transport processes makes their prediction challenging. We investigate the feasibility of a general calibration relationship between sediment transport rates and the impact signals recorded by metal plates installed in the channel bed. We present a new calibration method based on flume experiments and apply it to an extensive dataset of field measurements.
Joanne Elkadi, Benjamin Lehmann, Georgina E. King, Olivia Steinemann, Susan Ivy-Ochs, Marcus Christl, and Frédéric Herman
Earth Surf. Dynam., 10, 909–928, https://doi.org/10.5194/esurf-10-909-2022, https://doi.org/10.5194/esurf-10-909-2022, 2022
Short summary
Short summary
Glacial and non-glacial processes have left a strong imprint on the landscape of the European Alps, but further research is needed to better understand their long-term effects. We apply a new technique combining two methods for bedrock surface dating to calculate post-glacier erosion rates next to a Swiss glacier. Interestingly, the results suggest non-glacial erosion rates are higher than previously thought, but glacial erosion remains the most influential on landscape evolution.
David L. Adams and Brett C. Eaton
Earth Surf. Dynam., 10, 895–907, https://doi.org/10.5194/esurf-10-895-2022, https://doi.org/10.5194/esurf-10-895-2022, 2022
Short summary
Short summary
Channel processes under flood conditions are important for river science and management as they involve high volumes of sediment transport and erosion. However, these processes remain poorly understood as the data are difficult to collect. Using a physical model of a river, we found that simple equations based on the mean shear stress and median grain size predicted sediment transport as accurately as ones that accounted for the full range of shear stresses.
Haojie Huang
EGUsphere, https://doi.org/10.5194/egusphere-2022-714, https://doi.org/10.5194/egusphere-2022-714, 2022
Short summary
Short summary
Straw checkerboard barriers (SCBs) have been widely used in the anti-desertification projects. However, research on mechanism and its laying length are still lacking. The significance of our work is to analyze some results which seemingly simple but lack of theoretical basis from the perspective of turbulence through this model, which may provide the theoretical support for the minimum laying length of SCBs in anti-desertification projects.
Thomas O. Hoffmann, Yannik Baulig, Stefan Vollmer, Jan Blöthe, and Peter Fiener
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2022-45, https://doi.org/10.5194/esurf-2022-45, 2022
Revised manuscript under review for ESurf
Short summary
Short summary
We analysed more than 440.000 measurements from the suspended sediment monitoring to show that suspended sediment concentration (SSC) in large rivers in Germany strongly decline by 50 % between 1990 and 2010. We argue that SSC achieves the natural back ground concentrations, due to reduced sediment supply. There is simple explanation for this decline, but effects of reduced supply from headwater streams are most likely the cause for declining SSC in large rivers.
Emma Lodes, Dirk Scherler, Renee van Dongen, and Hella Wittmann
EGUsphere, https://doi.org/10.5194/egusphere-2022-619, https://doi.org/10.5194/egusphere-2022-619, 2022
Short summary
Short summary
We investigate the effect of fractures on the location of hills and valleys in bedrock landscapes, by comparing erosion rates of unfractured bedrock versus soil. Unfractured bedrock erodes slower, and soil, which likely overlies fractured bedrock, erodes faster. We also find that streams generally follow the orientations of faults. Together, our data show that fractures influence landscapes by weakening bedrock, causing it to erode faster and to eventually form a valley where a stream may flow.
Yizhou Wang, Liran Goren, Dewen Zheng, and Huiping Zhang
Earth Surf. Dynam., 10, 833–849, https://doi.org/10.5194/esurf-10-833-2022, https://doi.org/10.5194/esurf-10-833-2022, 2022
Short summary
Short summary
Abrupt changes in tectonic uplift rates induce sharp changes in river profile, called knickpoints. When river erosion depends non-linearly on slope, we develop an analytic model for knickpoint velocity and find the condition of knickpoint merging. Then we develop analytic models that represent the two-directional link between tectonic changes and river profile evolution. The derivation provides new understanding on the links between tectonic changes and river profile evolution.
J. Kevin Pierce, Marwan A. Hassan, and Rui M. L. Ferreira
Earth Surf. Dynam., 10, 817–832, https://doi.org/10.5194/esurf-10-817-2022, https://doi.org/10.5194/esurf-10-817-2022, 2022
Short summary
Short summary
We describe the flow of sediment in river channels by replacing the complicated details of the turbulent water with probability arguments. Our major conclusions are that (1) sediment transport can be phrased in terms of the movements of individual sediment grains, (2) transport rates in river channels are inherently uncertain, and (3) sediment transport in rivers is directly analogous to a number of phenomena which we understand relatively well, such as molecules moving in air.
Haruka Tsunetaka, Norifumi Hotta, Yuichi Sakai, and Thad Wasklewicz
Earth Surf. Dynam., 10, 775–796, https://doi.org/10.5194/esurf-10-775-2022, https://doi.org/10.5194/esurf-10-775-2022, 2022
Short summary
Short summary
To assess the effects of differences in grain-size distribution within debris flows on the morphology of debris-flow fans, fan morphologies were modeled experimentally. Even if debris flows exhibited similar flow properties, their runout distance differed in response to differences in their grain-size distribution. Differences in runout distance were responsible for variations in the direction of the descending flow that resulted in different debris-flow fan morphology.
Sarah A. Schanz and A. Peyton Colee
Earth Surf. Dynam., 10, 761–774, https://doi.org/10.5194/esurf-10-761-2022, https://doi.org/10.5194/esurf-10-761-2022, 2022
Short summary
Short summary
We mapped and dated 187 earthflows to determine controls on earthflow formation and resulting topographic changes in the Teanaway basin, central Washington State, USA. Using a new relative dating technique and absolute dating, we find that 25 % of earthflows were active in the last ~500 years. Earthflows are lithologically controlled, actively narrow valleys, and increase sediment loads.
Jeongyeon Han and Wonsuck Kim
Earth Surf. Dynam., 10, 743–759, https://doi.org/10.5194/esurf-10-743-2022, https://doi.org/10.5194/esurf-10-743-2022, 2022
Short summary
Short summary
A levee-building model is presented to investigate the effects of flood on levee slope and river behaviors. Coarser grains that cause steep levee slopes lead to frequent switchings of river paths, but higher overflow velocity has an opposite effect. High levee slopes lead to more reoccupations of abandoned old river paths than low levee slopes when rivers switch their locations. The study helps us to assess flood hazards with river-path switching.
Maxwell P. Dahlquist and A. Joshua West
Earth Surf. Dynam., 10, 705–722, https://doi.org/10.5194/esurf-10-705-2022, https://doi.org/10.5194/esurf-10-705-2022, 2022
Short summary
Short summary
Himalayan rivers are full of giant boulders that rarely move except during glacial lake outburst floods (GLOFs), which therefore must be important drivers of erosion in the Himalayas. GLOFs are rare, so little is known about their long-term erosional impact. We found that rivers in Nepal have channel geometry that, compared with markers of upstream glaciation, confirm GLOFs as a major control on erosion. This previously unrecognized control should be accounted for in landscape evolution studies.
Tim Steffen, Matthias Huss, Rebekka Estermann, Elias Hodel, and Daniel Farinotti
Earth Surf. Dynam., 10, 723–741, https://doi.org/10.5194/esurf-10-723-2022, https://doi.org/10.5194/esurf-10-723-2022, 2022
Short summary
Short summary
Climate change is rapidly altering high-alpine landscapes. The formation of new lakes in areas becoming ice free due to glacier retreat is one of the many consequences of this process. Here, we provide an estimate for the number, size, time of emergence, and sediment infill of future glacier lakes that will emerge in the Swiss Alps. We estimate that up to ~ 680 potential lakes could form over the course of the 21st century, with the potential to hold a total water volume of up to ~ 1.16 km3.
Stefan Hergarten
Earth Surf. Dynam., 10, 671–686, https://doi.org/10.5194/esurf-10-671-2022, https://doi.org/10.5194/esurf-10-671-2022, 2022
Short summary
Short summary
Many studies on modeling landform evolution have focused on mountain ranges, while large parts of Earth's surface are quite flat and alluvial plains have been preferred locations for human settlements. Conducting large-scale simulations of fluvial erosion and sediment transport, this study reveals that rivers in a tectonically inactive foreland are much more dynamic than rivers in a mountain range; the local redistribution of deposits in the foreland is the main driver of the dynamics.
Lena Katharina Schmidt, Till Francke, Erwin Rottler, Theresa Blume, Johannes Schöber, and Axel Bronstert
Earth Surf. Dynam., 10, 653–669, https://doi.org/10.5194/esurf-10-653-2022, https://doi.org/10.5194/esurf-10-653-2022, 2022
Short summary
Short summary
Climate change fundamentally alters glaciated high-alpine areas, but it is unclear how this affects riverine sediment transport. As a first step, we aimed to identify the most important processes and source areas in three nested catchments in the Ötztal, Austria, in the past 15 years. We found that areas above 2500 m were crucial and that summer rainstorms were less influential than glacier melt. These findings provide a baseline for studies on future changes in high-alpine sediment dynamics.
Hima J. Hassenruck-Gudipati, Thaddeus Ellis, Timothy A. Goudge, and David Mohrig
Earth Surf. Dynam., 10, 635–651, https://doi.org/10.5194/esurf-10-635-2022, https://doi.org/10.5194/esurf-10-635-2022, 2022
Short summary
Short summary
During the late Pleistocene, the incision of the Trinity River valley left behind terraces. Elevation data and measurements of abandoned channels preserved on terraces are used to evaluate how terraces formed. We find a transition in the style of terraces with age from those associated with external environmental forcings to those produced by internal river migration changes. This result shows the importance of several indicators (i.e., channel bends, elevations) in determining terrace form.
Benjamin Lehmann, Robert S. Anderson, Xavier Bodin, Diego Cusicanqui, Pierre G. Valla, and Julien Carcaillet
Earth Surf. Dynam., 10, 605–633, https://doi.org/10.5194/esurf-10-605-2022, https://doi.org/10.5194/esurf-10-605-2022, 2022
Short summary
Short summary
Rock glaciers are some of the most frequently occurring landforms containing ice in mountain environments. Here, we use field observations, analysis of aerial and satellite images, and dating methods to investigate the activity of the rock glacier of the Vallon de la Route in the French Alps. Our results suggest that the rock glacier is characterized by two major episodes of activity and that the rock glacier system promotes the maintenance of mountain erosion.
Ngai-Ham Chan, Moritz Langer, Bennet Juhls, Tabea Rettelbach, Paul Overduin, Kimberly Huppert, and Jean Braun
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2022-25, https://doi.org/10.5194/esurf-2022-25, 2022
Revised manuscript under review for ESurf
Short summary
Short summary
Arctic river deltas influence how nutrients and soil organic carbon, carried by sediments from the Arctic landscape, are retained or released into the Arctic Ocean. Under climate change, the deltas themselves and their ecosystems are becoming more vulnerable. We build upon previous models to reproduce for the first time an important feature seen in all Arctic deltas, and simulate its future under a warming climate. This can impact the future of Arctic deltas and the carbon release they moderate.
Elena Serra, Pierre G. Valla, Romain Delunel, Natacha Gribenski, Marcus Christl, and Naki Akçar
Earth Surf. Dynam., 10, 493–512, https://doi.org/10.5194/esurf-10-493-2022, https://doi.org/10.5194/esurf-10-493-2022, 2022
Short summary
Short summary
Alpine landscapes are transformed by several erosion processes. 10Be concentrations measured in river sediments at the outlet of a basin represent a powerful tool to quantify how fast the catchment erodes. We measured erosion rates within the Dora Baltea catchments (western Italian Alps). Our results show that erosion is governed by topography, bedrock resistance and glacial imprint. The Mont Blanc massif has the highest erosion and therefore dominates the sediment flux of the Dora Baltea river.
Fiona J. Clubb, Eliot F. Weir, and Simon M. Mudd
Earth Surf. Dynam., 10, 437–456, https://doi.org/10.5194/esurf-10-437-2022, https://doi.org/10.5194/esurf-10-437-2022, 2022
Short summary
Short summary
River valleys are important components of mountain systems: they are the most fertile part of landscapes and store sediment which is transported from mountains to surrounding basins. Our knowledge of the location and shape of valleys is hindered by our ability to measure them over large areas. We present a new method for measuring the width of mountain valleys continuously along river channels from digital topography and show that our method can be used to test common models of river widening.
Madison M. Douglas, Gen K. Li, Woodward W. Fischer, Joel C. Rowland, Preston C. Kemeny, A. Joshua West, Jon Schwenk, Anastasia P. Piliouras, Austin J. Chadwick, and Michael P. Lamb
Earth Surf. Dynam., 10, 421–435, https://doi.org/10.5194/esurf-10-421-2022, https://doi.org/10.5194/esurf-10-421-2022, 2022
Short summary
Short summary
Arctic rivers erode into permafrost and mobilize organic carbon, which can react to form greenhouse gasses or be re-buried in floodplain deposits. We collected samples on a permafrost floodplain in Alaska to determine if more carbon is eroded or deposited by river meandering. The floodplain contained a mixture of young carbon fixed by the biosphere and old, re-deposited carbon. Thus, sediment storage may allow Arctic river floodplains to retain aged organic carbon even when permafrost thaws.
Maarten G. Kleinhans, Lonneke Roelofs, Steven A. H. Weisscher, Ivar R. Lokhorst, and Lisanne Braat
Earth Surf. Dynam., 10, 367–381, https://doi.org/10.5194/esurf-10-367-2022, https://doi.org/10.5194/esurf-10-367-2022, 2022
Short summary
Short summary
Floodplain formation in estuaries limit the ebb and flood flow, reducing channel migration and shortening the tidally influenced reach. Vegetation establishment on bars reduces local flow velocity and concentrates flow into channels, while mudflats fill accommodation space and reduce channel migration. These results are based on experimental estuaries in the Metronome facility supported by numerical flow modelling.
Xingyu Chen, Marwan A. Hassan, and Xudong Fu
Earth Surf. Dynam., 10, 349–366, https://doi.org/10.5194/esurf-10-349-2022, https://doi.org/10.5194/esurf-10-349-2022, 2022
Short summary
Short summary
We compiled a large image dataset containing more than 125 000 sediments and developed a model (GrainID) based on convolutional neural networks to measure individual grain size from images. The model was calibrated on flume and natural stream images covering a wide range of fluvial environments. The model showed high performance compared with other methods. Our model showed great potential for grain size measurements from a small patch of sediment in a flume to a watershed-scale drone survey.
Harrison J. Gray, Christopher B. DuRoss, Sylvia R. Nicovich, and Ryan D. Gold
Earth Surf. Dynam., 10, 329–348, https://doi.org/10.5194/esurf-10-329-2022, https://doi.org/10.5194/esurf-10-329-2022, 2022
Short summary
Short summary
Some types of big earthquakes create small cliffs or
fault scarps∼1–3 m in height, where sediments can pile up and create deposits we call
colluvial wedges. Geologists will look at colluvial wedges and use them to understand how often big earthquakes occur. Here we made a computer simulation to find out if the way we think colluvial wedges form works with physics. We found that it does in theory, but there are conditions in which it may be more complicated than we expected.
Zheng Chen, Siming He, Tobias Nicollier, Lorenz Ammann, Alexandre Badoux, and Dieter Rickenmann
Earth Surf. Dynam., 10, 279–300, https://doi.org/10.5194/esurf-10-279-2022, https://doi.org/10.5194/esurf-10-279-2022, 2022
Short summary
Short summary
Bedload flux quantification remains challenging in river dynamics due to variable transport modes. We used a passive monitoring device to record the acoustic signals generated by the impacts of bedload particles with different transport modes, and established the relationship between the triggered signals and bedload characteristics. The findings of this study could improve our understanding of the monitoring system and bedload transport process, and contribute to bedload size classification.
William H. Booker and Brett C. Eaton
Earth Surf. Dynam., 10, 247–260, https://doi.org/10.5194/esurf-10-247-2022, https://doi.org/10.5194/esurf-10-247-2022, 2022
Short summary
Short summary
Channel behaviour is a qualitative aspect of river research that needs development to produce a framework of analysis between and within types of channels. We seek to produce a quantitative metric that can capture how a channel changes using a pair of experiments and collecting easy to obtain data. We demonstrate that this new technique is capable of discerning between river types and may provide a new tool with which we may describe channel behaviour.
Yiran Wang, Michael E. Oskin, Youli Li, and Huiping Zhang
Earth Surf. Dynam., 10, 191–208, https://doi.org/10.5194/esurf-10-191-2022, https://doi.org/10.5194/esurf-10-191-2022, 2022
Short summary
Short summary
Beida River has an over-steepened reach presently located 10 km upstream of the North Qilian mountain front. It was formed because river incising into the bedrocks inside the mountain cannot keep up with river incising into the soft sediment in the basin. We suggest this over-steepened reach represents a fast incision period 3–4 kyr ago, deepening the canyon for ~35 m within ~700 years. The formation of this reach corresponds to a humid period related to strong Southeast Asian Monsoon influence.
Shiva P. Pudasaini and Michael Krautblatter
Earth Surf. Dynam., 10, 165–189, https://doi.org/10.5194/esurf-10-165-2022, https://doi.org/10.5194/esurf-10-165-2022, 2022
Short summary
Short summary
We present the first physics-based general landslide velocity model incorporating internal deformation and external forces. Voellmy–inviscid Burgers' equations are specifications of the novel advective–dissipative system. Unified analytical solutions constitute a new foundation of landslide velocity, providing key information to instantly estimate impact forces and describe breaking waves and folding, revealing that landslide dynamics are architectured by advection and reigned by forcing.
Changbin Lim, Soonmi Hwang, and Jung Lyul Lee
Earth Surf. Dynam., 10, 151–163, https://doi.org/10.5194/esurf-10-151-2022, https://doi.org/10.5194/esurf-10-151-2022, 2022
Short summary
Short summary
Recently, along the east coast of South Korea, seasonal beach erosion has been induced by structures which severely block the supply of sand from the upstream side. This study proposes a coastal solution that can predict the maximum indentation point in downdrift erosion formed downstream of groins by applying a parabolic bay shape equation (PBSE).
Bernd Etzelmüller, Justyna Czekirda, Florence Magnin, Pierre-Allain Duvillard, Ludovic Ravanel, Emanuelle Malet, Andreas Aspaas, Lene Kristensen, Ingrid Skrede, Gudrun D. Majala, Benjamin Jacobs, Johannes Leinauer, Christian Hauck, Christin Hilbich, Martina Böhme, Reginald Hermanns, Harald Ø. Eriksen, Tom Rune Lauknes, Michael Krautblatter, and Sebastian Westermann
Earth Surf. Dynam., 10, 97–129, https://doi.org/10.5194/esurf-10-97-2022, https://doi.org/10.5194/esurf-10-97-2022, 2022
Short summary
Short summary
This paper is a multi-authored study documenting the possible existence of permafrost in permanently monitored rockslides in Norway for the first time by combining a multitude of field data, including geophysical surveys in rock walls. The paper discusses the possible role of thermal regime and rockslide movement, and it evaluates the possible impact of atmospheric warming on rockslide dynamics in Norwegian mountains.
Yizhang Wei, Yining Chen, Jufei Qiu, Zeng Zhou, Peng Yao, Qin Jiang, Zheng Gong, Giovanni Coco, Ian Townend, and Changkuan Zhang
Earth Surf. Dynam., 10, 65–80, https://doi.org/10.5194/esurf-10-65-2022, https://doi.org/10.5194/esurf-10-65-2022, 2022
Short summary
Short summary
The barrier tidal basin is increasingly altered by human activity and sea-level rise. These environmental changes probably lead to the emergence or disappearance of islands, yet the effect of rocky islands on the evolution of tidal basins remains poorly investigated. Using numerical experiments, we explore the evolution of tidal basins under varying numbers and locations of islands. This work provides insights for predicting the response of barrier tidal basins in a changing environment.
Marc J. P. Gouw and Marc P. Hijma
Earth Surf. Dynam., 10, 43–64, https://doi.org/10.5194/esurf-10-43-2022, https://doi.org/10.5194/esurf-10-43-2022, 2022
Short summary
Short summary
If you were to navigate an entire delta by boat, you would clearly see that the general characteristics of the channels change throughout the delta. The drivers behind these changes have been studied extensively. Field studies encompassing the entire delta are rare but give important insights into these drivers that can help other researchers. The most important drivers are channel lateral-migration rate, channel-belt longevity, creation of accommodation space and inherited floodplain width.
Yan Zhong, Qiao Liu, Matthew Westoby, Yong Nie, Francesca Pellicciotti, Bo Zhang, Jialun Cai, Guoxiang Liu, Haijun Liao, and Xuyang Lu
Earth Surf. Dynam., 10, 23–42, https://doi.org/10.5194/esurf-10-23-2022, https://doi.org/10.5194/esurf-10-23-2022, 2022
Short summary
Short summary
Slope failures exist in many paraglacial regions and are the main manifestation of the interaction between debris-covered glaciers and slopes. We mapped paraglacial slope failures (PSFs) along the Hailuogou Glacier (HLG), Mt. Gongga, southeastern Tibetan Plateau. We argue that the formation, evolution, and current status of these typical PSFs are generally related to glacier history and paraglacial geomorphological adjustments, and influenced by the fluctuation of climate conditions.
Sophie Bodek and Douglas J. Jerolmack
Earth Surf. Dynam., 9, 1531–1543, https://doi.org/10.5194/esurf-9-1531-2021, https://doi.org/10.5194/esurf-9-1531-2021, 2021
Short summary
Short summary
As rocks are transported, they undergo two attrition mechanisms: chipping, shallow cracking at low collision energies; and fragmentation, significant fracture growth from high-energy impacts. We examine the mass and shape evolution of concrete particles in a rotating drum to experimentally delineate the boundary between chipping and fragmentation. By connecting the mechanics of these attrition processes to resulting shape evolution, we can use particle shape to infer past transport conditions.
Jennifer R. Shadrick, Martin D. Hurst, Matthew D. Piggott, Bethany G. Hebditch, Alexander J. Seal, Klaus M. Wilcken, and Dylan H. Rood
Earth Surf. Dynam., 9, 1505–1529, https://doi.org/10.5194/esurf-9-1505-2021, https://doi.org/10.5194/esurf-9-1505-2021, 2021
Short summary
Short summary
Here we use topographic and 10Be concentration data to optimise a coastal evolution model. Cliff retreat rates are calculated for two UK sites for the past 8000 years and, for the first time, highlight a strong link between the rate of sea level rise and long-term cliff retreat rates. This method enables us to study past cliff response to sea level rise and so to greatly improve forecasts of future responses to accelerations in sea level rise that will result from climate change.
Cited articles
Allen, J. and Smith, D.: Characterizing the Impact of Geometric
Simplification on Large Woody Debris Using CFD,
International J. Hydraul. Eng., 1, 1–14, 2012.
Anlauf, K. J., Gaeuman, W., and Jones, K. K.: Detection of Regional Trends
in Salmonid Habitat in Coastal Streams, Oregon,
T. Am. Fish. Soc., 140, 52–66, 2011.
Anlauf-Dunn, K. J., Ward, E. J., Strickland, M., and Jones, K.: Habitat
connectivity, complexity, and quality: predicting adult coho salmon
occupancy and abundance, Can. J. Fish. Aquat. Sci.,
71, 1864–1876, 2014.
Beechie, T. J. and Sibley, T. H.: Relationships between channel
characteristics, woody debris, and fish habitat in northwestern Washington
streams, T. Am. Fish. Soc., 126, 217–229, 1997.
Bell, E., Duffy, W. G., and Roelofs, T. D.: Fidelity and Survival of
Juvenile Coho Salmon in Response to a Flood, T. Am. Fish. Soc., 130, 450–458, 2001.
Benke, A. C. and Wallace, J. B.: Influence of wood on invertebrate
communities in streams and rivers, in: The ecology and management of wood in world rivers, edited by: Gregory, S. V., Boyer, K. L, Gurnell, A. M., American
Fisheries Society, Symposium 37, Bethesda, Maryland, 37,
149–177, 2010.
Beschta, R. L.: Debris removal and its effects on sedimentation in an Oregon
Coast Range stream, Northwest Sci., 53, 71–77, 1979.
Biron, P. M., Carrè, D. M., and Gaskin, S. J.: Hydraulics Of Stream Deflectors Used In Fish-habitat Restoration Schemes, WIT Trans. Ecol. Envir., 124, 305–314, 2009.
Biron, P. M., Carver, R. B., and Carré, D. M.: Sediment transport and
flow dynamics around a restored pool in a fish habitat rehabilitation
project: field and 3-D numerical modelling experiments,
River Res. Appl., 28, 926–939, 2012.
Bisson, P. A., Bilby, R. E., Bryant, M. D., Dolloff, C. A., Grette, G. B.,
House, R. A., Murphy, M. L., Koski, K. V., and Sedell, J. R.: Large woody
debris in forested streams in the Pacific Northwest: past, present, and
future, in: Streamside management, forestry and fishery interactions. Institute of Forest Research, University of Washington, Seattle, 1987.
Bisson, P. A., Sullivan, K., and Nielsen, J. L.: Channel hydraulics, habitat
use, and body form of juvenile coho salmon, steelhead, and cutthroat trout
in streams, T. Am. Fish. Soc., 117, 262–273,
1988.
Bradford, M. J. and Higgins, P. S.: Habitat-, season-, and size-specific
variation in diel activity patterns of juvenile chinook salmon (Oncorhynchus
tshawytscha) and steelhead trout (Oncorhynchus mykiss), Can. J. Fish. Aquat. Sci., 58, 365–374, 2001.
Bradford, M. J., Taylor, G. C., Allan, J. A., and Higgins, P. S.: An
Experimental Study of the Stranding of Juvenile Coho Salmon and Rainbow
Trout during Rapid Flow Decreases under Winter Conditions,
N. Am. J. Fish. Manage., 15, 473–479, 1995.
Branco, P., Boavida, I., Santos, J. M., Pinheiro, A., and Ferreira, M. T.:
Boulders as building blocks: improving habitat and river connectivity for
stream fish, Ecohydrology, 6, 627–634, 2013.
Brooks, A. P., Howell, T., Abbe, T. B., and Arthington, A. H.: Confronting
hysteresis: Wood based river rehabilitation in highly altered riverine
landscapes of south-eastern Australia, Geomorphology, 79, 395–422, 2006.
Brown, L. R., Moyle, P. B., and Yoshiyama, R. M.: Historical Decline and
Current Status of Coho Salmon in California, N. Am. J. Fish. Manage., 14, 237–261, 1994.
Buffington, J. M. and Montgomery, D. R.: Effects of hydraulic roughness on
surface textures of gravel-bed rivers, Water Resour. Res., 35, 3507–3521,
1999a.
Buffington, J. M. and Montgomery, D. R.: A procedure for classifying
textural facies in gravel-bed rivers, Water Resour. Res., 35, 1903–1914,
1999b.
Bustard, D. R. and Narver, D. W.: Aspects of the Winter Ecology of Juvenile
Coho Salmon (Oncorhynchus kisutch) and Steelhead Trout (Salmo gairdneri),
J. Fish. Res. Board Can., 32, 667–680, 1975a.
Bustard, D. R. and Narver, D. W.: Preferences of juvenile coho salmon (Oncorhynchus-kisutch) and cutthroat trout (Salmo-clarki) relative to simulated alteration of winter habitat, J. Fish. Res. Board Can., 32, 681–687,
1975b.
Carnie, R., Tonina, D., McKean, J. A., and Isaak, D.: Habitat connectivity
as a metric for aquatic microhabitat quality: application to Chinook salmon
spawning habitat, Ecohydrology, 9, 982–994, 2016.
Cederholm, C. J., Bilby, R. E., Bisson, P. A., Bumstead, T. W., Fransen, B.
R., Scarlett, W. J., and Ward, J. W.: Response of Juvenile Coho Salmon and
Steelhead to Placement of Large Woody Debris in a Coastal Washington Stream,
N. Am. J. Fish. Manage., 17, 947–963, 1997.
Cienciala, P. and Hassan, M. A.: Linking spatial patterns of bed surface
texture, bed mobility, and channel hydraulics in a mountain stream to
potential spawning substrate for small resident trout, Geomorphology, 197,
96–107, 2013.
Cienciala, P. and Hassan, M. A.: Sampling variability in estimates of flow
characteristics in coarse-bed channels: Effects of sample size, Water
Resour. Res., 52, 1899–1922, 2016.
Collins, B. D., Montgomery, D. R., and Haas, A. D.: Historical changes in
the distribution and functions of large wood in Puget Lowland rivers,
Can. J. Fish. Aquat. Sci., 59, 66–76, 2002.
Connolly, P. J. and Hall, J. D.: Biomass of coastal cutthroat trout in
unlogged and previously clear-cut basins in the central coast range of
Oregon, T. Am. Fish. Soc., 128, 890–899, 1999.
Crowder, D. W. and Diplas, P.: Using two-dimensional hydrodynamic models at
scales of ecological importance, J. Hydrol., 230, 172–191, 2000.
Cunjak, R. A.: Behavior and microhabitat of young atlantic salmon
(salmo-salar) during winter, Can. J. Fish. Aquat. Sci., 45, 2156–2160, 1988.
Cunjak, R. A.: Winter habitat of selected stream fishes and potential
impacts from land-use activity, Can. J. Fish. Aquat. Sci., 53, 267–282, 1996.
Daniels, M. D. and Rhoads, B. L.: Influence of a large woody debris
obstruction on three-dimensional flow structure in a meander bend,
Geomorphology, 51, 159–173, 2003.
Daniels, M. D. and Rhoads, B. L.: Effect of large woody debris configuration
on three-dimensional flow structure in two low-energy meander bends at
varying stages, Water Resour. Res., 40, W11302, https://doi.org/10.1029/2004WR003181, 2004a.
Daniels, M. D. and Rhoads, B. L.: Spatial Pattern of Turbulence Kinetic
Energy and Shear Stress in a Meander Bend with Large Woody Debris,
Water Sci. Appl., 87–97, https://doi.org/10.1029/008WSA07, 2004b.
Davidson, S. L. and Eaton, B. C.: Modeling channel morphodynamic response to
variations in large wood: Implications for stream rehabilitation in degraded
watersheds, Geomorphology, 202, 59–73, 2013.
Dingman, S. L.: Physical hydrology, Prentice Hall, Upper Saddle River, N.J.,
2002.
Dolloff, C. and Warren Jr., M. L.: Fish relationships with large wood in
small streams, Am. Fish. S. S., 37, 179–193, 2003.
Dolloff, C. A.: Effects of stream cleaning on juvenile coho salmon and dolly
varden in Southeast Alaska, T. Am. Fish. Soc.,
115, 743–755, 1986.
Fausch, K. D. and Northcote, T. G.: Large Woody Debris and Salmonid Habitat
in a Small Coastal British Columbia Stream, Can. J. Fish. Aquat. Sci., 49, 682–693, 1992.
Ferguson, R. I.: River channel slope, flow resistance, and gravel
entrainment thresholds, Water Resour. Res., 48, W05517, https://doi.org/10.1029/2011wr010850, 2012.
Fukuda, S., Tanakura, T., Hiramatsu, K., and Harada, M.: Assessment of
spatial habitat heterogeneity by coupling data-driven habitat suitability
models with a 2-D hydrodynamic model in small-scale streams,
Ecol. Inform., 29, 147–155, 2015.
Gallagher, S. P., Thompson, S., and Wright, D. W.: Identifying factors
limiting coho salmon to inform stream restoration in coastal Northern
California, Calif. Fish Game, 98, 185–201, 2012.
Gallagher, S. P., Ferreira, J., Lang, E., Holloway, W., and Wright, D. W.:
Investigation of the relationship between physical habitat and salmonid
abundance in two coastal northern California streams,
Calif. Fish Game, 100, 683–702, 2014.
Gerhard, M. and Reich, M.: Restoration of streams with large wood: Effects
of accumulated and built-in wood on channel morphology, habitat diversity
and aquatic fauna, Int. Rev. Hydrobiol., 85, 123–137, 2000.
Glova, G. J. and McInerney, J. E.: Critical Swimming Speeds of Coho Salmon
(Oncorhynchus kisutch) Fry to Smolt Stages in Relation to Salinity and
Temperature, J. Fish. Res. Board Can., 34, 151–154,
1977.
Gurnell, A. M., Piegay, H., Swanson, F. J., and Gregory, S. V.: Large wood
and fluvial processes, Freshwater Biol., 47, 601–619, 2002.
Gustafsson, P., Greenberg, L. A., and Bergman, E. V. A.: The influence of
large wood on brown trout (Salmo trutta) behaviour and surface foraging,
Freshwater Biol., 57, 1050–1059, 2012.
Hafs, A. W., Harrison, L. R., Utz, R. M., and Dunne, T.: Quantifying the
role of woody debris in providing bioenergetically favorable habitat for
juvenile salmon, Ecol. Model., 285, 30–38, 2014.
Harmon, M. E., Franklin, J. F., Swanson, F. J., Sollins, P., Gregory, S. V.,
Lattin, J. D., Anderson, N. H., Cline, S. P., Aumen, N. G., Sedell, J. R.,
Lienkaemper, G. W., Cromack, K., and Cummins, K. W.: Ecology of Coarse Woody
Debris in Temperate Ecosystems, Adv. Ecol. Res., 15,
133–302, 1986.
Hartman, G. F.: The Role of Behavior in the Ecology and Interaction of
Underyearling Coho Salmon (Oncorhynchus kisutch) and Steelhead Trout (Salmo
gairdneri), J. Fish. Res. Board Can., 22,
1035–1081, 1965.
Hassan, M. A., Church, M., Lisle, T. E., Brardinoni, F., Benda, L., and
Grant, G. E.: Sediment transport and channel morphology of small, forested
streams, J. Am. Water Resour. Assoc., 41, 853–876, 2005.
Hatten, J. R., Batt, T. R., Scoppettone, G. G., and Dixon, C. J.: An
Ecohydraulic Model to Identify and Monitor Moapa Dace Habitat, PLOS ONE, 8,
e55551, https://doi.org/10.1371/journal.pone.0055551, 2013.
Hawkins, D. K. and Quinn, T. P.: Critical swimming velocity and associated
morphology of juvenile coastal cutthroat trout (Oncorhynchus clarki clarki),
steelhead trout (Oncorhynchus mykiss), and their hybrids, Can. J. Fish. Aquat. Sci., 53, 1487–1496, 1996.
He, Z., Wu, W., and Shields Jr., F. D.: Numerical analysis of effects of
large wood structures on channel morphology and fish habitat suitability in
a Southern US sandy creek, Ecohydrology, 2, 370–380, 2009.
House, R. A. and Boehne, P. L.: Effects of Instream Structures on Salmonid
Habitat and Populations in Tobe Creek, Oregon,
N. Am. J. Fish. Manage., 6, 38–46, 1986.
Huusko, A., Greenberg, L., Stickler, M., Linnansaari, T., Nykanen, M.,
Vehanen, T., Koljonen, S., Louhi, P., and Alfredsen, K.: Life in the ice
lane: The winter ecology of stream salmonids,
River Res. Appl., 23, 469–491, 2007.
Jahnig, S. C. and Lorenz, A. W.: Substrate-specific macroinvertebrate
diversity patterns following stream restoration, Aquat. Sci., 70,
292–303, 2008.
Jang, C.-L. and Shimizu, Y.: Numerical Simulation of Relatively Wide,
Shallow Channels with Erodible Banks, J. Hydraul. Eng., 131,
565–575, 2005.
Johnson, S. L., Rodgers, J. D., Solazzi, M. F., and Nickelson, T. E.:
Effects of an increase in large wood on abundance and survival of juvenile
salmonids (Oncorhynchus spp.) in an Oregon coastal stream, Can. J. Fish. Aquat. Sci., 62, 412–424, 2005.
Jones, K. K., Anlauf-Dunn, K., Jacobsen, P. S., Strickland, M., Tennant, L.,
and Tippery, S. E.: Effectiveness of Instream Wood Treatments to Restore
Stream Complexity and Winter Rearing Habitat for Juvenile Coho Salmon,
T. Am. Fish. Soc., 143, 334–345, 2014.
Kafle, M. and Shakya, N.: Two-Dimensional Hydrodynamic Modelling of Koshi
River and Prediction of Inundation Parameters, Hydrology: Current
Research, 9, 298, https://doi.org/10.4172/2157-7587.1000298, 2018.
Kail, J.: Influence of large woody debris on the morphology of six central
European streams, Geomorphology, 51, 207–223, 2003.
Katz, S. B., Segura, C., and Warren, D. R.: The influence of channel bed
disturbance on benthic Chlorophyll a: A high resolution perspective,
Geomorphology, 305, 141–153, 2018.
Kean, J. W. and Smith, J. D.: Form drag in rivers due to small-scale natural
topographic features: 1. Regular sequences, J. Geophys. Res.-Earth, 111, F04009, https://doi.org/10.1029/2006JF000467, 2006.
Lai, Y., Smith, D., Bandrowski, D., Liu, X., and Wu, K.: Three Dimensional
Computational Modeling of Flows through an Engineered Log Jam, World
Environmental and Water Resources Congress 2017, Sacramento, California, 16–23, 2017.
Laliberte, J. J., Post, J. R., and Rosenfeld, J. S.: Hydraulic geometry and
longitudinal patterns of habitat quantity and quality for rainbow trout
(Oncorhynchus mykiss), River Res. Appl., 30, 593–601, 2014.
Lee, J. H., Kil, J. T., and Jeong, S.: Evaluation of physical fish habitat
quality enhancement designs in urban streams using a 2-D hydrodynamic model,
Ecol. Eng., 36, 1251–1259, 2010.
Lisle, T. E.: Stabilization of a gravel channel by large streamside
obstructions and bedrock bends, Jacoby Creek, northwestern California, GSA
Bulletin, 97, 999–1011, 1986.
Lisle, T. E. and Lewis, J.: Effects of sediment transport on survival of
salmonid embryos in a natural stream – A simulation approach, Can. J. Fish. Aquat. Sci., 49, 2337–2344, 1992.
Lisle, T. E., Nelson, J. M., Pitlick, J., Madej, M. A., and Barkett, B. L.:
Variability of bed mobility in natural, gravel-bed channels and adjustments
to sediment load at local and reach scales, Water Resour. Res., 36,
3743–3755, 2000.
Manners, R. B., Doyle, M. W., and Small, M. J.: Structure and hydraulics of
natural woody debris jams, Water Resour. Res., 43, W06432, https://doi.org/10.1029/2006WR004910, 2007.
McMahon, T. E. and Hartman, G. F.: Influence of Cover Complexity and Current
Velocity on Winter Habitat Use by Juvenile Coho Salmon (Oncorhynchus
kisutch), Can. J. Fish. Aquat. Sci., 46, 1551–1557,
1989.
Merten, E., Finlay, J., Johnson, L., Newman, R., Stefan, H., and Vondracek,
B.: Factors influencing wood mobilization in streams, Water Resour. Res.,
46, W10514, https://doi.org/10.1029/2009WR008772, 2010.
Montgomery, D. R. and Buffington, J. M.: Channel-reach morphology in
mountain drainage basins, Geol. Soc. Am. Bull., 109,
596–611, 1997.
Montgomery, D. R., Buffington, J. M., Smith, R. D., Schmidt, K. M., and
Pess, G.: Pool Spacing in Forest Channels, Water Resour. Res., 31,
1097–1105, 1995.
Mueller, E. R. and Pitlick, J.: Sediment supply and channel morphology in
mountain river systems: 2. Single thread to braided transitions, J. Geophys. Res.-Earth, 119, 1516–1541, 2014.
Mueller, E. R., Pitlick, J., and Nelson, J. M.: Variation in the reference
shields stress for bed load transport in gravel-bed streams and rivers,
Water Resour. Res., 41, W04006, https://doi.org/10.1029/2004WR003692, 2005.
Mutz, M., Kalbus, E., and Meinecke, S.: Effect of instream wood on vertical
water flux in low-energy sand bed flume experiments, Water Resour. Res., 43, W10424, https://doi.org/10.1029/2006WR005676, 2007.
Nagaya, T., Shiraishi, Y., Onitsuka, K., Higashino, M., Takami, T., Otsuka,
N., Akiyama, J., and Ozeki, H.: Evaluation of suitable hydraulic conditions
for spawning of ayu with horizontal 2-D numerical simulation and PHABSIM,
Ecol. Model., 215, 133–143, 2008.
Nelson, J. M., Shimizu, Y., Abe, T., Asahi, K., Gamou, M., Inoue, T.,
Iwasaki, T., Kakinuma, T., Kawamura, S., Kimura, I., Kyuka, T., McDonald, R.
R., Nabi, M., Nakatsugawa, M., Simões, F. R., Takebayashi, H., and
Watanabe, Y.: The international river interface cooperative: Public domain
flow and morphodynamics software for education and applications, Adv. Water Res., 93, 62–74, 2016.
Nicholas, A. P.: Investigation of spatially distributed braided river flows
using a two-dimensional hydraulic model, Earth Surf. Proc. Land., 28, 655–674, 2003.
Nickelson, T. E. and Lawson, P. W.: Population viability of coho salmon,
Oncorhynchus kisutch, in Oregon coastal basins: application of a
habitat-based life cycle model, Can. J. Fish. Aquat. Sci., 55, 2383–2392, 1998.
Nickelson, T. E., Rodgers, J. D., Johnson, S. L., and Solazzi, M. F.:
Seasonal-changes in habitat use by juvenile coho salmon
(Oncorhynchus-kisutch) in Oregon Coastal Streams, Can. J. Fish. Aquat. Sci., 49, 783–789, 1992a.
Nickelson, T. E., Solazzi, M. F., Johnson, S. L., and Rodgers, J. D.:
Effectiveness of Selected Stream Improvement Techniques to Create Suitable
Summer and Winter Rearing Habitat for Juvenile Coho Salmon (Oncorhynchus
kisutch) in Oregon Coastal Streams, Can. J. Fish. Aquat. Sci., 49, 790–794, 1992b.
NMFS: (National Marine Fisheries Service) Recovery Plan for Oregon Coast
CohoSalmon Evolutionarily Significant Unit, National Marine Fisheries
Service, West Coast Region, Portland, Oregon, 2016.
Paola, C.: Incoherent structures: turbulence as a metaphor for stream
braiding, in: Coherent Flow Structures in Open Channels, edited by: Ashworth, P. J., Bennett, S. J., Best, J. L., and McLelland, S. J., John Wiley & Sons, Ltd, Chichester, 1996.
Pess, G. R., Liermann, M. C., McHenry, M. L., Peters, R. J., and Bennett, T.
R.: Juvenile salmon response to the placement of engineered log jams (eljs)
in the Elwha River,Washington State, USA, River Res. Appl.,
28, 872–881, 2012.
Quinn, T. P. and Peterson, N. P.: The influence of habitat complexity and
fish sire on over-winter survival and growth of individually marked juvenile
coho salmon (Oncorhynchus kisutch) in Big Beef creek, Washington, Can. J. Fish. Aquat. Sci., 53, 1555–1564, 1996.
Rimmer, D. M., Paim, U., and Saunders, R. L.: Autumnal Habitat Shift of
Juvenile Atlantic Salmon (Salmo salar) in a Small River, Can. J. Fish. Aquat. Sci., 40, 671–680, 1983.
Roni, P. and Quinn, T. P.: Density and size of juvenile salmonids in
response to placement of large woody debris in western Oregon and Washington
streams, Can. J. Fish. Aquat. Sci., 58, 282–292,
2001.
Roni, P., Hanson, K., and Beechie, T.: Global review of the physical and
biological effectiveness of stream habitat rehabilitation techniques, N. Am. J. Fish. Manage., 28, 856–890, 2008.
Roni, P., Beechie, T., Pess, G., and Hanson, K.: Wood placement in river
restoration: fact, fiction, and future direction, Can. J. Fish. Aquat. Sci., 72, 466–478, 2014.
Rosenberger, A. E. and Dunham, J. B.: Validation of Abundance Estimates from
Mark–Recapture and Removal Techniques for Rainbow Trout Captured by
Electrofishing in Small Streams, N. Am. J. Fish. Manage., 25, 1395–1410, 2005.
Ruiz Villanueva, V., Bladé Castellet, E., Díez-Herrero, A.,
Bodoque, J. M., and Sánchez-Juny, M.: Two-dimensional modelling of large
wood transport during flash floods, Earth Surf. Proc. Land.,
39, 438–449, 2014.
Ruiz-Villanueva, V., Wyżga, B., Zawiejska, J., Hajdukiewicz, M., and
Stoffel, M.: Factors controlling large-wood transport in a mountain river,
Geomorphology, 272, 21–31, 2016.
Scheingross, J. S., Winchell, E. W., Lamb, M. P., and Dietrich, W. E.:
Influence of bed patchiness, slope, grain hiding, and form drag on gravel
mobilization in very steep streams, J. Geophys. Res.-Earth, 118, 982–1001, 2013.
Sedell, J. R., Bisson, P. A., Swanson, F. J., and Gregory, S. V.: What we
know about large trees that fall into streams and rivers, in: From the
forest to the sea: a story of fallen trees, edited by: Maser, C., Tarrant, R. F.,
Trappe, J. M., and Franklin, J. F., U.S. Department of Agriculture,
Forest Service, Pacific Northwest Research Station, U.S. Department of the
Interior, Bureau of Land Management, Portland, OR, 1988.
Segura, C. and Pitlick, J.: Coupling fluvial-hydraulic models to predict
gravel transport in spatially variable flows, J. Geophys. Res.-Earth,
120, 834–855, https://doi.org/10.1002/2014JF003302, 2015.
Seo, J. I., Nakamura, F., Nakano, D., Ichiyanagi, H., and Chun, K. W.:
Factors controlling the fluvial export of large woody debris, and its
contribution to organic carbon budgets at watershed scales, Water Resour.
Res., 44, W04428, https://doi.org/10.1029/2007WR006453, 2008.
Shen, Y. and Diplas, P.: Application of two- and three-dimensional
computational fluid dynamics models to complex ecological stream flows,
J. Hydrol., 348, 195–214, 2008.
Shimizu, Y., Takebayashi, H., Inoue, T., Hamaki, M., Iwasaki, T.,
and Nabi, M.: Nays2DH solver manual, available at: http://i-ric.org/en (last access: August 2019), 2014.
Smith, R. D., Sidle, R. C., and Porter, P. E.: Effects on bedload transport
of experimental removal of woody debris from a forest gravel-bed stream,
Earth Surf. Proc. Land., 18, 455–468, 1993a.
Smith, R. D., Sidle, R. C., Porter, P. E., and Noel, J. R.: Effects of
experimental removal of woody debris on the channel morphology of a forest,
gravel-bed stream, J. Hydrol., 152, 153–178, 1993b.
Smith, S. M. and Prestegaard, K. L.: Hydraulic performance of a
morphology-based stream channel design, Water Resour. Res., 41, W11413, https://doi.org/10.1029/2004WR003926, 2005.
Stednick, J. D.: Hydrological and biological responses to forest practices:
the Alsea Watershed study, Springer, New York, 2008.
Suring, E., Constable Jr., R. J., Lorion, C. M., Miller, B. A., and Wiley, D. J.: Salmonid life cycle monitoring in western Oregon streams, 2009–2011,
Monitoring Program Report Number OPSW-ODFW-2012-2, Oregon Department of Fish and Wildlife, Salem, OR, 2012.
Swales, S. and Levings, C. D.: Role of Off-Channel Ponds in the Life Cycle
of Coho Salmon (Oncorhynchus kisutch) and Other Juvenile Salmonids in the
Coldwater River, British Columbia, Can. J. Fish. Aquat. Sci., 46, 232–242, 1989.
Takebayashi, H., Egashira, S., and Okabe, T.: Numerical analysis of braided
streams formed on beds with non-uniform sediment,
Proceedings of hydraulic engineering, 47, 631–636, 2003.
Tamminga, A. D., Eaton, B. C., and Hugenholtz, C. H.: UAS-based remote
sensing of fluvial change following an extreme flood event, Earth Surf. Proc. Land., 40, 1464–1476, 2015.
Taylor, E. B. and McPhail, J. D.: Variation in Burst and Prolonged Swimming
Performance Among British Columbia Populations of Coho Salmon, Oncorhynchus
kisutch, Can. J. Fish. Aquat. Sci., 42, 2029–2033,
1985.
Thompson, D. M. and Fixler, S. A.: Formation and maintenance of a forced
pool-riffle couplet following loading of large wood, Geomorphology, 296,
74–90, 2017.
Triska, F. J. and Cromack Jr., K.: The role of wood debris in forests and
streams, in: Forests: fresh perspectives from ecosystem analysis,
Proceedings of the 40th Annual Biology Colloquium, Press, edited by: Waring, R. H., Oregon State University Press, Corvallis, OR, 1980.
Tschaplinski, P. J. and Hartman, G. F.: Winter Distribution of Juvenile Coho
Salmon (Oncorhynchus kisutch) Before and After Logging in Carnation Creek,
British Columbia, and Some Implications for Overwinter Survival, Can. J. Fish. Aquat. Sci., 40, 452–461, 1983.
Venter, O., Grant, J. W. A., Noël, M. V., and Kim, J.-W.: Mechanisms
underlying the increase in young-of-the-year Atlantic salmon (Salmo salar)
density with habitat complexity, Can. J. Fish. Aquat. Sci., 65, 1956–1964, 2008.
Wall, C. E., Bouwes, N., Wheaton, J. M., Bennett, S. N., Saunders, W. C.,
McHugh, P. A., and Jordan, C. E.: Design and monitoring of woody structures
and their benefits to juvenile steelhead (Oncorhynchus mykiss) using a net
rate of energy intake model, Can. J. Fish. Aquat. Sci., 74, 727–738, 2016.
Whiteway, S. L., Biron, P. M., Zimmermann, A., Venter, O., and Grant, W. A.:
Do in-stream restoration structures enhance salmonid abundance? A
meta-analysis, Can. J. Fish. Aquat. Sci., 67,
831–841, 2010.
Wilcock, P. R. and McArdell, B. W.: Surface-based fractional transport rates
– mobilization thresholds and partial transport of a sand-gravel sediment,
Water Resour. Res., 29, 1297–1312, 1993.
Wipfli, M. S., Richardson, J. S., and Naiman, R. J.: Ecological linkages
between headwaters and downstream ecosystems: Transport of organic matter,
invertebrates, and wood down headwater channels, J. Am. Water Resour.
Assoc., 43, 72–85, 2007.
Wohl, E. and Jaeger, K.: A conceptual model for the longitudinal
distribution of wood in mountain streams, Earth Surf. Proc. Land., 34, 329–344, 2009.
Wohl, E. and Scott, D. N.: Wood and sediment storage and dynamics in river
corridors, Earth Surf. Proc. Land., 42, 5–23, 2017.
Wolman, M. G.: A method of sampling coarse river bed material, Transactions
of the American Geophysical Union, 35, 951–956, 1954.
Xu, Y. and Liu, X.: 3D computational modeling of stream flow resistance due
to large woody debris, in: River Flow – Proceedings of the International Conference on Fluvial Hydraulics, RIVER FLOW 2016, CRC Press/Balkema, 2346–2353, 2016.
Xu, Y. and Liu, X.: Effects of Different In-Stream Structure Representations
in Computational Fluid Dynamics Models – Taking Engineered Log Jams (ELJ) as
an Example, Water, 9, 110, 2017.
Yabe, T., Ishikawa, T., Kadota, Y., and Ikeda, F.: A Multidimensional
Cubic-Interpolated Pseudoparticle (CIP) Method without Time Splitting
Technique for Hyperbolic Equations, J. Phys. Soc. Jpn., 59, 2301–2304, 1990.
Yager, E. M., Kirchner, J. W., and Dietrich, W. E.: Calculating bed load
transport in steep boulder bed channels, Water Resour. Res., 43, W07418, https://doi.org/10.1029/2006WR005432, 2007.
Short summary
Large wood (LW) pieces are often part of fish habitat restoration projects. We investigated reach-scale changes after the addition of LW that are relevant to juvenile coho salmon. A survivable habitat for juvenile coho was characterized in terms of critical swim speed and bed stability. Model predictions showed that survivable habitat increased by 86–128 % in terms of flow velocity and bed stability. Our findings are applicable to stream restoration efforts throughout the Pacific Northwest.
Large wood (LW) pieces are often part of fish habitat restoration projects. We investigated...