Articles | Volume 8, issue 2
https://doi.org/10.5194/esurf-8-555-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-8-555-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantifying sediment mass redistribution from joint time-lapse gravimetry and photogrammetry surveys
Department of Space, Earth and Environment, Chalmers University of Technology, Onsala Space Observatory, 439 92 Onsala, Sweden
Philippe Steer
Géosciences Rennes, UMR 6118, CNRS, Université Rennes, Rennes, 35000, France
Kuo-Jen Chang
Department of Civil Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
Nicolas Le Moigne
Géosciences Montpellier, UMR CNRS/UM2 5243, Université Montpellier 2, CNRS, Montpellier, France
Cheinway Hwang
Department of Civil Engineering, National Chiao Tung University, Hsinchu, 30010, Taiwan
Wen-Chi Hsieh
Industrial Technology Research Institute, Hsinchu, 31040, Taiwan
Louise Jeandet
Géosciences Rennes, UMR 6118, CNRS, Université Rennes, Rennes, 35000, France
Laurent Longuevergne
Géosciences Rennes, UMR 6118, CNRS, Université Rennes, Rennes, 35000, France
Ching-Chung Cheng
Department of Civil Engineering, National Chiao Tung University, Hsinchu, 30010, Taiwan
Jean-Paul Boy
Institut de Physique du Globe de Strasbourg, CNRS – Université de Strasbourg UMR 7516 – Ecole et Observatoire des Sciences de la Terre, Strasbourg, 67084 CEDEX, France
Frédéric Masson
Institut de Physique du Globe de Strasbourg, CNRS – Université de Strasbourg UMR 7516 – Ecole et Observatoire des Sciences de la Terre, Strasbourg, 67084 CEDEX, France
Related authors
Lucas Pelascini, Philippe Steer, Maxime Mouyen, and Laurent Longuevergne
Nat. Hazards Earth Syst. Sci., 22, 3125–3141, https://doi.org/10.5194/nhess-22-3125-2022, https://doi.org/10.5194/nhess-22-3125-2022, 2022
Short summary
Short summary
Landslides represent a major natural hazard and are often triggered by typhoons. We present a new 2D model computing the respective role of rainfall infiltration, atmospheric depression and groundwater in slope stability during typhoons. The results show rainfall is the strongest factor of destabilisation. However, if the slope is fully saturated, near the toe of the slope or during the wet season, rainfall infiltration is limited and atmospheric pressure change can become the dominant factor.
Maxime Mouyen, Romain Plateaux, Alexander Kunz, Philippe Steer, and Laurent Longuevergne
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-233, https://doi.org/10.5194/gmd-2021-233, 2021
Preprint withdrawn
Short summary
Short summary
LAPS is an easy to use Matlab code that allows simulating the transport of particles in the ocean without any programming requirement. The simulation is based on publicly available ocean current velocity fields and allows to output particles spatial distribution and trajectories at time intervals defined by the user. After explaining how LAPS is working, we show a few examples of applications for studying sediment transport or plastic littering. The code is available on Github.
Thomas Geffroy, Philippe Yamato, Philippe Steer, Benjamin Guillaume, and Thibault Duretz
Solid Earth, 16, 1289–1306, https://doi.org/10.5194/se-16-1289-2025, https://doi.org/10.5194/se-16-1289-2025, 2025
Short summary
Short summary
While erosion's role in mountain building is well known, deformation from valley incision in inactive regions is less understood. Using our numerical models, we show that incision alone can cause significant crustal deformation and drive lower crust exhumation. This is favored in areas with thick crust, weak lower crust, and high plateaux. Our results show surface processes can reshape Earth's surface over time.
Marie-Françoise Lalancette, Guy Wöppelmann, Sylvain Lucas, Roger Bayer, Jean-Daniel Bernard, Jean-Paul Boy, Nicolas Florsch, Jacques Hinderer, Nicolas Le Moigne, Muriel Llubes, Bernard Luck, and Didier Rouxel
Earth Syst. Sci. Data, 17, 5859–5870, https://doi.org/10.5194/essd-17-5859-2025, https://doi.org/10.5194/essd-17-5859-2025, 2025
Short summary
Short summary
This study presents 25 years of carefully processed gravity measurements from western France, offering a unique dataset to support investigations of long-term land motion and sea level change. The data are consistent with satellite-based observations and are made available for use in future geophysical and climate-related research.
Alvaro Santamaría-Gómez, Jean-Paul Boy, Florent Feriol, Médéric Gravelle, Sylvain Loyer, Samuel Nahmani, Joëlle Nicolas, José Luis García Pallero, Aurélie Panetier, Arnaud Pollet, Pierre Sakic, and Guy Wöppelmann
Earth Syst. Sci. Data, 17, 5833–5840, https://doi.org/10.5194/essd-17-5833-2025, https://doi.org/10.5194/essd-17-5833-2025, 2025
Short summary
Short summary
Spotgins is a cooperative of several research groups producing a consistent and high-quality set of Global Navigation Satellite Systems (GNSS) daily position time series. Each group contributes to the global network using the same processing. The Spotgins series are valuable for the understanding of subtle deformations of the Earth's surface at the millimeter level that include tectonics, earthquakes, ground subsidence, post-glacial rebound, hydrological loading, and volcanic deformation.
Coline Ariagno, Philippe Steer, Pierre G. Valla, and Benjamin Campforts
Earth Surf. Dynam., 13, 1109–1132, https://doi.org/10.5194/esurf-13-1109-2025, https://doi.org/10.5194/esurf-13-1109-2025, 2025
Short summary
Short summary
This study explore the impact of landslides on Alpine terrain using a landscape evolution model called
Hyland, which enables long-term topographical analysis. Our finding reveal that landslides are concentrated at two specific elevations over time and predominantly affect the highest and steepest slopes, particularly along ridges and crests. This study is part of a broader question concerning the origin of accelerated erosion during the Quaternary period.
Marion Fournereau, Laure Guerit, Philippe Steer, Jean-Jacques Kermarrec, Paul Leroy, Christophe Lanos, Hélène Hivert, Claire Astrié, and Dimitri Lague
EGUsphere, https://doi.org/10.5194/egusphere-2025-1541, https://doi.org/10.5194/egusphere-2025-1541, 2025
Short summary
Short summary
River bedrock erosion can occur by polishing and by the removal of entire blocks. We observe that when there is no to little fractures most erosion occurs by polishing whereas with more fractures, blocks can be removed at once leading to different patterns of erosion and riverbed morphology. Fractures affect barely mean erosion rate but change the location and occurrence of block removal. Our results highlight how river bedrock properties influence erosion processes and thus landscape evolution.
Alexandre Gauvain, Ronan Abhervé, Alexandre Coche, Martin Le Mesnil, Clément Roques, Camille Bouchez, Jean Marçais, Sarah Leray, Etienne Marti, Ronny Figueroa, Etienne Bresciani, Camille Vautier, Bastien Boivin, June Sallou, Johan Bourcier, Benoit Combemale, Philip Brunner, Laurent Longuevergne, Luc Aquilina, and Jean-Raynald de Dreuzy
EGUsphere, https://doi.org/10.5194/egusphere-2024-3962, https://doi.org/10.5194/egusphere-2024-3962, 2025
Preprint archived
Short summary
Short summary
HydroModPy is an open-source toolbox that makes it easier to study and model groundwater flow at catchment scale. By combining mapping tools with groundwater modeling, it automates the process of building, analyzing and deploying aquifer models. This allows researchers to simulate groundwater flow that sustains stream baseflows, providing insights for the hydrology community. Designed to be accessible and customizable, HydroModPy supports sustainable water management, research, and education.
Boris Gailleton, Philippe Steer, Philippe Davy, Wolfgang Schwanghart, and Thomas Bernard
Earth Surf. Dynam., 12, 1295–1313, https://doi.org/10.5194/esurf-12-1295-2024, https://doi.org/10.5194/esurf-12-1295-2024, 2024
Short summary
Short summary
We use cutting-edge algorithms and conceptual simplifications to solve the equations that describe surface water flow. Using quantitative data on rainfall and elevation, GraphFlood calculates river width and depth and approximates erosive power, making it a suitable tool for large-scale hazard management and understanding the relationship between rivers and mountains.
Zhen Li, Jinyun Guo, Chengcheng Zhu, Xin Liu, Cheinway Hwang, Sergey Lebedev, Xiaotao Chang, Anatoly Soloviev, and Heping Sun
Earth Syst. Sci. Data, 16, 4119–4135, https://doi.org/10.5194/essd-16-4119-2024, https://doi.org/10.5194/essd-16-4119-2024, 2024
Short summary
Short summary
A new global marine gravity model, SDUST2022GRA, is recovered from radar and laser altimeter data. The accuracy of SDUST2022GRA is 4.43 mGal on a global scale, which is at least 0.22 mGal better than that of other models. The spatial resolution of SDUST2022GRA is approximately 20 km in a certain region, slightly superior to other models. These assessments suggest that SDUST2022GRA is a reliable global marine gravity anomaly model.
Ronan Abhervé, Clément Roques, Alexandre Gauvain, Laurent Longuevergne, Stéphane Louaisil, Luc Aquilina, and Jean-Raynald de Dreuzy
Hydrol. Earth Syst. Sci., 27, 3221–3239, https://doi.org/10.5194/hess-27-3221-2023, https://doi.org/10.5194/hess-27-3221-2023, 2023
Short summary
Short summary
We propose a model calibration method constraining groundwater seepage in the hydrographic network. The method assesses the hydraulic properties of aquifers in regions where perennial streams are directly fed by groundwater. The estimated hydraulic conductivity appear to be highly sensitive to the spatial extent and density of streams. Such an approach improving subsurface characterization from surface information is particularly interesting for ungauged basins.
Philippe Steer, Laure Guerit, Dimitri Lague, Alain Crave, and Aurélie Gourdon
Earth Surf. Dynam., 10, 1211–1232, https://doi.org/10.5194/esurf-10-1211-2022, https://doi.org/10.5194/esurf-10-1211-2022, 2022
Short summary
Short summary
The morphology and size of sediments influence erosion efficiency, sediment transport and the quality of aquatic ecosystem. In turn, the spatial evolution of sediment size provides information on the past dynamics of erosion and sediment transport. We have developed a new software which semi-automatically identifies and measures sediments based on 3D point clouds. This software is fast and efficient, offering a new avenue to measure the geometrical properties of large numbers of sediment grains.
Luca Guillaumot, Laurent Longuevergne, Jean Marçais, Nicolas Lavenant, and Olivier Bour
Hydrol. Earth Syst. Sci., 26, 5697–5720, https://doi.org/10.5194/hess-26-5697-2022, https://doi.org/10.5194/hess-26-5697-2022, 2022
Short summary
Short summary
Recharge, defining the renewal rate of groundwater resources, is difficult to estimate at basin scale. Here, recharge variations are inferred from water table variations recorded in boreholes. First, results show that aquifer-scale properties controlling these variations can be inferred from boreholes. Second, groundwater is recharged by both intense and seasonal rainfall. Third, the short-term contribution appears overestimated in recharge models and depends on the unsaturated zone thickness.
Lucas Pelascini, Philippe Steer, Maxime Mouyen, and Laurent Longuevergne
Nat. Hazards Earth Syst. Sci., 22, 3125–3141, https://doi.org/10.5194/nhess-22-3125-2022, https://doi.org/10.5194/nhess-22-3125-2022, 2022
Short summary
Short summary
Landslides represent a major natural hazard and are often triggered by typhoons. We present a new 2D model computing the respective role of rainfall infiltration, atmospheric depression and groundwater in slope stability during typhoons. The results show rainfall is the strongest factor of destabilisation. However, if the slope is fully saturated, near the toe of the slope or during the wet season, rainfall infiltration is limited and atmospheric pressure change can become the dominant factor.
Clément Roques, David E. Rupp, Jean-Raynald de Dreuzy, Laurent Longuevergne, Elizabeth R. Jachens, Gordon Grant, Luc Aquilina, and John S. Selker
Hydrol. Earth Syst. Sci., 26, 4391–4405, https://doi.org/10.5194/hess-26-4391-2022, https://doi.org/10.5194/hess-26-4391-2022, 2022
Short summary
Short summary
Streamflow dynamics are directly dependent on contributions from groundwater, with hillslope heterogeneity being a major driver in controlling both spatial and temporal variabilities in recession discharge behaviors. By analysing new model results, this paper identifies the major structural features of aquifers driving streamflow dynamics. It provides important guidance to inform catchment-to-regional-scale models, with key geological knowledge influencing groundwater–surface water interactions.
Nataline Simon, Olivier Bour, Mikaël Faucheux, Nicolas Lavenant, Hugo Le Lay, Ophélie Fovet, Zahra Thomas, and Laurent Longuevergne
Hydrol. Earth Syst. Sci., 26, 1459–1479, https://doi.org/10.5194/hess-26-1459-2022, https://doi.org/10.5194/hess-26-1459-2022, 2022
Short summary
Short summary
Groundwater discharge into streams plays a major role in the preservation of stream ecosystems. There were two complementary methods, both based on the use of the distributed temperature sensing technology, applied in a headwater catchment. Measurements allowed us to characterize the spatial and temporal patterns of groundwater discharge and quantify groundwater inflows into the stream, opening very promising perspectives for a novel characterization of the groundwater–stream interface.
Maxime Mouyen, Romain Plateaux, Alexander Kunz, Philippe Steer, and Laurent Longuevergne
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-233, https://doi.org/10.5194/gmd-2021-233, 2021
Preprint withdrawn
Short summary
Short summary
LAPS is an easy to use Matlab code that allows simulating the transport of particles in the ocean without any programming requirement. The simulation is based on publicly available ocean current velocity fields and allows to output particles spatial distribution and trajectories at time intervals defined by the user. After explaining how LAPS is working, we show a few examples of applications for studying sediment transport or plastic littering. The code is available on Github.
Philippe Steer
Earth Surf. Dynam., 9, 1239–1250, https://doi.org/10.5194/esurf-9-1239-2021, https://doi.org/10.5194/esurf-9-1239-2021, 2021
Short summary
Short summary
How landscapes respond to tectonic and climatic changes is a major issue in Earth sciences. I have developed a new model that solves for landscape evolution in two dimensions using analytical solutions. Compared to numerical models, this new model is quicker and more accurate. It can compute in a single time step the topography at equilibrium of a landscape or be used to describe its evolution through time, e.g. during changes in tectonic or climatic conditions.
Thomas G. Bernard, Dimitri Lague, and Philippe Steer
Earth Surf. Dynam., 9, 1013–1044, https://doi.org/10.5194/esurf-9-1013-2021, https://doi.org/10.5194/esurf-9-1013-2021, 2021
Short summary
Short summary
Both landslide mapping and volume estimation accuracies are crucial to quantify landscape evolution and manage such a natural hazard. We developed a method to robustly detect landslides and measure their volume from repeat 3D point cloud lidar data. This method detects more landslides than classical 2D inventories and resolves known issues of indirect volume measurement. Our results also suggest that the number of small landslides classically detected from 2D imagery is underestimated.
Thomas Croissant, Robert G. Hilton, Gen K. Li, Jamie Howarth, Jin Wang, Erin L. Harvey, Philippe Steer, and Alexander L. Densmore
Earth Surf. Dynam., 9, 823–844, https://doi.org/10.5194/esurf-9-823-2021, https://doi.org/10.5194/esurf-9-823-2021, 2021
Short summary
Short summary
In mountain ranges, earthquake-derived landslides mobilize large amounts of organic carbon (OC) by eroding soil from hillslopes. We propose a model to explore the role of different parameters in the post-seismic redistribution of soil OC controlled by fluvial export and heterotrophic respiration. Applied to the Southern Alps, our results suggest that efficient OC fluvial export during the first decade after an earthquake promotes carbon sequestration.
Simon Deggim, Annette Eicker, Lennart Schawohl, Helena Gerdener, Kerstin Schulze, Olga Engels, Jürgen Kusche, Anita T. Saraswati, Tonie van Dam, Laura Ellenbeck, Denise Dettmering, Christian Schwatke, Stefan Mayr, Igor Klein, and Laurent Longuevergne
Earth Syst. Sci. Data, 13, 2227–2244, https://doi.org/10.5194/essd-13-2227-2021, https://doi.org/10.5194/essd-13-2227-2021, 2021
Short summary
Short summary
GRACE provides us with global changes of terrestrial water storage. However, the data have a low spatial resolution, and localized storage changes in lakes/reservoirs or mass change due to earthquakes causes leakage effects. The correction product RECOG RL01 presented in this paper accounts for these effects. Its application allows for improving calibration/assimilation of GRACE into hydrological models and better drought detection in earthquake-affected areas.
Cited articles
Aksoy, H. and Kavvas, M. L.:
A review of hillslope and watershed scale erosion and sediment transport models,
Catena,
64, 247–271, 2005.
Boedecker, G.:
IAGBN: Absolute Observations Data Processing Standards,
BGI-Bull. d'Information, 63, 51–57, 1988.
Bos, M. S. and Scherneck, H.-G.:
Ocean tide loading provider,
available at: http://holt.oso.chalmers.se/loading/ (last access: 18 June 2020), 2003.
Boy, J.-P.:
EOST Loading Service,
available at: http://loading.u-strasbg.fr/ (last access: 18 June 2020), 2015.
Camacho, A. G., Fernández, J., and Gottsmann, J.:
The 3-D gravity inversion package GROWTH2.0 and its application to Tenerife Island, Spain,
Comput. Geosci.,
37, 621–633, https://doi.org/10.1016/j.cageo.2010.12.003, 2011.
Carbone, D. and Greco, F.:
Review of Microgravity Observations at Mt. Etna: A Powerful Tool to Monitor and Study Active Volcanoes,
Pure Appl. Geophys.,
164, 769–790, https://doi.org/10.1007/s00024-007-0194-7, 2007.
Chang, K.-J., Chan, Y.-C., Chen, R.-F., and Hsieh, Y.-C.: Geomorphological evolution of landslides near an active normal fault in northern Taiwan, as revealed by lidar and unmanned aircraft system data, Nat. Hazards Earth Syst. Sci., 18, 709–727, https://doi.org/10.5194/nhess-18-709-2018, 2018.
Chen, C. S. and Chen, Y. L.:
The rainfall characteristics of Taiwan,
Mon. Weather Rev.,
131, 1323–1341, 2003.
Chiang, S. H. and Chang, K. T.:
The potential impact of climate change on typhoon-triggered landslides in Taiwan, 2010–2099,
Geomorphology,
133, 143–151, https://doi.org/10.1016/j.geomorph.2010.12.028, 2011.
Ching, K.-E. E., Hsieh, M.-L. L., Johnson, K. M., Chen, K.-H. H., Rau, R.-J. J., and Yang, M.:
Modern vertical deformation rates and mountain building in Taiwan from precise leveling and continuous GPS observations, 2000–2008,
J. Geophys. Res.,
116, B08406, https://doi.org/10.1029/2011JB008242, 2011.
Cook, K. L., Turowski, J. M., and Hovius, N.:
A demonstration of the importance of bedload transport for fluvial bedrock erosion and knickpoint propagation, Earth Surf. Processes,
38, 683–695, https://doi.org/10.1002/esp.3313, 2013.
Croissant, T., Lague, D., Steer, P., and Davy, P.:
Rapid post-seismic landslide evacuation boosted by dynamic river width,
Nat. Geosci.,
10, 680, https://doi.org/10.1038/ngeo3005, 2017.
Crossley, D., Hinderer, J., and Riccardi, U.:
The measurement of surface gravity.,
Rep. Prog. Phys.,
76, 46101, https://doi.org/10.1088/0034-4885/76/4/046101, 2013.
Dadson, S., Hovius, N., Pegg, S., Dade, W. B., Horng, M. J., and Chen, H.:
Hyperpycnal river flows from an active mountain belt,
J. Geophys. Res.-Earth,
110, F04016, https://doi.org/10.1029/2004JF000244, 2005.
Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M. L., Willett, S. D., Hu, J. C., Horng, M.-J. J., Chen, M.-C. C., Stark, C. P., Lague, D., and Lin, J.-C.:
Links between erosion, runoff variability and seismicity in the Taiwan orogen,
Nature,
426, 648–651, https://doi.org/10.1038/nature02150, 2003.
Darby, S. E., Hackney, C. R., Leyland, J., Kummu, M., Lauri, H., Parsons, D. R., Best, J. L., Nicholas, A. P., and Aalto, R.:
Fluvial sediment supply to a mega-delta reduced by shifting tropical-cyclone activity,
Nature,
539, 276–279, https://doi.org/10.1038/nature19809, 2016.
Deffontaines, B., Chang, K.-J., Champenois, J., Fruneau, B., Pathier, E., Hu, J.-C., Lu, S.-T., and Liu, Y.-C.:
Active interseismic shallow deformation of the Pingting terraces (Longitudinal Valley – Eastern Taiwan) from UAV high-resolution topographic data combined with InSAR time series,
Geomat. Nat. Haz. Risk,
8, 120–136, https://doi.org/10.1080/19475705.2016.1181678, 2017.
Deffontaines, B., Chang, K.-J., Champenois, J., Lin, K.-C., Lee, C.-T., Chen, R.-F., Hu, J.-C., and Magalhaes, S.: Active tectonics of the onshore Hengchun Fault using UAS DSM combined with ALOS PS-InSAR time series (Southern Taiwan), Nat. Hazards Earth Syst. Sci., 18, 829–845, https://doi.org/10.5194/nhess-18-829-2018, 2018.
Dehant, V., Defraigne, P., and Wahr, J. M.:
Tides for a convective Earth,
J. Geophys. Res.,
104, 1035–1058, 1999.
DeLisle, C. and Yanites, B. J.:
The impacts of landslides triggered by the 2009 Typhoon Morakot on landscape evolution: A mass balance approach,
Am. Geophys. Union, Fall Meet., 10–14 December 2018, Washington, D.C., USA, Abstr. #EP21C-2257,
available at: http://adsabs.harvard.edu/abs/2018AGUFMEP21C2257D (last access: 18 June 2020), 2018.
Eltner, A., Kaiser, A., Castillo, C., Rock, G., Neugirg, F., and Abellán, A.:
Image-based surface reconstruction in geomorphometry – merits, limits and developments,
Earth Surf. Dynam.,
4, 359–389, https://doi.org/10.5194/esurf-4-359-2016, 2016.
Farinotti, D., Longuevergne, L., Moholdt, G., Duethmann, D., Mölg, T., Bolch, T., Vorogushyn, S., and Güntner, A.:
Substantial glacier mass loss in the Tien Shan over the past 50 years,
Nat. Geosci.,
8, 716–722, https://doi.org/10.1038/ngeo2513, 2015.
Ferguson, J. F., Klopping, F. J., Chen, T., Seibert, J. E., Hare, J. L., and Brady, J. L.:
The 4D microgravity method for waterflood surveillance: Part 3 — 4D absolute microgravity surveys at Prudhoe Bay, Alaska,
GEOPHYSICS,
73, WA163–WA171, https://doi.org/10.1190/1.2992510, 2008.
Ferro, V. and Porto, P.:
Sediment Delivery Distributed (SEDD) Model,
J. Hydrol. Eng.,
5, 411–422, https://doi.org/10.1061/(ASCE)1084-0699(2000)5:4(411), 2000.
Fores, B., Champollion, C., Le Moigne, N., and Chery, J.:
Impact of ambient temperature on spring-based relative gravimeter measurements,
J. Geodesy,
91, 269–277, https://doi.org/10.1007/s00190-016-0961-2, 2017.
Furukawa, Y. and Ponce, J.:
Accurate, dense, and robust multiview stereopsis,
IEEE T. Pattern Anal.,
32, 1362–1376, https://doi.org/10.1109/TPAMI.2009.161, 2010.
Ge, X., Li, T., Zhang, S., and Peng, M.:
What causes the extremely heavy rainfall in Taiwan during Typhoon Morakot (2009)?,
Atmos. Sci. Lett.,
11, 46–50, 2010.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.:
The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2),
J. Climate,
30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Han, S. C., Shum, C. K., Bevis, M., Ji, C., and Kuo, C.-Y.:
Crustal Dilatation Observed by GRACE After the 2004 Sumatra-Andaman Earthquake,
Science,
313, 658–663, https://doi.org/10.1126/science.1128661, 2006.
Hare, J. L., Ferguson, J. F., and Brady, J. L.:
The 4D microgravity method for waterflood surveillance: Part IV – Modeling and interpretation of early epoch 4D gravity surveys at Prudhoe Bay, Alaska,
GEOPHYSICS,
73, WA173–WA180, https://doi.org/10.1190/1.2991120, 2008.
Hinderer, J., Crossley, D., and Warburton, R. J.:
Superconducting Gravimetry, in: Treatise on Geophysics, 2nd edn., edited by: Schubert, G., Elsevier, Oxford, UK, 59–115, https://doi.org/10.1016/B978-0-444-53802-4.00062-2, 2015.
Ho, C. S.:
A synthesis of the geologic evolution of Taiwan,
Tectonophysics,
125, 1–16, 1986.
Horton, A. J., Constantine, J. A., Hales, T. C., Goossens, B., Bruford, M. W., and Lazarus, E. D.:
Modification of river meandering by tropical deforestation,
Geology,
45, 511–514, https://doi.org/10.1130/G38740.1, 2017.
Hovius, N., Stark, C. P., Tsu, C. H., Chuan, L. J., Hao-tsu, C., Jiun-chuan, L., Chu, H. T., and Lin, J. C.:
Supply and removal of sediment in a landslide-dominated mountain belt: Central Range, Taiwan,
J. Geol.,
108, 73–89, 2000.
Hovius, N., Meunier, P., Lin, C.-W. W., Chen, H., Chen, Y.-G. G., Dadson, S., Horng, M.-J. J., and Lines, M.:
Prolonged seismically induced erosion and the mass balance of a large earthquake,
Earth Planet. Sci. Lett.,
304, 347–355, https://doi.org/10.1016/j.epsl.2011.02.005, 2011.
Hsieh, M.-L. and Capart, H.:
Late Holocene episodic river aggradation along the Lao-nong River (southwestern Taiwan): An application to the Tseng-wen Reservoir Transbasin Diversion Project,
Eng. Geol.,
159, 83–97, https://doi.org/10.1016/J.ENGGEO.2013.03.019, 2013.
Hwang, C., Wang, C. G., and Lee, L. H.:
Adjustment of relative gravity measurements using weighted and datum-free constraints,
Comput. Geosci.,
28, 1005–1015, 2002.
IES-AS:
GPS LAB,
available at: http://gps.earth.sinica.edu.tw/ (last access: 18 June 2020), 2015.
Jaboyedoff, M., Oppikofer, T., Abellán, A., Derron, M. H., Loye, A., Metzger, R., and Pedrazzini, A.:
Use of LIDAR in landslide investigations: A review,
Nat. Hazards,
61, 5–28, https://doi.org/10.1007/s11069-010-9634-2, 2012.
Jacob, T., Chery, J., Bayer, R., Le Moigne, N., Boy, J.-P., Vernant, P., and Boudin, F.:
Time-lapse surface to depth gravity measurements on a karst system reveal the dominant role of the epikarst as a water storage entity,
Geophys. J. Int.,
177, 347–360, https://doi.org/10.1111/j.1365-246X.2009.04118.x, 2009.
Jacob, T., Bayer, R., Chery, J., and Le Moigne, N.:
Time-lapse microgravity surveys reveal water storage heterogeneity of a karst aquifer,
J. Geophys. Res.,
115, B06402, https://doi.org/10.1029/2009JB006616, 2010.
Kao, R., Hwang, C., Kim, J. W., Ching, K.-E., Masson, F., Hsieh, W.-C., Le Moigne, N., and Cheng, C.-C.:
Absolute gravity change in Taiwan: Present result of geodynamic process investigation.,
Terr. Atmos. Ocean. Sci.,
28, 855–875, 2017.
Kazama, T., Okubo, S., Sugano, T., Matsumoto, S., Sun, W., Tanaka, Y., and Koyama, E.:
Absolute gravity change associated with magma mass movement in the conduit of Asama Volcano (Central Japan), revealed by physical modeling of hydrological gravity disturbances,
J. Geophys. Res.,
120, 1263–1287, https://doi.org/10.1002/2014JB011563, 2015.
Lin, C.-W., Chang, W.-S., Liu, S.-H., Tsai, T.-T., Lee, S.-P., Tsang, Y.-C., Shieh, C.-L., and Tseng, C.-M.:
Landslides triggered by the 7 August 2009 Typhoon Morakot in southern Taiwan,
Eng. Geol.,
123, 3–12, https://doi.org/10.1016/j.enggeo.2011.06.007, 2011.
Lin, G.-W. and Chen, H.:
Recurrence of hyper-concentration flows on the orogenic, subtropical island of Taiwan,
J. Hydrol.,
502, 139–144, https://doi.org/10.1016/J.JHYDROL.2013.08.036, 2013.
Liu, H. and Pike, W. T.:
A micromachined angular-acceleration sensor for geophysical applications,
Appl. Phys. Lett.,
109, 173506, https://doi.org/10.1063/1.4966547, 2016.
Liu, Y.-C., Hwang, C., Han, J., Kao, R., Wu, C.-R., Shih, H.-C., and Tangdamrongsub, N.:
Sediment-Mass Accumulation Rate and Variability in the East China Sea Detected by GRACE,
Remote Sens.,
8, 777, https://doi.org/10.3390/rs8090777, 2016.
Longuevergne, L., Boy, J.-P., Florsch, N., Viville, D., Ferhat, G., Ulrich, P., Luck, B., and Hinderer, J.:
Local and global hydrological contributions to gravity variations observed in Strasbourg,
J. Geodyn.,
48, 189–194, https://doi.org/10.1016/j.jog.2009.09.008, 2009.
Longuevergne, L., Wilson, C. R., Scanlon, B. R., and Crétaux, J. F.: GRACE water storage estimates for the Middle East and other regions with significant reservoir and lake storage, Hydrol. Earth Syst. Sci., 17, 4817–4830, https://doi.org/10.5194/hess-17-4817-2013, 2013.
Lyard, F., Lefevre, F., Letellier, T., and Francis, O.: Modelling the global ocean tides: Modern insights from FES2004, Ocean Dynam., 56, 394–415, https://doi.org/10.1007/s10236-006-0086-x, 2006.
Ménoret, V., Vermeulen, P., Le Moigne, N., Bonvalot, S., Bouyer, P., Landragin, A., and Desruelle, B.:
Gravity measurements below 10−9g with a transportable absolute quantum gravimeter,
Sci. Rep.,
8, 1–11, https://doi.org/10.1038/s41598-018-30608-1, 2018.
Merriam, J. B.:
Atmospheric pressure and gravity,
Geophys. J. Int.,
109, 488–500, https://doi.org/10.1111/j.1365-246X.1992.tb00112.x, 1992.
Middlemiss, R. P., Samarelli, A., Paul, D. J., Hough, J., Rowan, S., and Hammond, G. D.:
The First Measurement of the Earth Tides with a MEMS Gravimeter,
Nature,
531, 614–617, https://doi.org/10.1038/nature17397, 2016.
Middlemiss, R. P., Bramsiepe, S. G., Douglas, R., Hough, J., Paul, D. J., Rowan, S., and Hammond, G. D.:
Field tests of a portable MEMS gravimeter,
Sensors (Switzerland),
17, 1–12, https://doi.org/10.3390/s17112571, 2017.
Milliman, J. D. and Farnsworth, K. L.:
River Discharge to the Coastal Ocean: A Global Synthesis, Cambridge University Press, New York, USA, 2011.
Molnar, P., Anderson, R. S., and Anderson, S. P.: Tectonics, fracturing of rock, and erosion,
J. Geophys. Res.-Earth,
112, 1–12, https://doi.org/10.1029/2005JF000433, 2007.
Morera, S. B., Condom, T., Crave, A., Steer, P., and Guyot, J. L.:
The impact of extreme El Niño events on modern sediment transport along the western Peruvian Andes (1968–2012),
Sci. Rep.,
7, 11947, https://doi.org/10.1038/s41598-017-12220-x, 2017.
Mouyen, M., Masson, F., Hwang, C., Cheng, C.-C., Le Moigne, N., Lee, C.-W., Kao, R., and Hsieh, W.-C.:
Erosion effects assessed by repeated gravity measurements in southern Taiwan,
Geophys. J. Int.,
192, 113–136, https://doi.org/10.1093/gji/ggs019, 2013.
Mouyen, M., Longuevergne, L., Steer, P., Crave, A., Lemoine, J.-M. J. M., Save, H., and Robin, C.:
Assessing modern river sediment discharge to the ocean using satellite gravimetry,
Nat. Commun.,
9, 3384, https://doi.org/10.1038/s41467-018-05921-y, 2018.
Mouyen, M., Steer, P., Chang, K.-J., Le Moigne, N., Hwang, C., Hsieh, W.-C., Jeandet, L., Longuevergne, L., Cheng, C.-C., Boy, J.-P., and Masson, F.: data_mouyen_etal_Esurf, available at: https://chalmersuniversity.box.com/s/q5h1lpbflqlx9wi9yruway3k9jorflwe
(last access: 18 June 2020), 2019.
Nagy, D.:
The prism method for terrain corrections using digital computers,
Pure Appl. Geophys.,
63, 31–39, https://doi.org/10.1007/BF00875156, 1966.
Naujoks, M., Weise, A., Kroner, C., and Jahr, T.:
Detection of small hydrological variations in gravity by repeated observations with relative gravimeters,
J. Geodesy,
82, 543–553, https://doi.org/10.1007/s00190-007-0202-9, 2008.
Niebauer, T. M.:
Gravimetric methods – absolute gravimeter?: instruments concepts and implementation,
in: Treatise on Geophysics, vol. 3,
edited by: Schubert, G.,
Elsevier, Oxford, UK, 37–57, 2015.
Niebauer, T. M., Sasagawa, G. S., Faller, J. E., Hilt, R., and Klopping, F.:
A new generation of absolute gravimeters,
Metrologia,
32, 159–180, 1995.
Niethammer, U., James, M. R., Rothmund, S., Travelletti, J., and Joswig, M.:
UAV-based remote sensing of the Super-Sauze landslide: Evaluation and results,
Eng. Geol.,
128, 2–11, https://doi.org/10.1016/j.enggeo.2011.03.012, 2012.
Oborne, M.:
Mission Planner,
available at: https://ardupilot.org/planner/ (last access: 10 April 2020), 2010.
Pail, R., Bingham, R., Braitenberg, C., Dobslaw, H., Eicker, A., Güntner, A., Horwath, M., Ivins, E., Longuevergne, L., Panet, I., and Wouters, B.:
Science and User Needs for Observing Global Mass Transport to Understand Global Change and to Benefit Society,
Surv. Geophys.,
36, 743–772, https://doi.org/10.1007/s10712-015-9348-9, 2015.
Peizhen, Z., Molnar, P., and Downs, W. R.:
Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates,
Nature,
410, 891–897, https://doi.org/10.1038/35073504, 2001.
Petrov, L. and Boy, J.-P.:
Study of the atmospheric pressure loading signal in very long baseline interferometry observations,
J. Geophys. Res.,
109, B03405, https://doi.org/10.1029/2003JB002500, 2004.
Pfeffer, J., Champollion, C., Favreau, G., Cappelaere, B., Hinderer, J., Boucher, M., Nazoumou, Y., Oï, M., Mouyen, M., Henri, C., Moigne, N. Le, Deroussi, S., Demarty, J., Boulain, N., Benarrosh, N., Robert, O., Le Moigne, N., Deroussi, S., Demarty, J., Boulain, N., Benarrosh, N., and Robert, O.:
Evaluating surface and subsurface water storage variations at small time and space scales from relative gravity measurements in semiarid Niger,
Water Resour. Res.,
49, 3276–3291, https://doi.org/10.1002/wrcr.20235, 2013.
Pix4D:
Pix4Dmapper: professional drone mapping and photogrammetry software,
available at: https://www.pix4d.com/product/pix4dmapper-photogrammetry-software, last access: 10 April 2020.
Rebischung, P., Griffiths, J., Ray, J., Schmid, R., Collilieux, X., and Garayt, B.:
IGS08: The IGS realization of ITRF2008,
GPS Solut.,
16, 483–494, https://doi.org/10.1007/s10291-011-0248-2, 2012.
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J. J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin*, J. K., Walker, J. P., Lohmann, D., Toll, D., Entin, J. K., Walker, J. P., Lohmann, D., and Toll, D.:
The Global Land Data Assimilation System,
B. Am. Meteorol. Soc.,
85, 381–394, https://doi.org/10.1175/BAMS-85-3-381, 2004.
Schwab, M., Rieke-Zapp, D., Schneider, H., Liniger, M., and Schlunegger, F.:
Landsliding and sediment flux in the Central Swiss Alps: A photogrammetric study of the Schimbrig landslide, Entlebuch,
Geomorphology,
97, 392–406, https://doi.org/10.1016/j.geomorph.2007.08.019, 2008.
Scintrex Ltd.:
CG-5 Scintrex Autograv System, Operation Manual, Scintrex Limited, Concord, Ontario, Canada, available at:
http://www.scintrexltd.com/ (last access: 18 June 2020), 2010.
Seitz, S. M., Curless, B., Diebel, J., Scharstein, D., and Szeliski, R.:
A comparison and evaluation of multi-view stereo reconstruction algorithms,
Proc. CVPR IEEE,
1, 519–526., 2006.
Steer, P., Huismans, R. S., Valla, P. G., Gac, S., and Herman, F.:
Bimodal plio-quaternary glacial erosion of fjords and low-relief surfaces in Scandinavia,
Nat. Geosci.,
5, 635–639, https://doi.org/10.1038/ngeo1549, 2012.
Steer, P., Simoes, M., Cattin, R., and Shyu, J. B. H.:
Erosion influences the seismicity of active thrust faults,
Nat. Commun.,
5, 5564, https://doi.org/10.1038/ncomms6564, 2014.
Taiwan Water Resources Agency:
Hydrological Year Book of Taiwan Republic of China,
Taipei, Taiwan, 2019.
Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F., and Watkins, M. M.:
GRACE measurements of mass variability in the Earth system,
Science,
305, 503–505, https://doi.org/10.1126/science.1099192, 2004.
Torres, A., Brandt, J., Lear, K., and Liu, J.:
A looming tragedy of the sand commons,
Science,
357, 970–971, https://doi.org/10.1126/science.aao0503, 2017.
Tu, J. T., Chou, C., and Chu, P. S.:
The abrupt shift of typhoon activity in the vicinity of Taiwan and its association with western North Pacific-East Asian climate change,
J. Climate,
22, 3617–3628, https://doi.org/10.1175/2009JCLI2411.1, 2009.
Van Camp, M. and Vauterin, P.:
Tsoft: graphical and interactive software for the analysis of time series and Earth tides,
Comput. Geosci.,
31, 631–640, https://doi.org/10.1016/j.cageo.2004.11.015, 2005.
Van Camp, M., Williams, S. D. P., and Francis, O.:
Uncertainty of absolute gravity measurements,
J. Geophys. Res.,
110, B05406, https://doi.org/10.1029/2004JB003497, 2005.
Van Camp, M., de Viron, O., Scherneck, H.-G. G., Hinzen, K.-G. G., Williams, S. D. P., Lecocq, T., Quinif, Y., and Camelbeeck, T.:
Repeated absolute gravity measurements for monitoring slow intraplate vertical deformation in western Europe,
J. Geophys. Res.,
116, B08402, https://doi.org/10.1029/2010JB008174, 2011.
Van Camp, M., de Viron, O., Watlet, A., Meurers, B., Francis, O., and Caudron, C.:
Geophysics From Terrestrial Time-Variable Gravity Measurements,
Rev. Geophys.,
55, 938–992, https://doi.org/10.1002/2017RG000566, 2017.
Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., and Wobbe, F.:
Generic Mapping Tools: Improved Version Released,
Eos T. Am. Geophys. Un.,
94, 409–410, https://doi.org/10.1002/2013EO450001, 2013.
Willett, S. D.:
Orogeny and orography: The effects of erosion on the structure of mountain belts,
J. Geophys. Res.,
104, 928–957, https://doi.org/10.1029/1999JB900248, 1999.
Yanites, B. J., Tucker, G. E., Mueller, K. J., and Chen, Y. G.:
How rivers react to large earthquakes: Evidence from central Taiwan,
Geology,
38, 639–642, https://doi.org/10.1130/G30883.1, 2010.
Short summary
Land erosion creates sediment particles that are redistributed from mountains to oceans through climatic, tectonic and human activities, but measuring the mass of redistributed sediment is difficult. Here we describe a new method combining gravity and photogrammetry measurements, which make it possible to weigh the mass of sediment redistributed by a landslide and a river in Taiwan from 2015 to 2017. Trying this method in other regions will help us to better understand the erosion process.
Land erosion creates sediment particles that are redistributed from mountains to oceans through...