Articles | Volume 9, issue 5
https://doi.org/10.5194/esurf-9-1111-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-9-1111-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The effects of storms and a transient sandy veneer on the interannual planform evolution of a low-relief coastal cliff and shore platform at Sargent Beach, Texas, USA
Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78712, USA
Joint Program in Oceanography/Applied Ocean Science and Engineering, Massachusetts Institute of Technology/Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
Anastasia Piliouras
Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78712, USA
Earth and Environmental Sciences Division, Los Alamos National
Laboratory, Los Alamos, New Mexico 87545, USA
Travis E. Swanson
Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78712, USA
Department of Geology and Geography, Georgia Southern University, P.O. Box 8149, Statesboro, Georgia 30460, USA
Andrew D. Ashton
Department of Geology and Geophysics, Woods Hole Oceanographic
Institution, Woods Hole, Massachusetts 02543, USA
David Mohrig
Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78712, USA
Related authors
Rose V. Palermo, J. Taylor Perron, Jason M. Soderblom, Samuel P. D. Birch, Alexander G. Hayes, and Andrew D. Ashton
Geosci. Model Dev., 17, 3433–3445, https://doi.org/10.5194/gmd-17-3433-2024, https://doi.org/10.5194/gmd-17-3433-2024, 2024
Short summary
Short summary
Models of rocky coastal erosion help us understand the controls on coastal morphology and evolution. In this paper, we present a simplified model of coastline erosion driven by either uniform erosion where coastline erosion is constant or wave-driven erosion where coastline erosion is a function of the wave power. This model can be used to evaluate how coastline changes reflect climate, sea-level history, material properties, and the relative influence of different erosional processes.
Ian R. B. Reeves, Andrew D. Ashton, Erika E. Lentz, Christopher R. Sherwood, Davina L. Passeri, and Sara L. Zeigler
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-232, https://doi.org/10.5194/gmd-2024-232, 2025
Revised manuscript under review for GMD
Short summary
Short summary
We describe a new model of coastal barrier ecogeomorphic change that operates over spatiotemporal scales congruous with effective management practices, incorporates key ecogeomorphic feedbacks, and provides probabilistic projections. The model skillfully captures important barrier dynamics through robust data integration and calibration of relatively simple model parameterizations, and can be used to understand and predict when, where, and how barriers evolve to inform decision-making processes.
Rose V. Palermo, J. Taylor Perron, Jason M. Soderblom, Samuel P. D. Birch, Alexander G. Hayes, and Andrew D. Ashton
Geosci. Model Dev., 17, 3433–3445, https://doi.org/10.5194/gmd-17-3433-2024, https://doi.org/10.5194/gmd-17-3433-2024, 2024
Short summary
Short summary
Models of rocky coastal erosion help us understand the controls on coastal morphology and evolution. In this paper, we present a simplified model of coastline erosion driven by either uniform erosion where coastline erosion is constant or wave-driven erosion where coastline erosion is a function of the wave power. This model can be used to evaluate how coastline changes reflect climate, sea-level history, material properties, and the relative influence of different erosional processes.
Hima J. Hassenruck-Gudipati, Thaddeus Ellis, Timothy A. Goudge, and David Mohrig
Earth Surf. Dynam., 10, 635–651, https://doi.org/10.5194/esurf-10-635-2022, https://doi.org/10.5194/esurf-10-635-2022, 2022
Short summary
Short summary
During the late Pleistocene, the incision of the Trinity River valley left behind terraces. Elevation data and measurements of abandoned channels preserved on terraces are used to evaluate how terraces formed. We find a transition in the style of terraces with age from those associated with external environmental forcings to those produced by internal river migration changes. This result shows the importance of several indicators (i.e., channel bends, elevations) in determining terrace form.
Madison M. Douglas, Gen K. Li, Woodward W. Fischer, Joel C. Rowland, Preston C. Kemeny, A. Joshua West, Jon Schwenk, Anastasia P. Piliouras, Austin J. Chadwick, and Michael P. Lamb
Earth Surf. Dynam., 10, 421–435, https://doi.org/10.5194/esurf-10-421-2022, https://doi.org/10.5194/esurf-10-421-2022, 2022
Short summary
Short summary
Arctic rivers erode into permafrost and mobilize organic carbon, which can react to form greenhouse gasses or be re-buried in floodplain deposits. We collected samples on a permafrost floodplain in Alaska to determine if more carbon is eroded or deposited by river meandering. The floodplain contained a mixture of young carbon fixed by the biosphere and old, re-deposited carbon. Thus, sediment storage may allow Arctic river floodplains to retain aged organic carbon even when permafrost thaws.
Cited articles
Adams, P. N., Storlazzi, C. D., and Anderson, R. S.: Nearshore wave-induced cyclical flexing of sea cliffs, J. Geophys. Res.-Earth, 110, 1–19, https://doi.org/10.1029/2004JF000217, 2005.
Allen, J. R. L.: Streamwise Erosional Structures in Muddy Sediments, Severn Estuary, Southwestern UK, Geogr. Ann. A, 69, 37–46, https://doi.org/10.1080/04353676.1987.11880195, 1987.
Anderson, R. S.: Erosion profiles due to particles entrained by wind: Application of an eolian sediment-transport model, Geol. Soc. Am. Bull., 97, 1270–1278, https://doi.org/10.1130/0016-7606(1986)97<1270:EPDTPE>2.0.CO;2, 1986.
Ashton, A. D., Walkden, M. J. A., and Dickson, M. E.: Equilibrium responses of cliffed coasts to changes in the rate of sea level rise, Mar. Geol., 284, 217–229, https://doi.org/10.1016/j.margeo.2011.01.007, 2011.
Avila, L. A. and Cangialosi, J.: Tropical Cyclone Report
Hurricane Ida 4–10 November 2009, National Hurricane Center, available at: https://www.nhc.noaa.gov/data/tcr/AL112009_Ida.pdf (last access: 25 October 2018), 2010.
Berg, R.: Tropical cyclone report, tropical storm Bill,
16–18 June 2015, National Hurricane Center, 1–31, 2015.
Blake, E. S. and Zelinsky, D. A.: Tropical Cyclone Report:
Hurricane Harvey, National Hurricane Center, 2017.
Bradley, W. C.: Submarine Abrasion and Wave-Cut Platforms, Bull. Geol. Soc. Am., 69, 967–974, https://doi.org/10.1130/0016-7606(1958)69[967:SAAWP]2.0.CO;2, 1958.
Bramante, J. F., Perron, J. T., Ashton, A. D., and Donnelly, J. P.: Experimental quantification of bedrock abrasion under oscillatory flow, Geology, 48, 541–545, https://doi.org/10.1130/G47089.1, 2020.
Brooks, S. M., Spencer, T., and Boreham, S.: Deriving mechanisms and thresholds for cliff retreat in soft-rock cliffs under changing climates: Rapidly retreating cliffs of the Suffolk coast, UK, Geomorphology, 153–154, 48–60, https://doi.org/10.1016/j.geomorph.2012.02.007, 2012.
Brown, E. A., Wu, C. H., Mickelson, D. M., and Edil, T. B.: Factors controlling rates of bluff recession at two sites on Lake Michigan, J. Great Lakes Res., 31, 306–321, https://doi.org/10.1016/S0380-1330(05)70262-8, 2005.
Bush, G. P.: Coastal Erosion Planning & Response Act A
Report to the 84th Texas Legislature, United States of America,
Texas General Land Office, 1–25, 2015.
Carling, P., Williams, J., Leyland, J., and Esteves, L.: Storm-wave development of shore-normal grooves (gutters) on a steep sandstone beach face, Estuar. Coast Shelf S., 207, 312–324, https://doi.org/10.1016/j.ecss.2018.04.024, 2018.
Collins, B. D. and Sitar, N.: Processes of coastal bluff erosion in weakly lithified sands, Pacifica, California, USA, Geomorphology, 97, 483–501, https://doi.org/10.1016/j.geomorph.2007.09.004, 2007.
Elgar, S. and Raubenheimer, B.: Wave dissipation by muddy
seafloors, Geophys. Res. Lett., 35, L07611, https://doi.org/10.1029/2008GL033245, 2008.
Emanuel, K.: Increasing destructiveness of tropical cyclones over the past 30 years, Nature, 436, 686–688, https://doi.org/10.1038/nature03906, 2005.
Fagherazzi, S. and Mariotti, G.: Mudflat runnels: Evidence and importance of very shallow flows in intertidal morphodynamics, Geophys. Res. Lett., 39, 1–6, https://doi.org/10.1029/2012GL052542, 2012.
Flood, R. D.: Classification of sedimentary furrows and a model for furrow initiation and evolution, Geol. Soc. Am. Bull., 94, 630–639, https://doi.org/10.1130/0016-7606(1983)94<630:COSFAA>2.0.CO;2, 1983.
Gardner, T. W.: Experimental study of knickpoint and longitudinal profile evolution in cohesive, homogeneous material, Geol. Soc. Am. Bull., 94, 664–672, https://doi.org/10.1130/0016-7606(1983)94<664:ESOKAL>2.0.CO;2, 1983.
Genz, A. S., Fletcher, C. H., Dunn, R. A., Frazer, L. N., and Rooney, J. J.: The predictive accuracy of shoreline change rate methods and alongshore beach variation on Maui, Hawaii, J. Coastal Res., 23, 87–105, https://doi.org/10.2112/05-0521.1, 2007.
Hancock, G. S., Anderson, R. S., and Whipple, K. X.:
Beyond Power: Bedrock River Incision Process and Form, in: Rivers
Over Rock: Fluvial Processes in Bedrock Channels, Geophysical Monograph-American Geophysical Union, 107, 35–60, https://doi.org/10.1029/gm107p0035, 1998, 1998.
Hutchinson, J. N.: The response of London Clay cliffs to differing rates of toe erosion, Geol. Appl. Idrogeol., 8, 221–239, https://doi.org/10.1016/0148-9062(75)91851-3, 1973.
Kline, S. W., Adams, P. N., and Limber, P. W.: The unsteady nature of sea cliff retreat due to mechanical abrasion, failure and comminution feedbacks, Geomorphology, 219, 53–67, https://doi.org/10.1016/j.geomorph.2014.03.037, 2014.
Limber, P. W. and Murray, A. B.: Beach and sea-cliff dynamics as a driver of long-term rocky coastline evolution and stability, Geology, 39, 1147–1150, https://doi.org/10.1130/g32315.1, 2011.
Limber, P. W., Murray, A. B., Adams, P. N., and Goldstein, E. B.: Unraveling the dynamics that scale cross-shore headland relief on rocky coastlines: 1. Model development, J. Geophys. Res.-Earth, 119, 854–873, https://doi.org/10.1002/2013jf002950, 2014.
Luijendijk, A., Hagenaars, G., Ranasinghe, R., Baart, F., Donchyts, G., and Aarninkhof, S.: The State of the World's Beaches, Sci. Rep., 8, https://doi.org/10.1038/s41598-018-24630-6, 2018.
McGowen, J. H. and Brewton, J. L.: Historical changes and
related coastal processes, Gulf and mainland shorelines, Matagorda
Bay area, Texas: Special Publication, Bureau of Economic Geology, The University of Texas, Austin, 1975.
McGowen, J. H. and Macon, J. W.: Environmental Geologic
Atlas of the Texas Coastal Zone-Bay City-Freeport Area:
Environmental Geology, Physical Properties, Environments and
Biologic Assemblages, Current Land Use, Mineral and Energy
Resources, Active Processes, Man-made Features and Water Systems,
Rainfall, Stream Discharge, and Surface Salinity, Topography and
Bathymetry, Bureau of Economic Geology, University of Texas,
Austin, 1976.
Morton, R. A.: Historical shoreline changes and their
causes, Gulf Coast Assoc. Geol. Soc. Trans., 27, 352–364, 1977.
Morton, R. A.: Temporal and spatial variations in shoreline changes and their implications, examples from the Texas gulf coast, J. Sediment. Petrol., 49, 1101–1111, https://doi.org/10.1306/212f78bf-2b24-11d7-8648000102c1865d, 1979.
Morton, R. A. and Pieper, M. J.: Shoreline changes in the
vicinity of the Brazos River delta (San Luis pass to Brown Cedar
Cut). An analysis of historical changes of the Texas Gulf shoreline,
Texas Bur. of Econ. Geol. Circ. No. 75-4,, https://doi.org/10.23867/gc7504d, 1975.
Morton, R. A. and Paine, J. G.: Coastal Land Loss in Texas–An Overview, Gulf Coast Assoc. Geol. Soc. Trans., 40, 625–634, https://doi.org/10.1306/20b231fb-170d-11d7-8645000102c1865d, 1990.
Morton, R. A., Miller, T. L., and Moore, L. J.:
National Assessment of Shoreline Change: Part 1, Historical
Shoreline Changes and Associated Coastal Land Loss Along the
US Gulf of Mexico, USGS Open-File Report, https://doi.org/10.3133/ofr20041043, 2004.
NOAA: Hurricane Harvey: Emergency Response Imagery of the Surrounding Regions, 2017, available at: https://storms.ngs.noaa.gov/storms/harvey/index.html#14/29.8092/-95.2037, last access: 18 June 2020.
OCM Partners: 2016 USACE NCMP Topobathy Lidar DEM:
Gulf Coast (AL, FL, MS, TX) from 2010-06-15 to 2010-08-15, NOAA
National Centers for Environmental Information,
https://inport.nmfs.noaa.gov/inport/item/49427, last access:
8 October 2018.
Oppenheimer, M., Campos, M., Warren, R., Birkmann, J.,
Luber, G., O'Neill, B., Takahashi, K., Brklacich, M., Semenov, S.,
Licker, R., and Hsiang, S.: Emergent risks and key vulnerabilities,
in: Climate Change 2014 Impacts, Adaptation and Vulnerability: Part
A: Global and Sectoral Aspects, 1039–1100, Cambridge University
Press, Cambridge, https://doi.org/10.1017/CBO9781107415379.024, 2015.
Paine, J., Mathew, S., and Caudle, T.: Texas gulf
shoreline change rates through 2007, Bureau of Economic Geology Report Prepared Under General Land Office Contract 10-041-000-3737 and National Oceanic and Atmospheric Administration Award NA09NOS4190165, 38 pp., 2011.
Paine, J. G., Caudle, T., and Andrews, J.: Shoreline
Movement along the Texas Gulf Coast, 1930's to 2012, Bureau of Economic Geology Final Report prepared for General Land Office Under Contract 09-074-000, 52 pp., 2014.
Paniagua-Arroyave, J. F., Correa, I. D., Anfuso, G., and Adams, P. N.: Prediction of soft-cliff retreat in coastal areas with little information: The Minuto de Dios sector, Caribbean Coast of Colombia, J. Coastal Res., 81, 40–49, https://doi.org/10.2112/si81-006.1, 2018.
Pelletier, J. D., Sweeney, K. E., Roering, J. J., and Finnegan, N. J.: Controls on the geometry of potholes in bedrock channels, Geophys. Res. Lett., 42, 797–803, https://doi.org/10.1002/2014GL062900, 2015.
Quinn, J. D., Rosser, N. J., Murphy, W., and Lawrence, J. A.: Identifying the behavioural characteristics of clay cliffs using intensive monitoring and geotechnical numerical modelling, Geomorphology, 120, 107–122, https://doi.org/10.1016/j.geomorph.2010.03.004, 2010.
Robinson, L. A.: Marine erosive processes at the cliff foot, Mar. Geol., 23, 257–271, https://doi.org/10.1016/0025-3227(77)90022-6, 1977.
Sealy, J. E. and Ahr, W. M.: Quantitative Analysis of Shoreline Change, Sargent, Texas, Texas A & M University, TAMU-SG, 75–209, 1975.
Seelig, W. N. and Sorensen, R. M.: Investigation of shoreline changes at Sargent Beach, Texas
TAMU-SG-73-212, Texas A&M University Sea Grant, 153 pp., 1973.
Sklar, L. S. and Dietrich, W. E.: Sediment and rock
strength controls on river incision into bedrock, Geology, 29,
1087–1090, https://doi.org/10.1130/0091-7613(2001)029<1087:SARSCO>2.0.CO;2, 2001.
Sklar, L. S. and Dietrich, W. E.: A mechanistic model for river incision into bedrock by saltating bed load, Water Resour. Res., 40, 6, https://doi.org/10.1029/2003wr002496, 2004.
Stauble, D. K., Burke, C.E, and Levin, D. R.: Rapid Erosion of A Cohesive Shoreline, Sargent Beach, Texas, in: Coastal Depositional Systems in the Gulf of Mexico: Quaternary Framework and Environmental Issues, SEPM Society for Sedimentary Geology, https://doi.org/10.5724/gcs.91.12.0249, 1991.
Stephenson, W. J. and Kirk, R. M.: Development of shore platforms on Kaikoura Peninsula, South Island, New Zealand II: The role of subaerial weathering, Geomorphology, 32, 43–56, https://doi.org/10.1016/S0169-555X(99)00062-8, 2000.
Stock, J. D., Montgomery, D. R., Collins, B. D., Dietrich, W. E., and Sklar, L.: Field measurements of incision rates following bedrock exposure: Implications for process controls on the long profiles of valleys cut by rivers and debris flows, Bull. Geol. Soc. Am., 117, 174–194, https://doi.org/10.1130/B25560.1, 2005.
Sunamura, T.: Feedback relationship in wave erosion of laboratory rocky coast, J. Geol., 84, 427–437, https://doi.org/10.1086/628209, 1976.
Sunamura, T.: A wave tank experiment on the erosional mechanism at a cliff base, Earth Surf. Proc. Land, 7, 333–343, https://doi.org/10.1002/esp.3290070405, 1982.
Sunamura, T.: Geomorphology of Rocky Coasts, Wiley, Chichester, 1992.
Sunamura, T.: Rocky coast processes: with special reference to the recession of soft rock cliffs, P. Jpn. Acad. B-Phys., 91, 481–500, https://doi.org/10.2183/pjab.91.481, 2015.
Trenhaile, A. S.: The Geomorphology of Rock Coasts, Oxford University Press, Oxford, 1987.
Trenhaile, A. S.: Rock coasts, with particular emphasis on shore platforms, Geomorphology, 48, 7–22, https://doi.org/10.1016/S0169-555X(02)00173-3, 2002.
Valvo, L. M., Murray, A. B., and Ashton, A.: How does underlyng geology affect coastline change? An initial modeling investigation, J. Geophys. Res.-Earth, 111, 1–18, https://doi.org/10.1029/2005JF000340, 2006.
Walkden, M. J. A. and Hall, J. W.: A predictive Mesoscale model of the erosion and profile development of soft rock shores, Coast. Eng., 52, 535–563, https://doi.org/10.1016/j.coastaleng.2005.02.005, 2005.
Webster, P. J., Holland, G.., Curry, J. A., and Chang, H.-R.: Changes in Tropical Cyclone Number, Duration, and Intensity in a Warming Environment, Science, 309, 1844–1846, https://doi.org/10.1126/science.1116448, 2005.
Young, A. P., R. E. Flick, W. C. O'Reilly,
D. B. Chadwick, W. C. Crampton, and J. J. Helly: Estimating cliff
retreat in southern California considering sea level rise using a
sand balance approach, Mar. Geol., 348, 15–26, https://doi.org/10.1016/j.margeo.2013.11.007, 2014.
Short summary
At Sargent Beach, Texas, USA, a rapidly eroding soft-sediment cliff system, we study the planform evolution of the cliff face in response to storms and sediment cover. Through this analysis, we characterize the feedbacks between morphology and retreat rate of a cliff face. We find that after a storm event, the roughness and sinuosity of the cliff face increase, which sustains higher retreat rates for years following.
At Sargent Beach, Texas, USA, a rapidly eroding soft-sediment cliff system, we study the...