Articles | Volume 10, issue 4
https://doi.org/10.5194/esurf-10-671-2022
https://doi.org/10.5194/esurf-10-671-2022
Research article
 | 
04 Jul 2022
Research article |  | 04 Jul 2022

Theoretical and numerical considerations of rivers in a tectonically inactive foreland

Stefan Hergarten

Related authors

Brief Communication: Investigating the invisible subsurface stormflow process through a thorough and systematic study across sites and scales
Theresa Blume, Peter Chifflard, Stefan Achleitner, Andreas Hartmann, Stefan Hergarten, Luisa Hopp, Bernhard Kohl, Florian Leese, Ilja van Meerveld, Christian Reinhardt-Imjela, and Markus Weiler
EGUsphere, https://doi.org/10.5194/egusphere-2025-4424,https://doi.org/10.5194/egusphere-2025-4424, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Old orogen–young topography: lithological contrasts controlling erosion and relief formation in the Bohemian Massif
Jörg Robl, Fabian Dremel, Kurt Stüwe, Stefan Hergarten, Christoph von Hagke, and Derek Fabel
Earth Surf. Dynam., 13, 745–770, https://doi.org/10.5194/esurf-13-745-2025,https://doi.org/10.5194/esurf-13-745-2025, 2025
Short summary
MinSIA v1: a lightweight and efficient implementation of the shallow ice approximation
Stefan Hergarten
EGUsphere, https://doi.org/10.5194/egusphere-2025-2242,https://doi.org/10.5194/egusphere-2025-2242, 2025
Short summary
A simple model for faceted topographies at normal faults based on an extended stream-power law
Stefan Hergarten
Earth Surf. Dynam., 12, 1315–1327, https://doi.org/10.5194/esurf-12-1315-2024,https://doi.org/10.5194/esurf-12-1315-2024, 2024
Short summary
Modeling the formation of toma hills based on fluid dynamics with a modified Voellmy rheology
Stefan Hergarten
Earth Surf. Dynam., 12, 1193–1203, https://doi.org/10.5194/esurf-12-1193-2024,https://doi.org/10.5194/esurf-12-1193-2024, 2024
Short summary

Cited articles

Adams, B. A., Whipple, K. X., Forte, A. M., Heimsath, M., and Hodges, K. V.: Climate controls on erosion in tectonically active landscapes, Sci. Adv., 6, eaaz3166, https://doi.org/10.1126/sciadv.aaz3166, 2020. a
Armitage, J. J., Duller, R. A., Whittaker, A. C., and Allen, P. A.: Transformation of tectonic and climatic signals from source to sedimentary archive, Nat. Geosci., 4, 231–235, https://doi.org/10.1038/ngeo1087, 2011. a
Armitage, J. J., Dunkley Jones, T., Duller, R. A., Whittaker, A. C., and Allen, P. A.: Temporal buffering of climate-driven sediment flux cycles by transient catchment response, Earth Planet. Sc. Lett., 369–370, 200–210, https://doi.org/10.1016/j.epsl.2013.03.020, 2013. a
Blair, T. C. and McPherson, J. G.: Processes and forms of alluvial fans, in: Geomorphology of Desert Environments, edited by: Parsons, A. J. and Abrahams, A. D., Springer, Dordrecht, 413–467, https://doi.org/10.1007/978-1-4020-5719-9_14, 2009. a
Blom, A., Viparelli, E., and Chavarrias, V.: The graded alluvial river: Profile concavity and downstream fining, Geophys. Res. Lett., 43, 6285–6293, https://doi.org/10.1002/2016GL068898, 2016. a
Download
Short summary
Many studies on modeling landform evolution have focused on mountain ranges, while large parts of Earth's surface are quite flat and alluvial plains have been preferred locations for human settlements. Conducting large-scale simulations of fluvial erosion and sediment transport, this study reveals that rivers in a tectonically inactive foreland are much more dynamic than rivers in a mountain range; the local redistribution of deposits in the foreland is the main driver of the dynamics.
Share