Articles | Volume 10, issue 4
https://doi.org/10.5194/esurf-10-833-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-10-833-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Short communication: Forward and inverse analytic models relating river long profile to tectonic uplift history, assuming a nonlinear slope–erosion dependency
Yizhou Wang
CORRESPONDING AUTHOR
State Key Laboratory of Earthquake Dynamics, Institute of Geology,
China Earthquake Administration, Beijing 100029, China
Liran Goren
Department of Earth and Environmental Sciences, Ben-Gurion University
of the Negev, Beer-Sheva, Israel
Dewen Zheng
Guangzhou Institute of Geochemistry, Chinese Academy of Sciences,
Guangzhou 510640, China
Huiping Zhang
State Key Laboratory of Earthquake Dynamics, Institute of Geology,
China Earthquake Administration, Beijing 100029, China
Related authors
No articles found.
Zebin Luo, Xiaocheng Zhou, Yueren Xu, Peng Liang, Huiping Zhang, Jinlong Liang, Zhaojun Zeng, Yucong Yan, Zheng Gong, Shiguang Wang, Chuanyou Li, Zhikun Ren, Jingxing Yu, Zifa Ma, and Junjie Li
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-395, https://doi.org/10.5194/hess-2024-395, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
In this work, we evaluated the spatial distribution characteristics of EAFZ geothermal fluids after the earthquake, discussed the water-rock reaction process of EAFZ in detail, estimated the thermal reservoir temperature and circulation depth of geothermal water by using cationic empirical thermometers and SiO2 thermometers, and revealed the possibility that shallow sedimentary minerals can be used as earthquake early warning indicators.
Liran Goren and Eitan Shelef
Earth Surf. Dynam., 12, 1347–1369, https://doi.org/10.5194/esurf-12-1347-2024, https://doi.org/10.5194/esurf-12-1347-2024, 2024
Short summary
Short summary
To explore the pattern formed by rivers as they crisscross the land, we developed a way to measure how these patterns vary, from straight to complex, winding paths. We discovered that a river's degree of complexity depends on how the river slope changes downstream. Although this is strange (i.e., why would changes in slope affect twists of a river in map view?), we show that this dependency is almost inevitable and that the complexity could signify how arid the climate is or used to be.
Daniel O'Hara, Liran Goren, Roos M. J. van Wees, Benjamin Campforts, Pablo Grosse, Pierre Lahitte, Gabor Kereszturi, and Matthieu Kervyn
Earth Surf. Dynam., 12, 709–726, https://doi.org/10.5194/esurf-12-709-2024, https://doi.org/10.5194/esurf-12-709-2024, 2024
Short summary
Short summary
Understanding how volcanic edifices develop drainage basins remains unexplored in landscape evolution. Using digital evolution models of volcanoes with varying ages, we quantify the geometries of their edifices and associated drainage basins through time. We find that these metrics correlate with edifice age and are thus useful indicators of a volcano’s history. We then develop a generalized model for how volcano basins develop and compare our results to basin evolution in other settings.
Elhanan Harel, Liran Goren, Onn Crouvi, Hanan Ginat, and Eitan Shelef
Earth Surf. Dynam., 10, 875–894, https://doi.org/10.5194/esurf-10-875-2022, https://doi.org/10.5194/esurf-10-875-2022, 2022
Short summary
Short summary
Drainage reorganization redistributes drainage area across basins, resulting in channel and valley widths that may be unproportional to the new drainage area. We demonstrate scaling between valley width and drainage area in reorganized drainages that deviates from scaling in non-reorganized drainages. Further, deviation patterns are associated with different reorganization categories. Our findings are consequential for studies that rely on this scaling for valley width estimation.
Yiran Wang, Michael E. Oskin, Youli Li, and Huiping Zhang
Earth Surf. Dynam., 10, 191–208, https://doi.org/10.5194/esurf-10-191-2022, https://doi.org/10.5194/esurf-10-191-2022, 2022
Short summary
Short summary
Beida River has an over-steepened reach presently located 10 km upstream of the North Qilian mountain front. It was formed because river incising into the bedrocks inside the mountain cannot keep up with river incising into the soft sediment in the basin. We suggest this over-steepened reach represents a fast incision period 3–4 kyr ago, deepening the canyon for ~35 m within ~700 years. The formation of this reach corresponds to a humid period related to strong Southeast Asian Monsoon influence.
Eitan Shelef and Liran Goren
Earth Surf. Dynam., 9, 687–700, https://doi.org/10.5194/esurf-9-687-2021, https://doi.org/10.5194/esurf-9-687-2021, 2021
Short summary
Short summary
Drainage basins are bounded by water divides (divides) that define their shape and extent. Divides commonly coincide with high ridges, but in places that experienced extensive tectonic deformation, divides sometimes cross elongated valleys. Inspired by field observations and using simulations of landscape evolution, we study how side channels that drain to elongated valleys induce pulses of divide migration, affecting the distribution of water and erosion products across mountain ranges.
Cited articles
Adams, B. A., Whipple, K. X., Forte, A. M., Heimsath, A. M., and Hodges, K. V.:
Climate controls on erosion in tectonically active landscapes, Sci.
Adv., 6, eaaz3166, https://doi.org/10.1126/sciadv.aaz3166, 2020.
Akaike, H.: A new look at the statistical model identification, IEEE Trans.
Autom. Control, 19, 716–723, https://doi.org/10.1109/TAC.1974.1100705, 1974.
Anthony, D. M. and Granger, D. E.: An empirical stream power formulation for
knickpoint retreat in Appalachian Plateau fluviokarst, J. Hydrol., 343,
117–126, 2007.
Berlin, M. M. and Anderson, R. S.: Modeling of knickpoint retreat on the Roan
Plateau, western Colorado, J. Geophys. Res., 112, F03S06,
https://doi.org/10.1029/2006JF000553, 2007.
Bookhagen, B. and Burbank, D. W.: Toward a complete Himalayan hydrological
budget: spatiotemporal distribution of snowmelt and rainfall and their
impact on river discharge, J. Geophys. Res., 115, F03019, https://doi.org/10.1029/2009JF001426, 2010.
Castillo, M., Ferrari, L., and Munoz-Salinas, E.: Knickpoint retreat and
landscape evolution of the Amatlan de Canas half-graben (northern sector of
Jalisco Block, western Mexico), J. S. A. Earth Sci., 77, 108–122, 2017.
DiBiase, R. A., Whipple, K. X., Heimsath, A. M., and Ouimet, W. B.: Landscape
form and millennial erosion rates in the San Gabriel Mountains, CA, Earth
Planet. Sci. Lett., 289, 134–144, 2010.
Duvall, A., Kirby, E., and Burbank, D.: Tectonic and lithologic controls on
bedrock channel profiles and processes in coastal California, J. Geophys.
Res., 109, F03002, https://doi.org/10.1029/2003JF000086, 2004.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.: The shuttle radar topography mission, Rev. Geophys., 45, RG2004, https://doi.org/10.1029/2005RG000183, 2007.
Ferrier, K. L., Huppert, K. L., and Perron, J. T.: Climatic control of
bedrock river incision, Nature, 496, 206–209, https://doi.org/10.1038/nature11982, 2013.
Flint, J. J.: Stream gradient as a function of order, magnitude, and
discharge, Water Resour. Res., 10, 969–973, 1974.
Fox, M., Goren, L., May, D. A., and Willett, S. D.: Inversion of fluvial
channels for paleorock uplift rates in Taiwan, J. Geophys. Res.-Earth, 119, 1853–1875, https://doi.org/10.1002/2014JF003196, 2014.
Fox, M., Bodin, T., and Shuster, D. L.: Abrupt changes in the rate of Andean
Plateau uplift from reversible jump Markov Chain Monte Carlo inversion of
river profiles, Geomorphology, 238, 1–14, 2015.
Gailleton, B., Mudd, S. M., Clubb, F. J., Peifer, D., and Hurst, M. D.: A segmentation approach for the reproducible extraction and quantification of knickpoints from river long profiles, Earth Surf. Dynam., 7, 211–230, https://doi.org/10.5194/esurf-7-211-2019, 2019.
Gailleton, B., Mudd, S. M., Clubb, F. J., Grieve, S. W. D., and Hurst, M. D.: Impact of changing concavity indices on channel steepness and divide migration metrics, J. Geophys. Res.-Earth, 126, e2020JF006060, https://doi.org/10.1029/2020JF006060, 2021.
Gallen, S. F. and Fernández-Blanco, D.: A new data-driven Bayesian
inversion of fluvial topography clarifies the tectonic history of the
corinth rift and reveals a channel steepness threshold, J. Geophys. Res.-Earth, 126, e2020JF005651, https://doi.org/10.1029/2020JF005651, 2021.
Gallen, S. F. and Wegmann, K. W.: River profile response to normal fault growth and linkage: an example from the Hellenic forearc of south-central Crete, Greece, Earth Surf. Dynam., 5, 161–186, https://doi.org/10.5194/esurf-5-161-2017, 2017.
Gasparini, N. M. and Brandon, M. T.: A generalized power law approximation
for fluvial incision of bedrock channels, J. Geophys. Res., 116, F02020,
https://doi.org/10.1029/2009JF001655, 2011.
Goren, L., Fox, M., and Willett, S. D.: Tectonics from fluvial topography
using formal linear inversion: theory and applications to the Inyo
Mountains, California, J. Geophys. Res.-Earth, 119, 1651–1681, 2014.
Goren, L., Fox, M., and Willett, S. D.: Linear Inversion of Fluvial Long
Profiles to Infer Tectonic Uplift Histories, in: Treatise on Geomorphology
(Second Edition), edited by: Shroder, J. F., Academic Press,
225–248, https://doi.org/10.1016/B978-0-12-818234-5.00075-4,
2022.
Hack, J. T.: Studies of Longitudinal Stream Profiles in Virginia and
Maryland, U.S. Geological Survey Professional Paper, 294, 45–97, 1957.
Hack, J. T.: Stream profile analysis and stream-gradient index,
J. Res. US Geol. Surv., 1, 421–429, 1973.
Hamawi, M., Goren, L., Mushkin, A., and Levi, T.: Rectangular drainage
pattern evolution controlled by pipe cave collapse along clastic dikes, the
Dead Sea Basin, Israel, Earth Surf. Proc. Land., 47, 936–954,
https://doi.org/10.1002/esp.5295, 2022
Harel, M.-A., Mudd, S. M., and Attal, M.: Global analysis of the stream power
law parameters based on worldwide 10Be denudation rates, Geomorphology, 268,
184–196, https://doi.org/10.1016/j.geomorph.2016.05.035, 2016.
Harkins, N., Kirby, E., Heimsath, A., Robinson, R., and Reiser, U.:
Transient fluvial incision in the headwaters of the Yellow River,
northeastern Tibet, China, J. Geophys. Res.-Earth, 112, F03S04, https://doi.org/10.1029/2006JF000570, 2007.
Haviv, I., Enzel, Y., Whipple, K. X., Zilberman, E., Matmon, A., Stone, J.,
and Fifield, K. L.: Evolution of vertical knickpoints (waterfalls) with
resistant caprock: insights from numerical modelling, J. Geophys. Res.-Earth,
115, F03028, https://doi.org/10.1029/2008JF001187, 2010.
Hergarten, S., Robl, J., and Stüwe, K.: Tectonic geomorphology at small catchment sizes – extensions of the stream-power approach and the χ method, Earth Surf. Dynam., 4, 1–9, https://doi.org/10.5194/esurf-4-1-2016, 2016.
Hilley, G. E., Porder, S., Aron, F., Baden, C. W., Johnstone, S. A., Liu, F.,
Sare, R., Steelquist, A., and Young, H. H.: Earth's topographic relief
potentially limited by an upper bound on channel steepness, Nat. Geosci., 12,
828–832, 2019.
Howard, A.: A detachment-limited model of drainage basin evolution,
Water Resour. Res., 30, 2261–2285, 1994.
Howard, A. D. and Kerby, G.: Channel changes in badlands, Geol. Soc. Am.
Bull., 94, 739–752, 1983.
Kirby, E. and Whipple, K. X.: Expression of active tectonics in erosional
landscapes, J. Struct. Geol., 44, 54–75,
https://doi.org/10.1016/j.jsg.2012.07.009, 2012.
Lague, D.: The stream power river incision model: evidence, theory and
beyond, Earth Surf. Process. Landf., 39, 38–61, 2014.
Lavé, J. and Avouac, J. P.: Fluvial incision and tectonic uplift across
the Himalayas of central Nepal, J. Geophys. Res.-Sol. Ea., 106,
26561–26591, 2001.
Luke, J. C.: Mathematical models for landform evolution, J. Geophys. Res.,
77, 2460–2464, 1972.
Ma, Z., Zhang, H., Wang, Y., Tao, Y., and Li, X.: Inversion of Dadu River
bedrock channels for the late Cenozoic uplift history of the eastern Tibetan
Plateau, Geophys. Res. Lett., 47, e2019GL086882, https://doi.org/10.1029/2019GL086882, 2020.
Mitchell, N. A. and Yanites, B. J.: Spatially Variable Increase in Rock
Uplift in the Northern U.S. Cordillera Recorded in the Distribution of River
Knickpoints and Incision Depths, J. Geophys. Res.-Earth, 124, 1238–1260,
https://doi.org/10.1029/2018JF004880, 2019.
Morisawa, M. E.: Quantitative Geomorphology of Some Watersheds in the
Appalachian Plateau, Geol. Soc. Am. Bull., 73, 1025–1046, https://doi.org/10.1130/0016-7606(1962)73[1025:QGOSWI]2.0.CO;2, 1962.
Mudd, S. M., Attal, M., Milodowski, D. T., Grieve, S. W., and Valters, D. A.: A
statistical framework to quantify spatial variation in channel gradients
using the integral method of channel profile analysis, J. Geophys. Res.-Earth, 119, 138–152, 2014.
Niemann, J. D., Gasparini, N. M., Tucker, G. E., and Bras, R. L.: A quantitative
evaluation of Playfair's law and its use in testing long-term stream erosion
models, Earth Surf. Process. Landf., 26, 1317–1332, 2001.
Oskin, M. E. and Burbank, D.: Transient landscape evolution of
basement-cored uplifts: example of the Kyrgyz Range, Tian Shan, J. Geophys.
Res., 112, F03S03, https://doi.org/10.1029/2006JF000563, 2007.
Ouimet, W. B., Whipple, K. X., and Granger, D. E.: Beyond threshold hillslopes:
channel adjustment to base-level fall in tectonically active mountain
ranges, Geology, 37, 579–582,
https://doi.org/10.1130/G30013A.1, 2009.
Paul, J. D., Roberts, G. G., and White, N.: The African landscape through space and time, Tectonics, 33, 898–935, https://doi.org/10.1002/2013TC003479, 2014.
Perron, J. T. and Royden, L.: An integral approach to Bedrock River profile
analysis, Earth Surf. Process. Landf., 38, 570–576,
https://doi.org/10.1002/esp.3302, 2013.
Pritchard, D., Roberts, G. G., White, N. J., and Richardson, C. N.: Uplift
histories from river profiles, Geophys. Res. Lett., 36, L24301,
https://doi.org/10.1029/2009GL040928, 2009.
Roberts, G. G. and White, D.: Estimating uplift rate histories from river profiles using African examples, J. Geophys. Res., 115, B02406, https://doi.org/10.1029/2009JB006692, 2010.
Rosenbloom, N. A. and Anderson, R. S.: Hillslope and channel evolution in a
marine terraced landscape, Santa Cruz, California, J. Geophys. Res., 99,
14013–14029, 1994.
Royden, L. and Perron, J. T.: Solutions of the stream power equation and
application to the evolution of river longitudinal profiles, J. Geophys.
Res.-Earth, 118, 497–518, https://doi.org/10.1002/jgrf.20031, 2013.
Rudge, J. F., Roberts, G. G., White, N. J., and Richardson, C. N.: Uplift
histories of Africa and Australia from linear inverse modeling of drainage
inventories, J. Geophys. Res.-Earth, 120, 894–914, 2015.
Scheingross, J. S. and Lamb, M. P.: A mechanistic model of waterfall plunge pool erosion into bedrock, J. Geophys. Res.-Earth, 122, 2079–2104, https://doi.org/10.1002/2017JF004195, 2017.
Schwanghart, W. and Scherler, D.: Divide mobility controls knickpoint
migration on the Roan Plateau (Colorado, USA), Geology, 48, 698–702, https://doi.org/10.1130/G47054.1, 2020.
Shelef, E., Haviv, I., and Goren, L.: A potential link between waterfall
recession rate and bedrock channel concavity, J. Geophys. Res.-Earth, 123, 905–923, https://doi.org/10.1002/2016JF004138, 2018.
Snyder, N. P., Whipple, K. X., Tucker, G. E., and Merritts, D.: Landscape
response to tectonic forcing: DEM analysis of stream profiles in the
Mendocino Triple Junction region, northern California, Geol. Soc. Am. Bull.,
112, 1250–1263, 2000.
SRTM Data: 90 m Shuttle
Radar Topography Mission (SRTM) DEM, https://srtm.csi.cgiar.org/srtmdata/ (last access: 25 March 2022), 2022.
Steer, P.: Short communication: Analytical models for 2D landscape evolution, Earth Surf. Dynam., 9, 1239–1250, https://doi.org/10.5194/esurf-9-1239-2021, 2021.
Tian, Y., Kohn, B. P., Hu, S., and Gleadow, A. J. W.: Synchronous fluvial
response to surface uplift in the eastern Tibetan Plateau: Implications for
crustal dynamics, Geophys. Res. Lett., 42, 29–35,
https://doi.org/10.1002/2014GL062383, 2015.
Venditti, J. G., Li, G., Deal, E., Dingle, E., and Church, M.: Struggles with
stream power: Connecting theory across scales, Geomorphology, 366, 106817, https://doi.org/10.1016/j.geomorph.2019.07.004, 2019.
Wang, Y., Zhang, H., Zheng, D., Dassow, W. V., Zhang, Z., Yu, J., and Pang,
J.: How a stationary knickpoint is sustained: new insights into the
formation of the deep Yarlung Tsangpo Gorge, Geomorphology 285, 28–43,
2017.
Wang, Y., Liu, C., Zheng, D., Zhang, H., Yu, J., Pang, J., Li, C., and Hao, Y.: Multistage exhumation in the catchment of the Anninghe River in the SE Tibetan Plateau: Insights from both detrital thermochronology and topographic analysis, Geophys. Res. Lett., 48, e2021GL092587, https://doi.org/10.1029/2021GL092587, 2021.
Weissel, J. K. and Seidl, M. A.: Inland propagation of erosional escarpments
and river profile evolution across the southeast Aus tralian passive
continental margin, Geophys. Monogr., 107, 189–206, 1998.
Whipple, K. X. and Tucker, G. E.: Dynamics of the stream power river incision
model: Implications for height limits of mountain ranges, landscape response
timescales and research needs, J. Geophys. Res., 104, 17661–17674, 1999.
Whipple, K. X. and Tucker, G. E.: Implications of sediment-flux-dependent
river incision models for landscape evolution, J. Geophys. Res.-Sol. Ea., 107, 2039, https://doi.org/10.1029/2000JB000044, 2002.
Whipple, K. X., Hancock, G. S., and Anderson, R. S.: River incision into
bedrock: Mechanics and relative efficacy of plucking, abrasion, and
cavitation, Geol. Soc. Am. Bull., 112, 490–503, 2000.
Whittaker, A. C. and Boulton, S. J.: Tectonic and climatic controls on
knickpoint retreat rates and landscape response times, J. Geophys. Res.-Earth, 117, F02024, https://doi.org/10.1029/2011JF002157, 2012.
Wobus, C., Whipple, K. X., Kirby, E., Snyder, N., Johnson, J., Spyropolou,
K., Crosby, B., and Sheehan, D.: Tectonics from topography: procedures,
promise, and pitfalls, in: Tectonics, Climate, and Landscape Evolution, edited by: Willett, S. D., Hovius, N., Brandon, M. T., and Fisher,
D. M.: Geological Society
of America, Special Paper 398, Penrose Conference Series, 55–74, https://doi.org/10.1130/2006.2398(04), 2006.
Yang, R., Suhail, H. A., Gourbet, L., Willett, S. D., Fellin, M. G., Lin, X., Gong, J. F., Wei, X. C., Maden, C., Jiao, R. H., and Chen, H. L.: Early Pleistocene drainage pattern changes in Eastern Tibet: Constraints from provenance analysis, thermochronometry, and numerical modeling, Earth Planet. Sc. Lett., 531, 115955, https://doi.org/10.1016/j.epsl.2019.115955, 2019.
Zhang, Y. Z., Replumaz, A., Wang, G. C., Leloup, P. H., Gautheron, C.,
Bernet, M., van der Beek, P., Paquette, L. J., Wang, A., Zhang, K. X.,
Chevalier, M. L., and Li, H. B.: Timing and rate of exhumation along the
Litang fault system, implication for fault reorganization in Southeast
Tibet, Tectonics, 34, 1219–1243,
https://doi.org/10.1002/2014TC003671, 2015.
Zhang, Y. Z., Replumaz, A., Leloup, P. H., Wang, G.-C., Bernet, M., van der
Beek, P., Paquette, L. J., and Chevalier, M. L.: Cooling history of the Gongga
batholith: Implications for the Xianshuihe Fault and Miocene kinematics of
SE Tibet, Earth Planet. Sc. Lett., 465, 1–15,
https://doi.org/10.1016/j.epsl.2017.02.025, 2017.
Short summary
Abrupt changes in tectonic uplift rates induce sharp changes in river profile, called knickpoints. When river erosion depends non-linearly on slope, we develop an analytic model for knickpoint velocity and find the condition of knickpoint merging. Then we develop analytic models that represent the two-directional link between tectonic changes and river profile evolution. The derivation provides new understanding on the links between tectonic changes and river profile evolution.
Abrupt changes in tectonic uplift rates induce sharp changes in river profile, called...