Articles | Volume 11, issue 1
https://doi.org/10.5194/esurf-11-117-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-11-117-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multi-sensor monitoring and data integration reveal cyclical destabilization of the Äußeres Hochebenkar rock glacier
Institute for Interdisciplinary Mountain Research, Austrian Academy of Sciences, Innrain 25, 3. OG, 6020 Innsbruck, Austria
Alaska Climate Research Center, Geophysical Institute, University of Alaska Fairbanks, 2156 Koyukuk Dr, Fairbanks, AK 99775, United States
Thomas Zieher
Institute for Interdisciplinary Mountain Research, Austrian Academy of Sciences, Innrain 25, 3. OG, 6020 Innsbruck, Austria
Magnus Bremer
Institute for Interdisciplinary Mountain Research, Austrian Academy of Sciences, Innrain 25, 3. OG, 6020 Innsbruck, Austria
Department of Geography, University of Innsbruck, Innrain 52f, 6020 Innsbruck, Austria
Martin Stocker-Waldhuber
Institute for Interdisciplinary Mountain Research, Austrian Academy of Sciences, Innrain 25, 3. OG, 6020 Innsbruck, Austria
Vivien Zahs
Institute of Geography, Heidelberg University, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany
Bernhard Höfle
Institute of Geography, Heidelberg University, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany
Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
Christoph Klug
Department of Geography, University of Innsbruck, Innrain 52f, 6020 Innsbruck, Austria
Alessandro Cicoira
Department of Geography, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
Related authors
Lea Hartl, Federico Covi, Martin Stocker-Waldhuber, Anna Baldo, Davide Fugazza, Biagio Di Mauro, and Kathrin Naegeli
The Cryosphere, 19, 3329–3353, https://doi.org/10.5194/tc-19-3329-2025, https://doi.org/10.5194/tc-19-3329-2025, 2025
Short summary
Short summary
Glacier albedo determines how much solar radiation is absorbed by the glacier surface and is a key driver of glacier melt. Alpine glaciers are losing their snow and firn cover, and the underlying darker ice is becoming exposed. This means that more solar radiation is absorbed by the ice, which leads to increased melt. To quantify these processes, we explore data from a high-elevation, on-ice weather station that measures albedo and combine this information with satellite imagery.
Lea Hartl, Patrick Schmitt, Lilian Schuster, Kay Helfricht, Jakob Abermann, and Fabien Maussion
The Cryosphere, 19, 1431–1452, https://doi.org/10.5194/tc-19-1431-2025, https://doi.org/10.5194/tc-19-1431-2025, 2025
Short summary
Short summary
We use regional observations of glacier area and volume change to inform glacier evolution modeling in the Ötztal and Stubai range (Austrian Alps) until 2100 in different climate scenarios. Glaciers in the region lost 23 % of their volume between 2006 and 2017. Under current warming trajectories, glacier loss in the region is expected to be near-total by 2075. We show that integrating regional calibration and validation data in glacier models is important to improve confidence in projections.
Florina Roana Schalamon, Sebastian Scher, Andreas Trügler, Lea Hartl, Wolfgang Schöner, and Jakob Abermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-4060, https://doi.org/10.5194/egusphere-2024-4060, 2025
Short summary
Short summary
Atmospheric patterns influence the air temperature in Greenland. We investigate two warming periods, from 1922–1932 and 1993–2007, both showing similar temperature increases. Using a neural network-based clustering method, we defined predominant atmospheric patterns for further analysis. Our findings reveal that while the connection between these patterns and local air temperature remains stable, the distribution of patterns changes between the warming periods and the full period (1900–2015).
Lea Hartl, Bernd Seiser, Martin Stocker-Waldhuber, Anna Baldo, Marcela Violeta Lauria, and Andrea Fischer
Earth Syst. Sci. Data, 16, 4077–4101, https://doi.org/10.5194/essd-16-4077-2024, https://doi.org/10.5194/essd-16-4077-2024, 2024
Short summary
Short summary
Glaciers in the Alps are receding at unprecedented rates. To understand how this affects the hydrology and ecosystems of the affected regions, it is important to measure glacier mass balance and ensure that records of field surveys are kept in standardized formats and well-documented. We describe glaciological measurements of ice ablation and snow accumulation gathered at Mullwitzkees and Venedigerkees, two glaciers in the Austrian Alps, since 2007 and 2012, respectively.
Lea Hartl, Lucia Felbauer, Gabriele Schwaizer, and Andrea Fischer
The Cryosphere, 14, 4063–4081, https://doi.org/10.5194/tc-14-4063-2020, https://doi.org/10.5194/tc-14-4063-2020, 2020
Short summary
Short summary
When glaciers become snow-free in summer, darker glacier ice is exposed. The ice surface is darker than snow and absorbs more radiation, which increases ice melt. We measured how much radiation is reflected at different wavelengths in the ablation zone of Jamtalferner, Austria. Due to impurities and water on the ice surface there are large variations in reflectance. Landsat 8 and Sentinel-2 surface reflectance products do not capture the full range of reflectance found on the glacier.
Lea Hartl, Federico Covi, Martin Stocker-Waldhuber, Anna Baldo, Davide Fugazza, Biagio Di Mauro, and Kathrin Naegeli
The Cryosphere, 19, 3329–3353, https://doi.org/10.5194/tc-19-3329-2025, https://doi.org/10.5194/tc-19-3329-2025, 2025
Short summary
Short summary
Glacier albedo determines how much solar radiation is absorbed by the glacier surface and is a key driver of glacier melt. Alpine glaciers are losing their snow and firn cover, and the underlying darker ice is becoming exposed. This means that more solar radiation is absorbed by the ice, which leads to increased melt. To quantify these processes, we explore data from a high-elevation, on-ice weather station that measures albedo and combine this information with satellite imagery.
David Wachs, Azzurra Spagnesi, Pascal Bohleber, Andrea Fischer, Martin Stocker-Waldhuber, Alexander Junkermann, Carl Kindermann, Linus Langenbacher, Niclas Mandaric, Joshua Marks, Florian Meienburg, Theo Jenk, Markus Oberthaler, and Werner Aeschbach
EGUsphere, https://doi.org/10.5194/egusphere-2025-3681, https://doi.org/10.5194/egusphere-2025-3681, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
This study presents an age profile of the summit glacier of Weißseespitze in the Austrian Alps. The ages were obtained by combining 14C dating with the novel atom trap trace analysis for 39Ar. The data was used to constrain glacier age models. The results show that the surface ice is ~400 a old due to recent ice loss. The remaining ice continuously covers ages up to 6000 a. This work underscores the utility of 39Ar dating in glaciology, enabling precise reconstruction of age-depth relationships.
Jannik S. Meyer, Ronald Tabernig, and Bernhard Höfle
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-G-2025, 583–590, https://doi.org/10.5194/isprs-annals-X-G-2025-583-2025, https://doi.org/10.5194/isprs-annals-X-G-2025-583-2025, 2025
William Albert, Hannah Weiser, Ronald Tabernig, and Bernhard Höfle
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-G-2025, 25–32, https://doi.org/10.5194/isprs-annals-X-G-2025-25-2025, https://doi.org/10.5194/isprs-annals-X-G-2025-25-2025, 2025
Lea Hartl, Patrick Schmitt, Lilian Schuster, Kay Helfricht, Jakob Abermann, and Fabien Maussion
The Cryosphere, 19, 1431–1452, https://doi.org/10.5194/tc-19-1431-2025, https://doi.org/10.5194/tc-19-1431-2025, 2025
Short summary
Short summary
We use regional observations of glacier area and volume change to inform glacier evolution modeling in the Ötztal and Stubai range (Austrian Alps) until 2100 in different climate scenarios. Glaciers in the region lost 23 % of their volume between 2006 and 2017. Under current warming trajectories, glacier loss in the region is expected to be near-total by 2075. We show that integrating regional calibration and validation data in glacier models is important to improve confidence in projections.
Florina Roana Schalamon, Sebastian Scher, Andreas Trügler, Lea Hartl, Wolfgang Schöner, and Jakob Abermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-4060, https://doi.org/10.5194/egusphere-2024-4060, 2025
Short summary
Short summary
Atmospheric patterns influence the air temperature in Greenland. We investigate two warming periods, from 1922–1932 and 1993–2007, both showing similar temperature increases. Using a neural network-based clustering method, we defined predominant atmospheric patterns for further analysis. Our findings reveal that while the connection between these patterns and local air temperature remains stable, the distribution of patterns changes between the warming periods and the full period (1900–2015).
Samuel Weber and Alessandro Cicoira
EGUsphere, https://doi.org/10.5194/egusphere-2024-2652, https://doi.org/10.5194/egusphere-2024-2652, 2024
Short summary
Short summary
The properties of the permafrost ground depend on its temperature and composition. We used temperature data from 29 boreholes in Switzerland to study how heat moves through different types of mountain permafrost landforms. We found that it depends on where you are, whether there is water in the ground and what time of year it is. Understanding these changes is important because they can affect how stable mountain slopes are and how easy it is to build things in mountain areas.
Lea Hartl, Bernd Seiser, Martin Stocker-Waldhuber, Anna Baldo, Marcela Violeta Lauria, and Andrea Fischer
Earth Syst. Sci. Data, 16, 4077–4101, https://doi.org/10.5194/essd-16-4077-2024, https://doi.org/10.5194/essd-16-4077-2024, 2024
Short summary
Short summary
Glaciers in the Alps are receding at unprecedented rates. To understand how this affects the hydrology and ecosystems of the affected regions, it is important to measure glacier mass balance and ensure that records of field surveys are kept in standardized formats and well-documented. We describe glaciological measurements of ice ablation and snow accumulation gathered at Mullwitzkees and Venedigerkees, two glaciers in the Austrian Alps, since 2007 and 2012, respectively.
Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang
The Cryosphere, 18, 3195–3230, https://doi.org/10.5194/tc-18-3195-2024, https://doi.org/10.5194/tc-18-3195-2024, 2024
Short summary
Short summary
Satellites have made it possible to observe glacier elevation changes from all around the world. In the present study, we compared the results produced from two different types of satellite data between different research groups and against validation measurements from aeroplanes. We found a large spread between individual results but showed that the group ensemble can be used to reliably estimate glacier elevation changes and related errors from satellite data.
M. Potůčková, J. Albrechtová, K. Anders, L. Červená, J. Dvořák, K. Gryguc, B. Höfle, L. Hunt, Z. Lhotáková, A. Marcinkowska-Ochtyra, A. Mayr, E. Neuwirthová, A. Ochtyra, M. Rutzinger, A. Šedová, A. Šrollerů, and L. Kupková
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 989–996, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-989-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-989-2023, 2023
Adriaan L. van Natijne, Thom A. Bogaard, Thomas Zieher, Jan Pfeiffer, and Roderik C. Lindenbergh
Nat. Hazards Earth Syst. Sci., 23, 3723–3745, https://doi.org/10.5194/nhess-23-3723-2023, https://doi.org/10.5194/nhess-23-3723-2023, 2023
Short summary
Short summary
Landslides are one of the major weather-related geohazards. To assess their potential impact and design mitigation solutions, a detailed understanding of the slope is required. We tested if the use of machine learning, combined with satellite remote sensing data, would allow us to forecast deformation. Our results on the Vögelsberg landslide, a deep-seated landslide near Innsbruck, Austria, show that the formulation of such a machine learning system is not as straightforward as often hoped for.
Azzurra Spagnesi, Pascal Bohleber, Elena Barbaro, Matteo Feltracco, Fabrizio De Blasi, Giuliano Dreossi, Martin Stocker-Waldhuber, Daniela Festi, Jacopo Gabrieli, Andrea Gambaro, Andrea Fischer, and Carlo Barbante
EGUsphere, https://doi.org/10.5194/egusphere-2023-1625, https://doi.org/10.5194/egusphere-2023-1625, 2023
Preprint archived
Short summary
Short summary
We present new data from a 10 m ice core drilled in 2019 and a 8.4 m parallel ice core drilled in 2021 at the summit of Weißseespitze glacier. In a new combination of proxies, we discuss profiles of stable water isotopes, major ion chemistry as well as a full profile of microcharcoal and levoglucosan. We find that the chemical and isotopic signals are preserved, despite the ongoing surface mass loss. This is not be to expected considering what has been found at other glaciers at similar locations.
Lukas Winiwarter, Katharina Anders, Daniel Czerwonka-Schröder, and Bernhard Höfle
Earth Surf. Dynam., 11, 593–613, https://doi.org/10.5194/esurf-11-593-2023, https://doi.org/10.5194/esurf-11-593-2023, 2023
Short summary
Short summary
We present a method to extract surface change information from 4D time series of topographic point clouds recorded with a terrestrial laser scanner. The method uses sensor information to spatially and temporally smooth the data, reducing uncertainties. The Kalman filter used for the temporal smoothing also allows us to interpolate over data gaps or extrapolate into the future. Clustering areas where change histories are similar allows us to identify processes that may have the same causes.
D. Hulskemper, K. Anders, J. A. Á. Antolínez, M. Kuschnerus, B. Höfle, and R. Lindenbergh
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W2-2022, 53–60, https://doi.org/10.5194/isprs-archives-XLVIII-2-W2-2022-53-2022, https://doi.org/10.5194/isprs-archives-XLVIII-2-W2-2022-53-2022, 2022
Alessandro Cicoira, Samuel Weber, Andreas Biri, Ben Buchli, Reynald Delaloye, Reto Da Forno, Isabelle Gärtner-Roer, Stephan Gruber, Tonio Gsell, Andreas Hasler, Roman Lim, Philippe Limpach, Raphael Mayoraz, Matthias Meyer, Jeannette Noetzli, Marcia Phillips, Eric Pointner, Hugo Raetzo, Cristian Scapozza, Tazio Strozzi, Lothar Thiele, Andreas Vieli, Daniel Vonder Mühll, Vanessa Wirz, and Jan Beutel
Earth Syst. Sci. Data, 14, 5061–5091, https://doi.org/10.5194/essd-14-5061-2022, https://doi.org/10.5194/essd-14-5061-2022, 2022
Short summary
Short summary
This paper documents a monitoring network of 54 positions, located on different periglacial landforms in the Swiss Alps: rock glaciers, landslides, and steep rock walls. The data serve basic research but also decision-making and mitigation of natural hazards. It is the largest dataset of its kind, comprising over 209 000 daily positions and additional weather data.
Jan Pfeiffer, Thomas Zieher, Jan Schmieder, Thom Bogaard, Martin Rutzinger, and Christoph Spötl
Nat. Hazards Earth Syst. Sci., 22, 2219–2237, https://doi.org/10.5194/nhess-22-2219-2022, https://doi.org/10.5194/nhess-22-2219-2022, 2022
Short summary
Short summary
The activity of slow-moving deep-seated landslides is commonly governed by pore pressure variations within the shear zone. Groundwater recharge as a consequence of precipitation therefore is a process regulating the activity of landslides. In this context, we present a highly automated geo-statistical approach to spatially assess groundwater recharge controlling the velocity of a deep-seated landslide in Tyrol, Austria.
Hannah Weiser, Jannika Schäfer, Lukas Winiwarter, Nina Krašovec, Fabian E. Fassnacht, and Bernhard Höfle
Earth Syst. Sci. Data, 14, 2989–3012, https://doi.org/10.5194/essd-14-2989-2022, https://doi.org/10.5194/essd-14-2989-2022, 2022
Short summary
Short summary
3D point clouds, acquired by laser scanning, allow us to retrieve information about forest structure and individual tree properties. We conducted airborne, UAV-borne and terrestrial laser scanning in German mixed forests, resulting in overlapping point clouds with different characteristics. From these, we generated a comprehensive database of individual tree point clouds and corresponding tree metrics. Our dataset may serve as a benchmark dataset for algorithms in forestry research.
K. Anders, L. Winiwarter, D. Schröder, and B. Höfle
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2022, 973–980, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-973-2022, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-973-2022, 2022
A. B. Voordendag, B. Goger, C. Klug, R. Prinz, M. Rutzinger, and G. Kaser
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2022, 1093–1099, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1093-2022, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1093-2022, 2022
V. Zahs, L. Winiwarter, K. Anders, M. Bremer, M. Rutzinger, M. Potůčková, and B. Höfle
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2022, 1109–1116, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1109-2022, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1109-2022, 2022
L. Winiwarter, K. Anders, D. Schröder, and B. Höfle
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2022, 79–86, https://doi.org/10.5194/isprs-annals-V-2-2022-79-2022, https://doi.org/10.5194/isprs-annals-V-2-2022-79-2022, 2022
Andrea Fischer, Gabriele Schwaizer, Bernd Seiser, Kay Helfricht, and Martin Stocker-Waldhuber
The Cryosphere, 15, 4637–4654, https://doi.org/10.5194/tc-15-4637-2021, https://doi.org/10.5194/tc-15-4637-2021, 2021
Short summary
Short summary
Eastern Alpine glaciers have been receding since the Little Ice Age maximum, but until now the majority of glacier margins could be delineated unambiguously. Today the outlines of totally debris-covered glacier ice are fuzzy and raise the discussion if these features are still glaciers. We investigated the fate of glacier remnants with high-resolution elevation models, analyzing also thickness changes in buried ice. In the past 13 years, the 46 glaciers of Silvretta lost one-third of their area.
K. Anders, L. Winiwarter, H. Mara, R. C. Lindenbergh, S. E. Vos, and B. Höfle
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2021, 137–144, https://doi.org/10.5194/isprs-annals-V-2-2021-137-2021, https://doi.org/10.5194/isprs-annals-V-2-2021-137-2021, 2021
A. B. Voordendag, B. Goger, C. Klug, R. Prinz, M. Rutzinger, and G. Kaser
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2021, 153–160, https://doi.org/10.5194/isprs-annals-V-2-2021-153-2021, https://doi.org/10.5194/isprs-annals-V-2-2021-153-2021, 2021
Veit Ulrich, Jack G. Williams, Vivien Zahs, Katharina Anders, Stefan Hecht, and Bernhard Höfle
Earth Surf. Dynam., 9, 19–28, https://doi.org/10.5194/esurf-9-19-2021, https://doi.org/10.5194/esurf-9-19-2021, 2021
Short summary
Short summary
In this work, we use 3D point clouds to detect topographic changes across the surface of a rock glacier. These changes are presented as the relative contribution of surface change during a 3-week period to the annual surface change. By comparing these different time periods and looking at change in different directions, we provide estimates showing that different directions of surface change are dominant at different times of the year. This demonstrates the benefit of frequent monitoring.
Lea Hartl, Lucia Felbauer, Gabriele Schwaizer, and Andrea Fischer
The Cryosphere, 14, 4063–4081, https://doi.org/10.5194/tc-14-4063-2020, https://doi.org/10.5194/tc-14-4063-2020, 2020
Short summary
Short summary
When glaciers become snow-free in summer, darker glacier ice is exposed. The ice surface is darker than snow and absorbs more radiation, which increases ice melt. We measured how much radiation is reflected at different wavelengths in the ablation zone of Jamtalferner, Austria. Due to impurities and water on the ice surface there are large variations in reflectance. Landsat 8 and Sentinel-2 surface reflectance products do not capture the full range of reflectance found on the glacier.
Cited articles
Arenson, L. U. and Springman, S. M.: Triaxial constant stress and constant
strain rate tests on ice-rich permafrost samples, Can. Geotech. J., 42, 412–430, 2005. a
Avian, M., Kaufmann, V., and Lieb, G. K.: Recent and Holocene dynamics of a
rock glacier system: The example of Langtalkar (Central Alps, Austria), Norsk
Geografisk Tidsskrift-Norwegian Journal of Geography, 59, 149–156, 2005. a
Barsch, D.: Permafrost creep and rockglaciers, Permafrost Periglac. Process., 3, 175–188, 1992. a
Barsch, D.: Indicators for the present and former geoecology in high mountain
environments, Springer, Berlin, Heidelberg, ISBN 978-3-642-80093-1, 1996. a
Bearzot, F., Garzonio, R., Colombo, R., Crosta, G. B., Di Mauro, B., Fioletti, M., Morra Di Cella, U., and Rossini, M.: Flow Velocity Variations and Surface Change of the Destabilised Plator Rock Glacier (Central Italian Alps) from Aerial Surveys, Remote Sens., 14, 635, https://doi.org/10.3390/rs14030635, 2022. a, b, c, d, e, f
Besl, P. J. and McKay, N. D.: Method for registration of 3-D shapes, in: Sensor fusion IV: control paradigms and data structures, Proc. SPIE, 1611, 586–606, 1992. a
Bodin, X., Krysiecki, J.-M., and Anocona, P. I.: Recent collapse of rock
glaciers: two study cases in the Alps and in the Andes, in: vol. 1, 12th Congress, Protection of living spaces from natural hazards, Interpraevent 2012, 23–26 April 2012, Grenoble, France, 409–419, https://hal.univ-grenoble-alpes.fr/halsde-00947005v1 (last access: 23 February 2023), 2012. a
Bodin, X., Krysiecki, J.-M., Schoeneich, P., Le Roux, O., Lorier, L., Echelard, T., Peyron, M., and Walpersdorf, A.: The 2006 collapse of the Bérard rock glacier (Southern French Alps), Permafrost Periglac. Process., 28, 209–223, 2017. a
Bodin, X., Thibert, E., Sanchez, O., Rabatel, A., and Jaillet, S.: Multi-annual kinematics of an active rock glacier quantified from very high-resolution DEMs: An application-case in the French Alps, Remote Sens., 10, 547, https://doi.org/10.3390/rs10040547, 2018. a
Boeckli, L., Brenning, A., Gruber, A., and Noetzli, J.: Alpine
permafrost index map, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.784450, 2012a. a
Boeckli, L., Brenning, A., Gruber, S., and Noetzli, J.: Permafrost distribution in the European Alps: calculation and evaluation of an index map and summary statistics, The Cryosphere, 6, 807–820, https://doi.org/10.5194/tc-6-807-2012, 2012b. a
Bollmann, E., Klug, C., Sailer, R., Stötter, J., and Abermann, J.:
Quantifying Rock glacier Creep using Airborne Laserscanning. A case study
from two Rock glaciers in the Austrian Alps, in: 10th International
Conference on Permafrost, The Northern Publisher, Salekhard, Russia,
49–54, https://doi.org/10.13140/RG.2.1.3249.5202, 2012. a, b, c
Bollmann, E., Girstmair, A., Mitterer, S., Krainer, K., Sailer, R., and
Stötter, J.: A rock glacier activity index based on rock glacier thickness changes and displacement rates derived from airborne laser
scanning, Permafrost Periglac. Process., 26, 347–359, 2015. a
Bremer, M., Wichmann, V., Rutzinger, M., Zieher, T., and Pfeiffer, J.: Simulating Unmanned-Aerial-Vehicle Based Laser Scanning Data For Efficient Mission Planning In Complex Terrain, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W13, 943–950, https://doi.org/10.5194/isprs-archives-XLII-2-W13-943-2019, 2019. a
Cicoira, A., Beutel, J., Faillettaz, J., Gärtner-Roer, I., and Vieli, A.: Resolving the influence of temperature forcing through heat conduction on rock glacier dynamics: a numerical modelling approach, The Cryosphere, 13, 927–942, https://doi.org/10.5194/tc-13-927-2019, 2019a. a, b
Cicoira, A., Beutel, J., Faillettaz, J., and Vieli, A.: Water controls the
seasonal rhythm of rock glacier flow, Earth Planet. Sc. Lett., 528, 115844, https://doi.org/10.1016/j.epsl.2019.115844, 2019b. a, b
Cicoira, A., Hartl, L., Zieher, T., Bremer, M., Stocker-Waldhuber, M., Zahs,
V., Höfle, B., and Klug, C.: Two destabilization phases of the Äußeres
Hochebenkar Rock Glacier, TIB AV Portal, https://doi.org/10.5446/60175, 2022. a
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., and Böhner, J.: System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 8, 1991–2007, https://doi.org/10.5194/gmd-8-1991-2015, 2015. a, b
Cuffey, K. M. and Paterson, W. S. B.: The physics of glaciers, Academic Press, ISBN 9780123694614, 2010. a
Cusicanqui, D., Rabatel, A., Vincent, C., Bodin, X., Thibert, E., and Francou, B.: Interpretation of volume and flux changes of the Laurichard rock glacier between 1952 and 2019, French Alps, J. Geophys. Res.-Earth, 126, e2021JF006161, https://doi.org/10.1029/2021JF006161, 2021. a
Daanen, R. P., Grosse, G., Darrow, M. M., Hamilton, T. D., and Jones, B. M.: Rapid movement of frozen debris-lobes: implications for permafrost degradation and slope instability in the south-central Brooks Range, Alaska, Nat. Hazards Earth Syst. Sci., 12, 1521–1537, https://doi.org/10.5194/nhess-12-1521-2012, 2012. a, b
Delaloye, R., Perruchoud, E., Avian, M., Kaufmann, V., Bodin, X., Hausmann, H., Ikeda, A., Kääb, A., Kellerer-Pirklbauer, A., Krainer, K., Lambiel, C., Mihajlovic, D., Staub, B., Roer, I., and Thibert, E.: Recent interannual variations of rock glacier creep in the European Alps, in: 9th International Conference on Permafrost, 29 June–3 July 2008, Fairbanks, Alaska, 343–348, https://doi.org/10.5167/uzh-7031, 2008. a, b
Delaloye, R., Lambiel, C., and Gärtner-Roer, I.: Overview of rock glacier
kinematics research in the Swiss Alps, Geogr. Helv., 65, 135–145, https://doi.org/10.5194/gh-65-135-2010, 2010. a, b, c
Etzelmüller, B., Guglielmin, M., Hauck, C., Hilbich, C., Hoelzle, M.,
Isaksen, K., Noetzli, J., Oliva, M., and Ramos, M.: Twenty years of European
mountain permafrost dynamics – the PACE legacy, Environ. Res. Lett., 15, 104070, https://doi.org/0.1088/1748-9326/abae9d, 2020. a
Fey, C. and Wichmann, V.: Long-range terrestrial laser scanning for
geomorphological change detection in alpine terrain–handling uncertainties,
Earth Surf. Proc. Land., 42, 789–802, 2017. a
Fleischer, F., Haas, F., Piermattei, L., Pfeiffer, M., Heckmann, T., Altmann, M., Rom, J., Stark, M., Wimmer, M. H., Pfeifer, N., and Becht, M.: Multi-decadal (1953–2017) rock glacier kinematics analysed by high-resolution topographic data in the upper Kaunertal, Austria, The Cryosphere, 15, 5345–5369, https://doi.org/10.5194/tc-15-5345-2021, 2021. a, b, c, d, e, f
GeoPandas: GeoPandas 0.8.0, https://geopandas.org/ (last access: 23 February 2023), 2013–2019. a
Gillies, S., et al.: Rasterio: Geospatial raster i/o for Python programmers, Mapbox, https://github.com/mapbox/rasterio (last access: 23 February 2023), 2013. a
Glen, J. W.: The creep of polycrystalline ice, P. Roy. Soc. Lond. A, 228, 519–538, 1955. a
Haeberli, W., King, L., and Flotron, A.: Surface movement and lichen-cover
studies at the active rock glacier near the Grubengletscher, Wallis, Swiss
Alps, Arct. Alp. Res., 11, 421–441, 1979. a
Harris, C. R., Millman, K. J., Van Der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., Fernández del Río, J., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E.: Array programming with NumPy, Nature, 585, 357–362, 2020. a
Hartl, L.: LeaHartl/Hochebenkar_figures: Hochebenkar figures v0.1 (v0.1), Zenodo [code], https://doi.org/10.5281/zenodo.7673884, 2023. a
Hartl, L. and Fischer, A.: Meteorologische Bedingungen und
Strahlungsverhältnisse am Blockgletscher Äußeres Hochebenkar, in:
Forschung am Blockgletscher Methoden und Ergebnisse, Alpine Forschungsstelle
Obergurgl 3, chap. 5, edited by: Schallhart, N. and Erschbamer, B., Innsbruck University Press, Innsbruck, 97–115, ISBN 978-3-902936-58-5, 2015. a
Hunter, J. D.: Matplotlib: A 2D Graphics Environment, Comput. Sci. Eng., 9, 90–95, https://doi.org/10.1109/mcse.2007.55, 2007. a
Ikeda, A. and Matsuoka, N.: Pebbly versus bouldery rock glaciers: Morphology,
structure and processes, Geomorphology, 73, 279–296, 2006. a
Kääb, A., Kaufmann, V., Ladstädter, R., and Eiken, T.: Rock glacier dynamics: implications from high-resolution measurements of surface velocity fields, in: vol. 1, Eighth International Conference on Permafrost, 21–25 July 2003. Zurich, Switzerland, 501–506, ISBN 90 5809 582 7, https://www.staff.tugraz.at/viktor.kaufmann/Chapter_089.pdf (last access: 23 February 2023), 2003. a
Kääb, A., Strozzi, T., Bolch, T., Caduff, R., Trefall, H., Stoffel, M., and Kokarev, A.: Inventory and changes of rock glacier creep speeds in Ile Alatau and Kungöy Ala-Too, northern Tien Shan, since the 1950s, The Cryosphere, 15, 927–949, https://doi.org/10.5194/tc-15-927-2021, 2021. a, b
Kaufmann, V.: The evolution of rock glacier monitoring using terrestrial
photogrammetry: the example of Äusseres Hochebenkar rock glacier
(Austria), Aust. J. Earth Sci., 105, 63–77, 2012. a
Kaufmann, V. and Ladstädter, R.: Monitoring of active rock glaciers by means of digital photogrammetry, Int. Arch. Photogram. Remote Sens. Spatial Inf. Sci., 34, 108–111, 2002a. a
Kaufmann, V. and Ladstädter, R.: Spatio-temporal analysis of the dynamic
behaviour of the Hochebenkar rock glaciers (Oetztal Alps, Austria) by means
of digital photogrammetric methods, in: Proceedings of the 6th International
Symposium on High Mountain Remote Sensing Cartography, Grazer Schriften der
Geographie und Raumforschung, 37, Institute of Geography and Regional Science, University of Graz, Graz, 119–139, https://www.staff.tugraz.at/viktor.kaufmann/HMRSC-6.pdf (last access: 23 February 2023), 2002b. a
Kaufmann, V., Kellerer-Pirklbauer, A., and Seier, G.: Conventional and
UAV-Based Aerial Surveys for Long-Term Monitoring (1954–2020) of a Highly
Active Rock Glacier in Austria, Front. Remote Sens., 2, 732744,
https://doi.org/10.3389/frsen.2021.732744, 2021. a
Kellerer-Pirklbauer, A., Lieb, G. K., and Kaufmann, V.: The Dösen Rock
Glacier in Central Austria: A key site for multidisciplinary long-term rock
glacier monitoring in the Eastern Alps, Aust. J. Earth Sci., 110, 16, https://doi.org/10.17738/ajes.2017.0013, 2017. a
Kellerer-Pirklbauer, A., Delaloye, R., Lambiel, C., Gärtner-Roer, I.,
Kaufmann, V., Scapozza, C., Krainer, K., Staub, B., Thibert, E., Bodin, X.,
Fischer,A., Hartl, L., Morra di Cella, U., Mair, V., Marcer, M., and Schoeneich, P.: Interannual variability of rock glacier flow velocities in the European Alps, in: vol. 23, Proceedings of the EUCOP5 5th European Conference on Permafrost, 23 June–1 July 2018, Chamonix, France, hal-01816115, 396–397, https://hal.science/hal-01816115v2 (last access: 23 February 2023), 2018. a
Kenner, R., Phillips, M., Beutel, J., Hiller, M., Limpach, P., Pointner, E.,
and Volken, M.: Factors controlling velocity variations at short-term,
seasonal and multiyear time scales, Ritigraben rock glacier, Western Swiss
Alps, Permafrost Periglac. Process., 28, 675–684, 2017. a
Klug, C., Bollmann, E., Kääb, A., Krainer, K., Sailer, R., and
Stötter, J.: Monitoring of permafrost creep on two rock glaciers in the
Austrian eastern Alps: combination of aerophotogrammetry and airborne laser
scanning, in: vol. 1, Proceedings of the 10th international conference on permafrost, 25–29 June 2012, Salekhard, Russia, 215–220, https://doi.org/10.13140/RG.2.1.1807.7284, 2012. a, b, c, d, e, f
Kofler, C., Mair, V., Gruber, S., Todisco, M. C., Nettleton, I., Steger, S.,
Zebisch, M., Schneiderbauer, S., and Comiti, F.: When do rock glacier fronts
fail? Insights from two case studies in South Tyrol (Italian Alps), Earth
Surface Proc. Land., 46, 1311–1327, 2021. a
Krainer, K. and He, X.: Flow velocities of active rock glaciers in the austrian alps, Geograf. Ann. A, 88, 267–280, https://doi.org/10.1111/j.0435-3676.2006.00300.x, 2006. a
Krainer, K., Bressan, D., Dietre, B., Haas, J. N., Hajdas, I., Lang, K., Mair, V., Nickus, U., Reidl, D., Thies, H., and Tonidandel, D.: A 10,300-year-old permafrost core from the active rock glacier Lazaun, southern ”Otztal Alps (South Tyrol, northern Italy), Quatern. Res., 83, 324–335, 2015. a
Krysiecki, J.-M., Bodin, X., Schoeneich, P., Krysiecki, J. M., Bodin, X., and Schoeneich, P.: Collapse of the Bérard rock glacier (southern French Alps), in: Proc. 9th Int. Conf. Permafrost, 29 June–3 July 2008, Fairbanks, USA, 153–154, ISBN 9780980017922, https://83ed082d-a-62cb3a1a-s-sites.googlegroups.com/site/xavgeoorg/Home/publications/Krysiecki_etal_2008-NICOP.pdf (last access: 23 February 2023), 2008. a
Kuhn, M., Dreiseitl, E., and Emprechtinger, M.: Temperatur und Niederschlag an der Wetterstation Obergurgl, 1953–2011, in: Klima, Wetter, Gletscher im
Wandel, Alpine Forschungsstelle Obergurgl 3, chap. 3, edited by: Schallhart, N. and Erschbamer, B., Innsbruck University Press, Innsbruck, 11–30, ISBN 978-3-902811-89-9, https://www.uibk.ac.at/afo/publikationen/pdf/3.-afo-buch-inhalt/afo3_klima_wetter_gletscher_web_kapitel-1.pdf (last access: 23 February 2023), 2013. a, b
Kummert, M., Bodin, X., Braillard, L., and Delaloye, R.: Pluri-decadal
evolution of rock glaciers surface velocity and its impact on sediment export
rates towards high alpine torrents, Earth Surf. Proc. Land., 46, 3213–3227, 2021. a
Ladstädter, R. and Kaufmann, V.: Terrestrisch-photogrammetrische
Dokumentation des Blockgletschers im Äußeren Hochebenkar, in: Internationale Geodätische Woche Obergurgl, edited by: Chesi, G., and Weinold, T., Herbert Wichmann Verlag, Heidelberg, https://www.staff.tugraz.at/viktor.kaufmann/Obergurgl2005.pdf (last access: 23 February 2023), 2005. a
Land Tirol Abteilung Geoinformation: Laserscandaten,
https://www.tirol.gv.at/sicherheit/geoinformation/geodaten/laserscandaten/
(last access: 19 August 2022), 2019. a
Marcer, M., Ringsø Nielsen, S., Ribeyre, C., Kummert, M., Duvillard, P.-A., Schoeneich, P., Bodin, X., and Genuite, K.: Investigating the slope failures at the Lou rock glacier front, French Alps, Permafrost Periglac. Process., 31, 15–30, 2020. a
Millstein, J. D., Minchew, B. M., and Pegler, S. S.: Ice viscosity is more
sensitive to stress than commonly assumed, Commun. Earth Environ., 3, 1–7, 2022. a
Moore, P. L.: Deformation of debris-ice mixtures, Rev. Geophys., 52, 435–467, 2014. a
Müller, J., Vieli, A., and Gärtner-Roer, I.: Rock glaciers on the run – understanding rock glacier landform evolution and recent changes from numerical flow modeling, The Cryosphere, 10, 2865–2886, https://doi.org/10.5194/tc-10-2865-2016, 2016. a
Noetzli, J., Pellet, C., and Staub, B.: Permafrost in Switzerland 2014/2015 to 2017/2018: Glaciological Report Permafrost No. 16–19 of the Cryospheric
Commission of the Swiss Academy of Sciences, PERMOS – Swiss Permafrost Monitoring, 104 pp., https://doi.org/10.13093/permos-rep-2019-16-19, 2019. a
Pillewizer, W.: Untersuchungen an Blockströmen der Ötztaler Alpen,
Geomorphologische Abhandlungen des Geographischen Institutes der Freie
Universität Berlin (Otto-Maull-Festschrift), 5, 37–50, 1957. a
QGIS.org: QGIS Geographic Information System, Open Source Geospatial Foundation Project, http://qgis.org (last access: 23 February 2023), 2010. a
RGIK: Towards standard guidelines for inventorying rock glaciers: baseline
concepts (version 4.2.2)., IPA Action Group Rock glacier inventories and
kinematics, 13 pp., https://bigweb.unifr.ch/Science/Geosciences/Geomorphology/Pub/Website/IPA/Guidelines/V4/210801_Baseline_Concepts_Inventorying_Rock_Glaciers_V4.2.1.pdf (last access: 23 February 2023), 2022. a, b
Roer, I., Haeberli, W., Avian, M., Kaufmann, V., Delaloye, R., Lambiel, C., and Kääb, A.: Observations and considerations on destabilizing active
rock glaciers in the European Alps, in: 9th International Conference on
Permafrost, 29 June–3 July 2008, Fairbanks, Alaska, 1505–1510,
https://doi.org/10.5167/uzh-6082, 2008. a, b, c
Roncat, A., Wieser, M., Briese, C., Bollmann, E., Sailer, R., Klug, C., and
Pfeifer, N.: Analysing the suitability of radiometrically calibrated
full-waveform lidar data for delineating Alpine rock glaciers, ISPRS Ann.
Photogram. Remote Sens. Spatial Inf. Sci., II-5/W2, 247–252, https://doi.org/10.5194/isprsannals-II-5-W2-247-2013, 2013a. a
Roncat, A., Wieser, M., Briese, C., Bollmann, E., Sailer, R., and Pfeifer, N.: Digital surface model, hillshade and Lambertian reflectance model of the
rock glaciers Oelgrube and Aeusseres Hochebenkar (Oetztal Alps, Tyrol,
Austria), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.816225, 2013b. a
Scambos, T. A., Dutkiewicz, M. J., Wilson, J. C., and Bindschadler, R. A.:
Application of image cross-correlation to the measurement of glacier velocity
using satellite image data, Remote Sens. Environ., 42, 177–186, 1992. a
Schneider, B.: Climate data and velocity of the Äußeres Hochebenkar
(Ötztal, Tyrolian Alps, Austria), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.836621, 1999b. a, b, c
Schoeneich, P., Bodin, X., Echelard, T., Kaufmann, V., Kellerer-Pirklbauer, A., Krysiecki, J.-M., and Lieb, G.: Velocity changes of rock glaciers and induced hazards, in: Engineering Geology for Society and Territory, in: Vol. 1, Springer, 223–227, https://doi.org/10.1007/978-3-319-09300-0_42, 2015. a, b
Sorg, A., Kääb, A., Roesch, A., Bigler, C., and Stoffel, M.:
Contrasting responses of Central Asian rock glaciers to global warming, Sci. Rep., 5, 1–6, 2015. a
Springman, S. M., Yamamoto, Y., Buchli, T., Hertrich, M., Maurer, H., Merz, K., Gärtner-Roer, I., and Seward, L.: Rock glacier degradation and
instabilities in the European Alps: a characterisation and monitoring
experiment in the Turtmanntal, CH, in: Landslide science and practice, Springer, 5–13, https://doi.org/10.1007/978-3-642-31337-0_1, 2013. a
Stocker-Waldhuber, M., Emprechtinger, M., Hartl, L., and Fischer, A.:
Continuous meteorological observations at weather station HEK (Hochebenkar),
Ötztal Alps, Austria, in 2012, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.808806, 2013. a, b
Stocker-Waldhuber, M., Fischer, A., Hartl, L., Abermann, J., and Schneider, H.: Flow velocity records at Rock Glacier Outer Hochebenkar (Äußeres Hochebenkar), Ötztal, Tyrolian Alps, Austria, 1997 et seq, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.928244, 2021. a
Tarini, M., Cignoni, P., and Montani, C.: Ambient occlusion and edge cueing for enhancing real time molecular visualization, IEEE T. Visualiz. Comput. Graph., 12, 1237–1244, 2006. a
Thibert, E. and Bodin, X.: Changes in surface velocities over four decades on
the Laurichard rock glacier (French Alps), Permafrost Periglac. Process., 33, 323–335, 2022. a
Ulrich, V., Williams, J. G., Zahs, V., Anders, K., Hecht, S., and Höfle, B.: Measurement of rock glacier surface change over different timescales using terrestrial laser scanning point clouds, Earth Surf. Dynam., 9, 19–28, https://doi.org/10.5194/esurf-9-19-2021, 2021. a, b, c
Vivero, S. and Lambiel, C.: Monitoring the crisis of a rock glacier with repeated UAV surveys, Geogr. Helv., 74, 59–69, https://doi.org/10.5194/gh-74-59-2019, 2019. a, b
Vivero, S., Hendrickx, H., Frankl, A., Delaloye, R., and Lambiel, C.:
Kinematics and geomorphological changes of a destabilising rock glacier
captured from close-range sensing techniques (Tsarmine rock glacier, Western
Swiss Alps), Front. Earth Sci.,10, 1017949, https://doi.org/10.3389/feart.2022.1017949, 2022. a, b
Wagner, T., Pleschberger, R., Kainz, S., Ribis, M., Kellerer-Pirklbauer, A.,
Krainer, K., Philippitsch, R., and Winkler, G.: The first consistent
inventory of rock glaciers and their hydrological catchments of the Austrian
Alps, Aust. J. Earth Sci., 113, 1–23, https://doi.org/10.17738/ajes.2020.0001, 2020. a
Wahrhaftig, C. and Cox, A.: Rock glaciers in the Alaska Range, Geol. Soc. Am. Bull., 70, 383–436, 1959. a
Wee, J. and Delaloye, R.: Post-glacial dynamics of an alpine Little Ice Age
glacitectonized frozen landform (Aget, western Swiss Alps), Permafrost
Periglac. Process., 33, 370–385, https://doi.org/10.1002/ppp.2158, 2022. a, b
Wirz, V., Gruber, S., Purves, R. S., Beutel, J., Gärtner-Roer, I., Gubler, S., and Vieli, A.: Short-term velocity variations at three rock glaciers and their relationship with meteorological conditions, Earth Surf. Dynam., 4, 103–123, https://doi.org/10.5194/esurf-4-103-2016, 2016. a, b
Zahs, V., Hämmerle, M., Anders, K., Hecht, S., Sailer, R., Rutzinger, M.,
Williams, J. G., and Höfle, B.: Multi-temporal 3D point cloud-based
quantification and analysis of geomorphological activity at an alpine rock
glacier using airborne and terrestrial LiDAR, Permafrost Periglac. Process., 30, 222–238, 2019. a, b, c, d
Zahs, V., Winiwarter, L., Anders, K., Williams, J. G., Rutzinger, M., Bremer,
M., and Höfle, B.: Correspondence-driven plane-based M3C2 for quantification of 3D topographic change with lower uncertainty [Data and Source Code], heiDATA, [code and data set], https://doi.org/10.11588/data/TGSVUI, 2021. a
Zahs, V., Winiwarter, L., Anders, K., Bremer, M., Rutzinger, M.,
Potčková, M., and Höfle, B.: Evaluation Of UAV-Borne Photogrammetry And Laser Scanning For 3D Topographic Change Analysis At An Active Rock Glacier, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2022, 1109–1116, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1109-2022, 2022a.
a, b, c, d, e, f
Zieher, T.: thomaszieher/HRG_reanalysis: v0.9.0 (v0.9.0), Zenodo [code], https://doi.org/10.5281/zenodo.7672997, 2023. a
Zieher, T., Bremer, M., Klug, C., and Hartl, L.: Multisensor monitoring data of Hochebenkar Rock Glacier, Zenodo [data set], https://doi.org/10.5281/zenodo.7010292, 2022. a
Editor
Melting permafrost in high mountain areas represents a significant climate change driven hazard. This research shows the importance of this using novel photogrammetric methods coupled with a long observational record.
Melting permafrost in high mountain areas represents a significant climate change driven hazard....
Short summary
The rock glacier in Äußeres Hochebenkar (Austria) moved faster in 2021–2022 than it has in about 70 years of monitoring. It is currently destabilizing. Using a combination of different data types and methods, we show that there have been two cycles of destabilization at Hochebenkar and provide a detailed analysis of velocity and surface changes. Because our time series are very long and show repeated destabilization, this helps us better understand the processes of rock glacier destabilization.
The rock glacier in Äußeres Hochebenkar (Austria) moved faster in 2021–2022 than it has in...