Articles | Volume 11, issue 1
https://doi.org/10.5194/esurf-11-117-2023
https://doi.org/10.5194/esurf-11-117-2023
Research article
 | Highlight paper
 | 
28 Feb 2023
Research article | Highlight paper |  | 28 Feb 2023

Multi-sensor monitoring and data integration reveal cyclical destabilization of the Äußeres Hochebenkar rock glacier

Lea Hartl, Thomas Zieher, Magnus Bremer, Martin Stocker-Waldhuber, Vivien Zahs, Bernhard Höfle, Christoph Klug, and Alessandro Cicoira

Related authors

The role of atmospheric large-scale patterns for recent warming periods in Greenland
Florina Roana Schalamon, Sebastian Scher, Andreas Trügler, Lea Hartl, Wolfgang Schöner, and Jakob Abermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-4060,https://doi.org/10.5194/egusphere-2024-4060, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Recent observations and glacier modeling point towards near complete glacier loss in western Austria (Ötztal and Stubai mountain range) if 1.5 °C is not met
Lea Hartl, Patrick Schmitt, Lilian Schuster, Kay Helfricht, Jakob Abermann, and Fabien Maussion
EGUsphere, https://doi.org/10.5194/egusphere-2024-3146,https://doi.org/10.5194/egusphere-2024-3146, 2024
Short summary
Glaciological and meteorological monitoring at Long Term Ecological Research (LTER) sites Mullwitzkees and Venedigerkees, Austria, 2006–2022
Lea Hartl, Bernd Seiser, Martin Stocker-Waldhuber, Anna Baldo, Marcela Violeta Lauria, and Andrea Fischer
Earth Syst. Sci. Data, 16, 4077–4101, https://doi.org/10.5194/essd-16-4077-2024,https://doi.org/10.5194/essd-16-4077-2024, 2024
Short summary
Small-scale spatial variability in bare-ice reflectance at Jamtalferner, Austria
Lea Hartl, Lucia Felbauer, Gabriele Schwaizer, and Andrea Fischer
The Cryosphere, 14, 4063–4081, https://doi.org/10.5194/tc-14-4063-2020,https://doi.org/10.5194/tc-14-4063-2020, 2020
Short summary
Obtaining sub-daily new snow density from automated measurements in high mountain regions
Kay Helfricht, Lea Hartl, Roland Koch, Christoph Marty, and Marc Olefs
Hydrol. Earth Syst. Sci., 22, 2655–2668, https://doi.org/10.5194/hess-22-2655-2018,https://doi.org/10.5194/hess-22-2655-2018, 2018
Short summary

Related subject area

Cross-cutting themes: Digital Landscapes: Insights into geomorphological processes from high-resolution topography and quantitative interrogation of topographic data
Geomorphic indicators of continental-scale landscape transience in the Hengduan Mountains, SE Tibet, China
Katrina D. Gelwick, Sean D. Willett, and Rong Yang
Earth Surf. Dynam., 12, 783–800, https://doi.org/10.5194/esurf-12-783-2024,https://doi.org/10.5194/esurf-12-783-2024, 2024
Short summary
Evaluating the accuracy of binary classifiers for geomorphic applications
Matthew William Rossi
Earth Surf. Dynam., 12, 765–782, https://doi.org/10.5194/esurf-12-765-2024,https://doi.org/10.5194/esurf-12-765-2024, 2024
Short summary
Massive sediment pulses triggered by a multi-stage 130 000 m3 alpine cliff fall (Hochvogel, DE–AT)
Natalie Barbosa, Johannes Leinauer, Juilson Jubanski, Michael Dietze, Ulrich Münzer, Florian Siegert, and Michael Krautblatter
Earth Surf. Dynam., 12, 249–269, https://doi.org/10.5194/esurf-12-249-2024,https://doi.org/10.5194/esurf-12-249-2024, 2024
Short summary
Size, shape and orientation matter: fast and semi-automatic measurement of grain geometries from 3D point clouds
Philippe Steer, Laure Guerit, Dimitri Lague, Alain Crave, and Aurélie Gourdon
Earth Surf. Dynam., 10, 1211–1232, https://doi.org/10.5194/esurf-10-1211-2022,https://doi.org/10.5194/esurf-10-1211-2022, 2022
Short summary
Rockfall trajectory reconstruction: a flexible method utilizing video footage and high-resolution terrain models
François Noël, Michel Jaboyedoff, Andrin Caviezel, Clément Hibert, Franck Bourrier, and Jean-Philippe Malet
Earth Surf. Dynam., 10, 1141–1164, https://doi.org/10.5194/esurf-10-1141-2022,https://doi.org/10.5194/esurf-10-1141-2022, 2022
Short summary

Cited articles

Arenson, L., Hoelzle, M., and Springman, S.: Borehole deformation measurements and internal structure of some rock glaciers in Switzerland, Permafrost Periglac. Process., 13, 117–135, 2002. a, b
Arenson, L. U. and Springman, S. M.: Triaxial constant stress and constant strain rate tests on ice-rich permafrost samples, Can. Geotech. J., 42, 412–430, 2005. a
Avian, M., Kaufmann, V., and Lieb, G. K.: Recent and Holocene dynamics of a rock glacier system: The example of Langtalkar (Central Alps, Austria), Norsk Geografisk Tidsskrift-Norwegian Journal of Geography, 59, 149–156, 2005. a
Barsch, D.: Permafrost creep and rockglaciers, Permafrost Periglac. Process., 3, 175–188, 1992. a
Barsch, D.: Indicators for the present and former geoecology in high mountain environments, Springer, Berlin, Heidelberg, ISBN 978-3-642-80093-1, 1996. a
Download
Editor
Melting permafrost in high mountain areas represents a significant climate change driven hazard. This research shows the importance of this using novel photogrammetric methods coupled with a long observational record.
Short summary
The rock glacier in Äußeres Hochebenkar (Austria) moved faster in 2021–2022 than it has in about 70 years of monitoring. It is currently destabilizing. Using a combination of different data types and methods, we show that there have been two cycles of destabilization at Hochebenkar and provide a detailed analysis of velocity and surface changes. Because our time series are very long and show repeated destabilization, this helps us better understand the processes of rock glacier destabilization.