Articles | Volume 11, issue 3
https://doi.org/10.5194/esurf-11-363-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-11-363-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Phenomenological model of suspended sediment transport in a small catchment
Amande Roque-Bernard
CORRESPONDING AUTHOR
Institut de physique du globe de Paris, Université Paris Cité, CNRS, 75005, Paris, France
Institut de physique du globe de Paris, Université Paris Cité, CNRS, 75005, Paris, France
Eric Gayer
Institut de physique du globe de Paris, Université Paris Cité, CNRS, 75005, Paris, France
Pascal Allemand
Laboratoire de Géologie de Lyon, Terre Planètes Environnement, Université de Lyon, Université Lyon 1 & ENS Lyon & CNRS, UMR 5276, 69100 Villeurbanne, France
Céline Dessert
Institut de physique du globe de Paris, Université Paris Cité, CNRS, 75005, Paris, France
Eric Lajeunesse
Institut de physique du globe de Paris, Université Paris Cité, CNRS, 75005, Paris, France
Related authors
No articles found.
Yassine Boukhari, Antoine Lucas, Caroline Le Bouteiller, Sébastien Klotz, Gabrielle Chabaud, and Stéphane Jacquemoud
EGUsphere, https://doi.org/10.5194/egusphere-2025-1726, https://doi.org/10.5194/egusphere-2025-1726, 2025
Short summary
Short summary
We combine UAV LiDAR surveys with sediment export and density measurements in order to compute a catchment-scale mass balance in a badland environment. We find out that landslides and crests failures account for 15 % of the total mass export while affecting only 1 % of the bare surfaces, and also that low drainage areas produce 3.5 times more sediment than average slopes within such catchments.
Pascal Allemand, Eric Lajeunesse, Olivier Devauchelle, and Vincent J. Langlois
Earth Surf. Dynam., 11, 21–32, https://doi.org/10.5194/esurf-11-21-2023, https://doi.org/10.5194/esurf-11-21-2023, 2023
Short summary
Short summary
We recorded yearly images of a bar of the Vieux-Habitants river, a river located on Basse-Terre (Guadeloupe). These images, combined with measurements of the river discharge, allow us to monitor the evolution of the population of boulders. We estimate the smallest discharge that can move the boulders and calculate the effective transport time. We show that the likelihood of a given boulder remaining at the same location decreases exponentially, with an effective residence time of 17 h.
Cited articles
Agrawal, Y. C. and Pottsmith, H. C.: Instruments for particle size and settling velocity observations in sediment transport, Mar. Geol., 168, 89–114, 2000. a
Ahn, K.-H. and Steinschneider, S.: Time-varying suspended sediment-discharge
rating curves to estimate climate impacts on fluvial sediment transport,
Hydrol. Process., 32, 102–117, 2018. a
Allemand, P., Delacourt, C., Lajeunesse, E., Devauchelle, O., and Beauducel,
F.: Erosive effects of the storm Helena (1963) on Basse Terre Island
(Guadeloupe – Lesser Antilles Arc), Geomorphology, 206, 79–86,
https://doi.org/10.1016/j.geomorph.2013.09.020, 2014. a, b
Alsdorf, D., Dunne, T., Melack, J., Smith, L., and Hess, L.: Diffusion modeling of recessional flow on central Amazonian floodplains, Geophys. Res. Lett., 32, L21405, https://doi.org/10.1029/2005GL024412, 2005. a
Ariagno, C., Le Bouteiller, C., van der Beek, P., and Klotz, S.: Sediment export in marly badland catchments modulated by frost-cracking intensity, Draix–Bléone Critical Zone Observatory, SE France, Earth Surf. Dynam., 10, 81–96, https://doi.org/10.5194/esurf-10-81-2022, 2022. a, b
Armijos, E., Crave, A., Espinoza, R., Fraizy, P., Santos, A. D., Sampaio, F.,
De Oliveira, E., Santini, W., Martinez, J. M., Autin, P., Pantoja, N., Oliveira, M., and Filizola, N.: Measuring and modeling vertical gradients in suspended sediments in the Solimões/Amazon River, Hydrol. Process., 31, 654–667, https://doi.org/10.1002/hyp.11059, 2017. a
Asselman, N. E.: Suspended sediment dynamics in a large drainage basin: the
River Rhine, Hydrol. Process., 13, 1437–1450, 1999. a
Bača, P.: Hysteresis effect in suspended sediment concentration in the
Rybárik basin, Slovakia, Hydrolog. Sci. J., 53, 224–235,
https://doi.org/10.1623/hysj.53.1.224, 2008. a
Bagnold, R.: The nature of saltation and of Bedload transport in water, P.
Roy. Soc. Lond. A, 332, 473–504, 1973. a
Bagnold, R. A.: The flow of cohesionless grains in fluids, Philos. T. Roy. Soc. Lond. A, 249, 235–297, 1956. a
Barenblatt, G. I. and Isaakovich, B. G.: Scaling, self-similarity, and
intermediate asymptotics: dimensional analysis and intermediate asymptotics (Cambridge Texts in Applied Mathematics), Cambridge University Press, https://doi.org/10.1017/CBO9781107050242, 1996. a
Battin, T. J., Kaplan, L. A., Findlay, S., Hopkinson, C. S., Marti, E.,
Packman, A. I., Newbold, J. D., and Sabater, F.: Biophysical controls on
organic carbon fluxes in fluvial networks, Nat. Geosci., 1, 95–100, 2008. a
Bilotta, G. S., Burnside, N. G., Cheek, L., Dunbar, M. J., Grove, M. K.,
Harrison, C., Joyce, C., Peacock, C., and Davy-Bowker, J.: Developing
environment-specific water quality guidelines for suspended particulate
matter, Water Res., 46, 2324–2332, 2012. a
Bouchez, J., Lajeunesse, E., Gaillardet, J., France-Lanord, C., Dutra-Maia, P., and Maurice, L.: Turbulent mixing in the Amazon River: The isotopic memory of confluences, Earth Planet. Sc. Lett., 290, 37–43, 2010. a
Carriere, A., Le Bouteiller, C., Tucker, G. E., Klotz, S., and Naaim, M.:
Impact of vegetation on erosion: Insights from the calibration and test of a
landscape evolution model in alpine badland catchments, Earth Surf. Proc. Land., 45, 1085–1099, 2020. a
Claudin, P., Charru, F., and Andreotti, B.: Transport relaxation time and
length scales in turbulent suspensions, J. Fluid Mech., 671, 491–506, https://doi.org/10.1017/S0022112010005823, 2011. a, b, c
Cobaner, M., Unal, B., and Kisi, O.: Suspended sediment concentration
estimation by an adaptive neuro-fuzzy and neural network approaches using
hydro-meteorological data, J. Hydrol., 367, 52–61, 2009. a
Colmet-Daage, F. and Bernard, Z.: Contribution à l'Atlas des
départements d'Outre-mer: Guadeloupe, Carte des sols de la Guadeloupe,
Grande-Terre, Marie-Galante. Carte des pentes et du modelé de la
Guadeloupe, Grande-Terre, Marie-Galante, ORSTOM, Antilles, https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers16-01/29909.pdf (last access: May 2022), 1979. a
Dallmann, J., Phillips, C. B., Teitelbaum, Y., Sund, N., Schumer, R., Arnon,
S., and Packman, A. I.: Impacts of suspended clay particle deposition on
sand-bed morphodynamics, Water Resour. Res., 56, e2019WR027010,
https://doi.org/10.1029/2019WR027010, 2020. a, b
D'Avignon, G., Gregory-Eaves, I., and Ricciardi, A.: Microplastics in lakes and rivers: an issue of emerging significance to limnology, Environ. Rev., 30, 228–244, https://doi.org/10.1139/er-2021-0048, 2022. a
De Aragão, R., Srinivasan, V. S., Suzuki, K., Kadota, A., Oguro, M., and
Sakata, Y.: Evaluation of a physically-based model to simulate the runoff and
erosion processes in a semiarid region of Brazil, Sediment Budgets, 2, 85–93, 2005. a
Dessert, C., Lajeunesse, E., Lloret, E., Clergue, C., Crispi, O., Gorge, C.,
and Quidelleur, X.: Controls on chemical weathering on a mountainous volcanic
tropical island: Guadeloupe (French West Indies), Geochim. Cosmochim. Ac., 171, 216–237, 2015. a
Dietrich, W. E., Bellugi, D. G., Sklar, L. S., Stock, J. D., Heimsath, A. M.,
and Roering, J. J.: Geomorphic transport laws for predicting landscape form
and dynamics, Geophys. Monogr. Ser., 135, 103–132, https://doi.org/10.1029/135GM09, 2003. a
Dunne, K. B. J., Arratia, P. E., and Jerolmack, D. J.: A New Method for In Situ Measurement of the Erosion Threshold of River Channels, Water Resour.
Res., 58, e2022WR032407, https://doi.org/10.1029/2022WR032407, 2022. a
Eder, A., Strauss, P., Krueger, T., and Quinton, J. N.: Comparative
calculation of suspended sediment loads with respect to hysteresis effects
(in the Petzenkirchen catchment, Austria), J. Hydrol., 389, 168–176, https://doi.org/10.1016/j.jhydrol.2010.05.043, 2010. a
Esteves, M., Legout, C., Navratil, O., and Evrard, O.: Medium term high
frequency observation of discharges and suspended sediment in a Mediterranean
mountainous catchment, J. Hydrol., 568, 562–574, 2019. a
Ferdowsi, B., Ortiz, C. P., Houssais, M., and Jerolmack, D. J.: River-bed
armouring as a granular segregation phenomenon, Nat. Commun., 8, 1–10, 2017a. a
Ferdowsi, B., Ortiz, C. P., Houssais, M., and Jerolmack, D. J.: River-bed
armouring as a granular segregation phenomenon, Nature Commun., 8, 1363, https://doi.org/10.1038/s41467-017-01681-3, 2017b. a
Feuillet, N., Manighetti, I., Tapponnier, P., and Jacques, E.: Arc parallel
extension and localization of volcanic complexes in Guadeloupe, Lesser
Antilles, J. Geophys. Res., 107, 2331, https://doi.org/10.1029/2001JB000308, 2002. a
Frey, P. and Church, M.: How river beds move, Science, 325, 1509–1510, 2009. a
Gaillardet, J., Braud, I., Hankard, F., Anquetin, S., Bour, O., Dorfliger, N., De Dreuzy, J.-R., Galle, S., Galy, C., Gogo, S., Gourcy, L., Habets, F., Laggoun, F., Longuevergne, L., Le Borgne, T., Naaim-Bouvet, F., Nord, G., Simonneaux, V., Six, D., Tallec, T., Valentin, C., Abril, G., Allemand, P., Arènes, A., Arfib, B., Arnaud, L., Arnaud, N., Arnaud, P., Audry, S., Bailly, Bailly Comte, V., Batiot, C., Battais, A., Bellot, H., Bernard, E., Bertrand, C., Bessière, H., Binet, S., Bodin, J., Bodin, X., Boithias, L., Bouchez, J., Boudevillain, B., Bouzou Moussa, I., Branger, F., Braun, J. J., Brunet, P., Caceres, B., Calmels, D., Cappelaere, B., Celle-Jeanton, H., Chabaux, F., Chalikakis, K., Champollion, C., Copard, Y., Cotel, C., Davy, P., Deline, P., Delrieu, G., Demarty, J., Dessert, C., Dumont, M., Emblanch, C., Ezzahar, J., Estèves, M., Favier, V., Faucheux, M., Filizola, N., Flammarion, P., Floury, P., Fovet, O., Fournier, M., Francez, A. J., Gandois, L., Gascuel, C., Gayer, E., Genthon, C., Gérard, M. F., Gilbert, D., Gouttevin, I., Grippa, M., Gruau, G., Jardani, A., Jeanneau, L., Join, J. L., Jourde, H., Karbou, F., Labat, D., Lagadeuc, Y., Lajeunesse, E., Lastennet, R., Lavado, W., Lawin, E., Lebel, T., Le Bouteiller, C., Legout, C., Lejeune, Y., Le Meur, E., Le Moigne, N., Lions, J., Lucas, A., Malet, J. P., Marais-Sicre, C., Maréchal, J. C., Marlin, C., Martin, P., Martins, J., Martinez, J. M., Massei, N., Mauclerc, A., Mazzilli, N., Molénat, J., Moreira-Turcq, P., Mougin, E., Morin, S., Ndam Ngoupayou, J., Panthou, G., Peugeot, C., Picard, G., Pierret, M. C., Porel, G., Probst, A., Probst, J. L., Rivière, A., Robain, H., Ruiz, L., Sanchez-Perez, J. M., Santini, W., Sauvage, S., Schoeneich, P., Seidel, J. L., Sekhar, M., Sengtaheuanghoung, O., Silvera, N., Steinmann, M., Soruco, A., Tallec, G., Thibert, E., Valdes Lao, D., Vincent, C., Viville, D., Wagnon, P., and Zitouna, R.: OZCAR: The French network of critical zone observatories, Vadose Zone J., 17, 1–24, 2018. a, b
Gao, X., Narteau, C., and Rozier, O.: Controls on and effects of armoring and
vertical sorting in aeolian dune fields: A numerical simulation study,
Geophys. Res. Lett., 43, 2614–2622, 2016. a
Garcia, M. and Parker, G.: Entrainment of bed sediment into suspension, J. Hydraul. Eng., 117, 414–435, 1991. a
Grams, P. E. and Wilcock, P. R.: Equilibrium entrainment of fine sediment over a coarse immobile bed, Water Resour. Res., 43, W10420,
https://doi.org/10.1029/2006WR005129, 2007. a
Guérin, A., Devauchelle, O., Robert, V., Kitou, T., Dessert, C., Quiquerez, A., Allemand, P., and Lajeunesse, E.: Stream-discharge surges generated by groundwater flow, Geophys. Res. Lett., 46, 7447–7455, 2019. a
Guillon, H., Mugnier, J.-L., and Buoncristiani, J.-F.: Proglacial sediment
dynamics from daily to seasonal scales in a glaciated Alpine catchment (Bossons glacier, Mont Blanc massif, France), Earth Surf. Proc. Land., 43, 1478–1495, 2018. a
Hovius, N., Stark, C. P., Hao-Tsu, C., and Jiun-Chuan, L.: Supply and removal
of sediment in a landslide-dominated mountain belt: Central Range, Taiwan,
J. Geol., 108, 73–89, 2000. a
INRAE: Observatoire Draix-Bleone, https://bdoh.irstea.fr/DRAIX/, last access: 4 May 2023. a
Klein, M.: Anti clockwise hysteresis in suspended sediment concentration during individual storms: Holbeck Catchment; Yorkshire, England, Catena, 11,
251–257, 1984. a
Koiter, A. J., Lobb, D. A., Owens, P. N., Petticrew, E. L., Tiessen, K. H., and Li, S.: Investigating the role of connectivity and scale in assessing the
sources of sediment in an agricultural watershed in the Canadian prairies
using sediment source fingerprinting, J. Soils Sediments, 13, 1676–1691, 2013. a
Lamb, M. P., de Leeuw, J., Fischer, W. W., Moodie, A. J., Venditti, J. G.,
Nittrouer, J. A., Haught, D., and Parker, G.: Mud in rivers transported as
flocculated and suspended bed material, Nat. Geosci., 13, 566–570,
https://doi.org/10.1038/s41561-020-0602-5, 2020. a
Landers, M. N. and Sturm, T. W.: Hysteresis in suspended sediment to turbidity relations due to changing particle size distributions, Water Resour. Res., 49, 5487–5500, 2013. a
Langlois, J. L., Johnson, D. W., and Mehuys, G. R.: Suspended sediment
dynamics associated with snowmelt runoff in a small mountain stream of Lake
Tahoe (Nevada), Hydrol. Process., 19, 3569–3580, https://doi.org/10.1002/hyp.5844, 2005. a, b
Lepesqueur, J., Hostache, R., Martínez-Carreras, N., Montargès-Pelletier, E., and Hissler, C.: Sediment transport modelling in riverine environments: on the importance of grain-size distribution, sediment density, and suspended sediment concentrations at the upstream boundary, Hydrol. Earth Syst. Sci., 23, 3901–3915, https://doi.org/10.5194/hess-23-3901-2019, 2019. a, b, c, d
Liu, Y., Métivier, F., Gaillardet, J., Ye, B., Meunier, P., Narteau, C., Lajeunesse, E., Han, T., and Malverti, L.: Erosion rates deduced from
Seasonal mass balance along an active braided river in Tian Shan, Solid
Earth Discuss., 3, 541–589, 2011. a
Lloret, E.: Dynamique du carbone organique dans des petits bassins versants
tropicaux: exemple de la Guadeloupe, PhD thesis, Paris 7, https://www.theses.fr/2010PA077068 (last access: May 2022), 2010. a
Lloret, E., Dessert, C., Pastor, L., Lajeunesse, E., Crispi, O., Gaillardet,
J., and Benedetti, M. F.: Dynamic of particulate and dissolved organic
carbon in small volcanic mountainous tropical watersheds, Chem. Geol., 351, 229–244, https://doi.org/10.1016/j.chemgeo.2013.05.023, 2013. a, b, c
Lloret, E., Dessert, C., Buss, H. L., Chaduteau, C., Huon, S., Alberic, P., and Benedetti, M. F.: Sources of dissolved organic carbon in small volcanic
mountainous tropical rivers, examples from Guadeloupe (French West Indies),
Geoderma, 282, 129–138, 2016. a
Minella, J. P., Merten, G. H., Reichert, J. M., and Clarke, R. T.: Estimating
suspended sediment concentrations from turbidity measurements and the
calibration problem, Hydrol. Process., 22, 1819–1830, 2008. a
Misset, C., Recking, A., Navratil, O., Legout, C., Poirel, A., Cazilhac, M.,
Briguet, V., and Esteves, M.: Quantifying bed-related suspended load in
gravel bed rivers through an analysis of the bedload-suspended load
relationship, Earth Surf. Proc. Land., 44, 1722–1733, 2019b. a
Misset, C., Recking, A., Legout, C., Bakker, M., Gimbert, F., Geay, T., and
Zanker, S.: Using continuous turbidity and seismic measurements to unravel
sediment provenance and interaction between suspended and bedload transport
in an Alpine catchment, Geophys. Res. Lett., 48, e2020GL090696,
https://doi.org/10.1029/2020GL090696, 2021. a
Newville, M., Stensitzki, T., Allen, D. B., Rawlik, M., Ingargiola, A., and
Nelson, A.: LMFIT: Non-linear least-square minimization and curve-fitting for
Python, Astrophysics Source Code Library, ascl-1606, https://lmfit.github.io/lmfit-py/ (last access: November 2020), 2016. a
Nistor, C. J. and Church, M.: Suspended sediment transport regime in a
debris-flow gully on Vancouver Island, British Columbia, Hydrol. Process., 19, 861–885, 2005. a
Orwin, J. F. and Smart, C.: Short-term spatial and temporal patterns of
suspended sediment transfer in proglacial channels, Small River Glacier,
Canada, Hydrol. Process., 18, 1521–1542, 2004. a
OZCAR: https://in-situ.theia-land.fr/ (last access: 4 May 2023), 2023. a
Park, J. and Hunt, J. R.: Coupling fine particle and bedload transport in
gravel-bedded streams, J. Hydrol., 552, 532–543, 2017. a
Perks, M., Owen, G., Benskin, C. M. H., Jonczyk, J., Deasy, C., Burke, S.,
Reaney, S., and Haygarth, P. M.: Dominant mechanisms for the delivery of fine
sediment and phosphorus to fluvial networks draining grassland dominated
headwater catchments, Sci. Total Environ., 523, 178–190, 2015. a
Phillips, C. B., Dallmann, J. D., Jerolmack, D. J., and Packman, A. I.:
Fine-Particle Deposition, Retention, and Resuspension Within a Sand-Bedded
Stream Are Determined by Streambed Morphodynamics, Water Resour. Res., 55, 10303–10318, 2019. a
Rad, S., Louvat, P., Gorge, C., Gaillardet, J., and Allègre, C. J.: River
dissolved and solid loads in the Lesser Antilles: new insight into basalt
weathering processes, J. Geochem. Explor., 88, 308–312, 2006. a
Ren, J. and Packman, A. I.: Changes in fine sediment size distributions due to interactions with streambed sediments, Sediment. Geol., 202, 529–537,
https://doi.org/10.1016/j.sedgeo.2007.03.021, 2007. a, b
Renard, K. G., Foster, R., Weesies, G., and Porter, G.: C “RUSLE: Revised
universal soil loss equation”, J. Soil Water Conserv., 46, 30–33, 1991. a
Renard, K. G., Laflen, J., Foster, G., and McCool, D.: The revised universal
soil loss equation, in: Soil erosion research methods, Routledge, 105–126, ISBN 9780203739358, 2017. a
Roque-Bernard, A., Lucas, A., and Lajeunesse, E.: Model for Transport of fine particles in a steep relief river (Version 1), Zenodo [code], https://doi.org/10.5281/zenodo.7893930, 2023. a
Rouse, H.: Experiments on the Mechanics of Sediment Suspension, in: Proceedings of the Fifth International Congress for Applied Mechanics, John Wiley & Sons, New York, 550–554, 1939. a
Samper, A., Quidelleur, X., Lahitte, P., and Mollex, D.: Timing of effusive
volcanism and collapse events within an oceanic arc island: Basse-Terre,
Guadeloupe archipelago (Lesser Antilles Arc), Earth Planet. Sc. Lett., 258, 175–191, 2007. a
Sheldon, R., Prakash, A., and Sutcliffe Jr., W.: The size distribution of
particles in the ocean, Limnol. Oceanogr., 17, 327–340, 1972. a
Smith, H. G. and Dragovich, D.: Interpreting sediment delivery processes using suspended sediment-discharge hysteresis patterns from nested upland
catchments, south-eastern Australia, Hydrol. Process., 23, 2415–2426, 2009. a
Suttle, K. B., Power, M. E., Levine, J. M., and McNeely, C.: How fine sediment in riverbeds impairs growth and survival of juvenile salmonids, Ecol. Appl., 14, 969–974, 2004. a
Syvitski, J. P., Peckham, S. D., Hilberman, R., and Mulder, T.: Predicting the terrestrial flux of sediment to the global ocean: a planetary perspective, Sediment. Geol., 162, 5–24, 2003. a
Van Rijn, L. C.: Sediment Transport, Part II: Suspended Load Transport, J. Hydraul. Eng., 110, 1613–1641, https://doi.org/10.1061/(ASCE)0733-9429(1984)110:11(1613), 1984. a, b, c
Vercruysse, K. and Grabowski, R. C.: Temporal variation in suspended sediment transport: linking sediment sources and hydro‐meteorological drivers, Earth Surf. Proc. Land., 44, 2587–2599,
https://doi.org/10.1002/esp.4682, 2019. a, b, c, d
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nat. Meth., 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020. a
White, S.: Sediment yield prediction and modeling, Encyclopedia of hydrological sciences, https://doi.org/10.1002/0470848944.hsa089, 2006. a
Wilcock, P., Pitlick, J., and Cui, Y.: Sediment transport primer: estimating
bed-material transport in gravel-bed rivers, Gen. Tech. Rep. RMRS-GTR-226,
US Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins, CO, p. 78, https://doi.org/10.2737/RMRS-GTR-226, 2009. a
Williams, G. P.: Sediment concentration versus water discharge during single
hydrologic events in rivers, J. Hydrol., 111, 89–106,
https://doi.org/10.1016/0022-1694(89)90254-0, 1989. a, b
Wischmeier, W. H. and Smith, D. D.: Predicting rainfall erosion losses: a guide to conservation planning, Department of Agriculture, Science and
Education Administration, 537 pp., https://naldc.nal.usda.gov/download/CAT79706928/PDF (last access: January 2022), 1978. a
Wright, S. and Parker, G.: Flow resistance and suspended load in sand-bed
rivers: simplified stratification model, J. Hydraul. Eng., 130, 796–805, 2004. a
Ziegler, A. D., Benner, S. G., Tantasirin, C., Wood, S. H., Sutherland, R. A., Sidle, R. C., Jachowski, N., Nullet, M. A., Xi, L. X., Snidvongs, A.,
Giambelluca, T. W., and Fox, J. M.: Turbidity-based sediment monitoring in
northern Thailand: Hysteresis, variability, and uncertainty, J. Hydrol., 519, 2020–2039, https://doi.org/10.1016/j.jhydrol.2014.09.010, 2014. a
Zimmermann, A., Francke, T., and Elsenbeer, H.: Forests and erosion: Insights
from a study of suspended-sediment dynamics in an overland flow-prone
rainforest catchment, J. Hydrol., 428, 170–181, 2012. a
Short summary
Sediment transport in rivers is an important matter in Earth surface dynamics. We offer a new framework of understanding of the suspended sediment transport through observatory chronicles and a simple model that is able to catch the behavior during a flood event as well as time series in a steep river catchment. We validate our approach in both tropical and alpine environments, which also offers additional estimates of the size of the suspended sediment.
Sediment transport in rivers is an important matter in Earth surface dynamics. We offer a new...