Articles | Volume 11, issue 4
https://doi.org/10.5194/esurf-11-593-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-11-593-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Full four-dimensional change analysis of topographic point cloud time series using Kalman filtering
Lukas Winiwarter
CORRESPONDING AUTHOR
3DGeo Research Group, Institute of Geography, Heidelberg University, Heidelberg, Germany
Integrated Remote Sensing Studio (IRSS), Faculty of Forestry, University of British Columbia, Vancouver, Canada
Research Unit Photogrammetry, Department of Geodesy and Geoinformation, TU Wien, Vienna, Austria
Katharina Anders
3DGeo Research Group, Institute of Geography, Heidelberg University, Heidelberg, Germany
Daniel Czerwonka-Schröder
Department of Civil and Mining Engineering, DMT GmbH & Co. KG, Essen, Germany
Faculty of Geoscience, Geotechnology and Mining, University of Mining and Technology Freiberg, Freiberg, Germany
Bernhard Höfle
3DGeo Research Group, Institute of Geography, Heidelberg University, Heidelberg, Germany
Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
Related authors
No articles found.
M. Potůčková, J. Albrechtová, K. Anders, L. Červená, J. Dvořák, K. Gryguc, B. Höfle, L. Hunt, Z. Lhotáková, A. Marcinkowska-Ochtyra, A. Mayr, E. Neuwirthová, A. Ochtyra, M. Rutzinger, A. Šedová, A. Šrollerů, and L. Kupková
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 989–996, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-989-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-989-2023, 2023
Lea Hartl, Thomas Zieher, Magnus Bremer, Martin Stocker-Waldhuber, Vivien Zahs, Bernhard Höfle, Christoph Klug, and Alessandro Cicoira
Earth Surf. Dynam., 11, 117–147, https://doi.org/10.5194/esurf-11-117-2023, https://doi.org/10.5194/esurf-11-117-2023, 2023
Short summary
Short summary
The rock glacier in Äußeres Hochebenkar (Austria) moved faster in 2021–2022 than it has in about 70 years of monitoring. It is currently destabilizing. Using a combination of different data types and methods, we show that there have been two cycles of destabilization at Hochebenkar and provide a detailed analysis of velocity and surface changes. Because our time series are very long and show repeated destabilization, this helps us better understand the processes of rock glacier destabilization.
D. Hulskemper, K. Anders, J. A. Á. Antolínez, M. Kuschnerus, B. Höfle, and R. Lindenbergh
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W2-2022, 53–60, https://doi.org/10.5194/isprs-archives-XLVIII-2-W2-2022-53-2022, https://doi.org/10.5194/isprs-archives-XLVIII-2-W2-2022-53-2022, 2022
Hannah Weiser, Jannika Schäfer, Lukas Winiwarter, Nina Krašovec, Fabian E. Fassnacht, and Bernhard Höfle
Earth Syst. Sci. Data, 14, 2989–3012, https://doi.org/10.5194/essd-14-2989-2022, https://doi.org/10.5194/essd-14-2989-2022, 2022
Short summary
Short summary
3D point clouds, acquired by laser scanning, allow us to retrieve information about forest structure and individual tree properties. We conducted airborne, UAV-borne and terrestrial laser scanning in German mixed forests, resulting in overlapping point clouds with different characteristics. From these, we generated a comprehensive database of individual tree point clouds and corresponding tree metrics. Our dataset may serve as a benchmark dataset for algorithms in forestry research.
K. Anders, L. Winiwarter, D. Schröder, and B. Höfle
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2022, 973–980, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-973-2022, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-973-2022, 2022
V. Zahs, L. Winiwarter, K. Anders, M. Bremer, M. Rutzinger, M. Potůčková, and B. Höfle
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2022, 1109–1116, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1109-2022, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1109-2022, 2022
L. Winiwarter, K. Anders, D. Schröder, and B. Höfle
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2022, 79–86, https://doi.org/10.5194/isprs-annals-V-2-2022-79-2022, https://doi.org/10.5194/isprs-annals-V-2-2022-79-2022, 2022
M. Kuschnerus, D. Schröder, and R. Lindenbergh
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2021, 745–752, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-745-2021, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-745-2021, 2021
K. Anders, L. Winiwarter, H. Mara, R. C. Lindenbergh, S. E. Vos, and B. Höfle
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2021, 137–144, https://doi.org/10.5194/isprs-annals-V-2-2021-137-2021, https://doi.org/10.5194/isprs-annals-V-2-2021-137-2021, 2021
Veit Ulrich, Jack G. Williams, Vivien Zahs, Katharina Anders, Stefan Hecht, and Bernhard Höfle
Earth Surf. Dynam., 9, 19–28, https://doi.org/10.5194/esurf-9-19-2021, https://doi.org/10.5194/esurf-9-19-2021, 2021
Short summary
Short summary
In this work, we use 3D point clouds to detect topographic changes across the surface of a rock glacier. These changes are presented as the relative contribution of surface change during a 3-week period to the annual surface change. By comparing these different time periods and looking at change in different directions, we provide estimates showing that different directions of surface change are dominant at different times of the year. This demonstrates the benefit of frequent monitoring.
M. Rutzinger, K. Anders, M. Bremer, B. Höfle, R. Lindenbergh, S. Oude Elberink, F. Pirotti, M. Scaioni, and T. Zieher
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B5-2020, 243–250, https://doi.org/10.5194/isprs-archives-XLIII-B5-2020-243-2020, https://doi.org/10.5194/isprs-archives-XLIII-B5-2020-243-2020, 2020
L. Winiwarter, K. Anders, D. Wujanz, and B. Höfle
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2020, 789–796, https://doi.org/10.5194/isprs-annals-V-2-2020-789-2020, https://doi.org/10.5194/isprs-annals-V-2-2020-789-2020, 2020
K. Anders, R. C. Lindenbergh, S. E. Vos, H. Mara, S. de Vries, and B. Höfle
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W5, 317–324, https://doi.org/10.5194/isprs-annals-IV-2-W5-317-2019, https://doi.org/10.5194/isprs-annals-IV-2-W5-317-2019, 2019
A. Kumar, K. Anders, L Winiwarter, and B. Höfle
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W5, 373–380, https://doi.org/10.5194/isprs-annals-IV-2-W5-373-2019, https://doi.org/10.5194/isprs-annals-IV-2-W5-373-2019, 2019
Julia Boike, Jan Nitzbon, Katharina Anders, Mikhail Grigoriev, Dmitry Bolshiyanov, Moritz Langer, Stephan Lange, Niko Bornemann, Anne Morgenstern, Peter Schreiber, Christian Wille, Sarah Chadburn, Isabelle Gouttevin, Eleanor Burke, and Lars Kutzbach
Earth Syst. Sci. Data, 11, 261–299, https://doi.org/10.5194/essd-11-261-2019, https://doi.org/10.5194/essd-11-261-2019, 2019
Short summary
Short summary
Long-term observational data are available from the Samoylov research site in northern Siberia, where meteorological parameters, energy balance, and subsurface observations have been recorded since 1998. This paper presents the temporal data set produced between 2002 and 2017, explaining the instrumentation, calibration, processing, and data quality control. Furthermore, we present a merged dataset of the parameters, which were measured from 1998 onwards.
S. Crommelinck, B. Höfle, M. N. Koeva, M. Y. Yang, and G. Vosselman
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2, 81–88, https://doi.org/10.5194/isprs-annals-IV-2-81-2018, https://doi.org/10.5194/isprs-annals-IV-2-81-2018, 2018
M. Scaioni, B. Höfle, A. P. Baungarten Kersting, L. Barazzetti, M. Previtali, and D. Wujanz
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 1503–1510, https://doi.org/10.5194/isprs-archives-XLII-3-1503-2018, https://doi.org/10.5194/isprs-archives-XLII-3-1503-2018, 2018
M. Hämmerle, N. Lukač, K.-C. Chen, Zs. Koma, C.-K. Wang, K. Anders, and B. Höfle
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W4, 59–65, https://doi.org/10.5194/isprs-annals-IV-2-W4-59-2017, https://doi.org/10.5194/isprs-annals-IV-2-W4-59-2017, 2017
Sabrina Marx, Katharina Anders, Sofia Antonova, Inga Beck, Julia Boike, Philip Marsh, Moritz Langer, and Bernhard Höfle
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2017-49, https://doi.org/10.5194/esurf-2017-49, 2017
Revised manuscript has not been submitted
Short summary
Short summary
Global climate warming causes permafrost to warm and thaw, and, consequently, to release the carbon into the atmosphere. Terrestrial laser scanning is evaluated and current methods are extended in the context of monitoring subsidence in Arctic permafrost regions. The extracted information is important to gain a deeper understanding of permafrost-related subsidence processes and provides highly accurate ground-truth data which is necessary for further developing area-wide monitoring methods.
Luisa Griesbaum, Sabrina Marx, and Bernhard Höfle
Nat. Hazards Earth Syst. Sci., 17, 1191–1201, https://doi.org/10.5194/nhess-17-1191-2017, https://doi.org/10.5194/nhess-17-1191-2017, 2017
Short summary
Short summary
This study provides a new method for flood documentation based on user-generated flood images. We demonstrate how flood elevation and building inundation depth can be derived from photographs by means of 3-D reconstruction of the scene. With an accuracy of 0.13 m ± 0.10 m, the derived building inundation depth can be used to facilitate damage assessment.
S. Bechtold and B. Höfle
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., III-3, 161–168, https://doi.org/10.5194/isprs-annals-III-3-161-2016, https://doi.org/10.5194/isprs-annals-III-3-161-2016, 2016
Related subject area
Cross-cutting themes: Quantitative and statistical methods in Earth surface dynamics
Introducing standardized field methods for fracture-focused surface process research
Comparison of rainfall generators with regionalisation for the estimation of rainfall erosivity at ungauged sites
Inverse modeling of turbidity currents using an artificial neural network approach: verification for field application
Automated quantification of floating wood pieces in rivers from video monitoring: a new software tool and validation
Particle size dynamics in abrading pebble populations
Computing water flow through complex landscapes – Part 3: Fill–Spill–Merge: flow routing in depression hierarchies
A photogrammetry-based approach for soil bulk density measurements with an emphasis on applications to cosmogenic nuclide analysis
Dominant process zones in a mixed fluvial–tidal delta are morphologically distinct
Identifying sediment transport mechanisms from grain size–shape distributions, applied to aeolian sediments
Determining the optimal grid resolution for topographic analysis on an airborne lidar dataset
Systematic identification of external influences in multi-year microseismic recordings using convolutional neural networks
Earth's surface mass transport derived from GRACE, evaluated by GPS, ICESat, hydrological modeling and altimetry satellite orbits
The R package “eseis” – a software toolbox for environmental seismology
Bayesian inversion of a CRN depth profile to infer Quaternary erosion of the northwestern Campine Plateau (NE Belgium)
A new CT scan methodology to characterize a small aggregation gravel clast contained in a soft sediment matrix
Creative computing with Landlab: an open-source toolkit for building, coupling, and exploring two-dimensional numerical models of Earth-surface dynamics
An introduction to learning algorithms and potential applications in geomorphometry and Earth surface dynamics
Sensitivity analysis and implications for surface processes from a hydrological modelling approach in the Gunt catchment, high Pamir Mountains
Constraining the stream power law: a novel approach combining a landscape evolution model and an inversion method
Martha Cary Eppes, Alex Rinehart, Jennifer Aldred, Samantha Berberich, Maxwell P. Dahlquist, Sarah G. Evans, Russell Keanini, Stephen E. Laubach, Faye Moser, Mehdi Morovati, Steven Porson, Monica Rasmussen, and Uri Shaanan
Earth Surf. Dynam., 12, 35–66, https://doi.org/10.5194/esurf-12-35-2024, https://doi.org/10.5194/esurf-12-35-2024, 2024
Short summary
Short summary
All rocks have fractures (cracks) that can influence virtually every process acting on Earth's surface where humans live. Yet, scientists have not standardized their methods for collecting fracture data. Here we draw on past work across geo-disciplines and propose a list of baseline data for fracture-focused surface process research. We detail the rationale and methods for collecting them. We hope their wide adoption will improve future methods and knowledge of rock fracture overall.
Ross Pidoto, Nejc Bezak, Hannes Müller-Thomy, Bora Shehu, Ana Claudia Callau-Beyer, Katarina Zabret, and Uwe Haberlandt
Earth Surf. Dynam., 10, 851–863, https://doi.org/10.5194/esurf-10-851-2022, https://doi.org/10.5194/esurf-10-851-2022, 2022
Short summary
Short summary
Erosion is a threat for soils with rainfall as the driving force. The annual rainfall erosivity factor quantifies rainfall impact by analysing high-resolution rainfall time series (~ 5 min). Due to a lack of measuring stations, alternatives for its estimation are analysed in this study. The best results are obtained for regionalisation of the erosivity factor itself. However, the identified minimum of 60-year time series length suggests using rainfall generators as in this study as well.
Hajime Naruse and Kento Nakao
Earth Surf. Dynam., 9, 1091–1109, https://doi.org/10.5194/esurf-9-1091-2021, https://doi.org/10.5194/esurf-9-1091-2021, 2021
Short summary
Short summary
This paper proposes a method to reconstruct the hydraulic conditions of turbidity currents from turbidites. We investigated the validity and problems of this method in application to actual field datasets using artificial data. Once this method is established, it is expected that the method will elucidate the generation process of turbidity currents and will help to predict the geometry of resultant turbidites in deep-sea environments.
Hossein Ghaffarian, Pierre Lemaire, Zhang Zhi, Laure Tougne, Bruce MacVicar, and Hervé Piégay
Earth Surf. Dynam., 9, 519–537, https://doi.org/10.5194/esurf-9-519-2021, https://doi.org/10.5194/esurf-9-519-2021, 2021
Short summary
Short summary
Quantifying wood fluxes in rivers would improve our understanding of the key processes in river ecology and morphology. In this work, we introduce new software for the automatic detection of wood pieces in rivers. The results show 93.5 % and 86.5 % accuracy for piece number and volume, respectively.
András A. Sipos, Gábor Domokos, and János Török
Earth Surf. Dynam., 9, 235–251, https://doi.org/10.5194/esurf-9-235-2021, https://doi.org/10.5194/esurf-9-235-2021, 2021
Short summary
Short summary
Abrasion of sedimentary particles is widely associated with mutual collisions. Utilizing results of individual, geometric abrasion theory and techniques adopted in statistical physics, a new model for predicting the collective mass evolution of large numbers of particles is introduced. Our model uncovers a startling fundamental feature of collective particle dynamics: collisional abrasion may either focus size distributions or it may act in the opposite direction by dispersing the distribution.
Richard Barnes, Kerry L. Callaghan, and Andrew D. Wickert
Earth Surf. Dynam., 9, 105–121, https://doi.org/10.5194/esurf-9-105-2021, https://doi.org/10.5194/esurf-9-105-2021, 2021
Short summary
Short summary
Existing ways of modeling the flow of water amongst landscape depressions such as swamps and lakes take a long time to run. However, as our previous work explains, depressions can be quickly organized into a data structure – the depression hierarchy. This paper explains how the depression hierarchy can be used to quickly simulate the realistic filling of depressions including how they spill over into each other and, if they become full enough, how they merge into one another.
Joel Mohren, Steven A. Binnie, Gregor M. Rink, Katharina Knödgen, Carlos Miranda, Nora Tilly, and Tibor J. Dunai
Earth Surf. Dynam., 8, 995–1020, https://doi.org/10.5194/esurf-8-995-2020, https://doi.org/10.5194/esurf-8-995-2020, 2020
Short summary
Short summary
In this study, we comprehensively test a method to derive soil densities under fieldwork conditions. The method is mainly based on images taken from consumer-grade cameras. The obtained soil/sediment densities reflect
truevalues by generally > 95 %, even if a smartphone is used for imaging. All computing steps can be conducted using freeware programs. Soil density is an important variable in the analysis of terrestrial cosmogenic nuclides, for example to infer long-term soil production rates.
Mariela Perignon, Jordan Adams, Irina Overeem, and Paola Passalacqua
Earth Surf. Dynam., 8, 809–824, https://doi.org/10.5194/esurf-8-809-2020, https://doi.org/10.5194/esurf-8-809-2020, 2020
Short summary
Short summary
We propose a machine learning approach for the classification and analysis of large delta systems. The approach uses remotely sensed data, channel network extraction, and the analysis of 10 metrics to identify clusters of islands with similar characteristics. The 12 clusters are grouped in six main classes related to morphological processes acting on the system. The approach allows us to identify spatial patterns in large river deltas to inform modeling and the collection of field observations.
Johannes Albert van Hateren, Unze van Buuren, Sebastiaan Martinus Arens, Ronald Theodorus van Balen, and Maarten Arnoud Prins
Earth Surf. Dynam., 8, 527–553, https://doi.org/10.5194/esurf-8-527-2020, https://doi.org/10.5194/esurf-8-527-2020, 2020
Short summary
Short summary
In this paper, we introduce a new technique that can be used to identify how sediments were transported to their place of deposition (transport mode). The traditional method is based on the size of sediment grains, ours on the size and the shape. A test of the method on windblown sediments indicates that it can be used to identify the transport mode with less ambiguity, and therefore it improves our ability to extract information, such as climate from the past, from sediment deposits.
Taylor Smith, Aljoscha Rheinwalt, and Bodo Bookhagen
Earth Surf. Dynam., 7, 475–489, https://doi.org/10.5194/esurf-7-475-2019, https://doi.org/10.5194/esurf-7-475-2019, 2019
Short summary
Short summary
Representing the surface of the Earth on an equally spaced grid leads to errors and uncertainties in derived slope and aspect. Using synthetic data, we develop a quality metric that can be used to compare the uncertainties in different datasets. We then apply this method to a real-world lidar dataset, and find that 1 m data have larger error bounds than lower-resolution data. The highest data resolution is not always the best choice – it is important to consider the quality of the data.
Matthias Meyer, Samuel Weber, Jan Beutel, and Lothar Thiele
Earth Surf. Dynam., 7, 171–190, https://doi.org/10.5194/esurf-7-171-2019, https://doi.org/10.5194/esurf-7-171-2019, 2019
Short summary
Short summary
Monitoring rock slopes for a long time helps to understand the impact of climate change on the alpine environment. Measurements of seismic signals are often affected by external influences, e.g., unwanted anthropogenic noise. In the presented work, these influences are automatically identified and removed to enable proper geoscientific analysis. The methods presented are based on machine learning and intentionally kept generic so that they can be equally applied in other (more generic) settings.
Christian Gruber, Sergei Rudenko, Andreas Groh, Dimitrios Ampatzidis, and Elisa Fagiolini
Earth Surf. Dynam., 6, 1203–1218, https://doi.org/10.5194/esurf-6-1203-2018, https://doi.org/10.5194/esurf-6-1203-2018, 2018
Short summary
Short summary
By using a set of evaluation methods involving GPS, ICESat, hydrological modelling and altimetry satellite orbits, we show that the novel radial basis function (RBF) processing technique can be used for processing the Gravity Recovery and Climate Experiment (GRACE) data yielding global gravity field models which fit independent reference values at the same level as commonly accepted global geopotential models based on spherical harmonics.
Michael Dietze
Earth Surf. Dynam., 6, 669–686, https://doi.org/10.5194/esurf-6-669-2018, https://doi.org/10.5194/esurf-6-669-2018, 2018
Short summary
Short summary
Environmental seismology is the study of the seismic signals emitted by Earth surface processes. This emerging research field is at the intersection of many Earth science disciplines. The overarching scope requires free integrative software that is accepted across scientific disciplines, such as R. The article introduces the R package "eseis" and illustrates its conceptual structure, available functions, and worked examples.
Eric Laloy, Koen Beerten, Veerle Vanacker, Marcus Christl, Bart Rogiers, and Laurent Wouters
Earth Surf. Dynam., 5, 331–345, https://doi.org/10.5194/esurf-5-331-2017, https://doi.org/10.5194/esurf-5-331-2017, 2017
Short summary
Short summary
Over very long timescales, 100 000 years or more, landscapes may drastically change. Sediments preserved in these landscapes have a cosmogenic radionuclide inventory that tell us when and how fast such changes took place. In this paper, we provide first evidence of an elevated long-term erosion rate of the northwestern Campine Plateau (lowland Europe), which can be explained by the loose nature of the subsoil.
Laurent Fouinat, Pierre Sabatier, Jérôme Poulenard, Jean-Louis Reyss, Xavier Montet, and Fabien Arnaud
Earth Surf. Dynam., 5, 199–209, https://doi.org/10.5194/esurf-5-199-2017, https://doi.org/10.5194/esurf-5-199-2017, 2017
Short summary
Short summary
This study focuses on the creation of a novel CT scan methodology at the crossroads between medical imagery and earth sciences. Using specific density signatures, pebbles and/or organic matter characterizing wet avalanche deposits can be quantified in lake sediments. Starting from AD 1880, we were able to identify eight periods of higher avalanche activity from sediment cores. The use of CT scans, alongside existing approaches, opens up new possibilities in a wide variety of geoscience studies.
Daniel E. J. Hobley, Jordan M. Adams, Sai Siddhartha Nudurupati, Eric W. H. Hutton, Nicole M. Gasparini, Erkan Istanbulluoglu, and Gregory E. Tucker
Earth Surf. Dynam., 5, 21–46, https://doi.org/10.5194/esurf-5-21-2017, https://doi.org/10.5194/esurf-5-21-2017, 2017
Short summary
Short summary
Many geoscientists use computer models to understand changes in the Earth's system. However, typically each scientist will build their own model from scratch. This paper describes Landlab, a new piece of open-source software designed to simplify creation and use of models of the Earth's surface. It provides off-the-shelf tools to work with models more efficiently, with less duplication of effort. The paper explains and justifies how Landlab works, and describes some models built with it.
Andrew Valentine and Lara Kalnins
Earth Surf. Dynam., 4, 445–460, https://doi.org/10.5194/esurf-4-445-2016, https://doi.org/10.5194/esurf-4-445-2016, 2016
Short summary
Short summary
Learning algorithms are powerful tools for understanding and working with large data sets, particularly in situations where any underlying physical models may be complex and poorly understood. Such situations are common in geomorphology. We provide an accessible overview of the various approaches that fall under the umbrella of "learning algorithms", discuss some potential applications within geomorphometry and/or geomorphology, and offer advice on practical considerations.
E. Pohl, M. Knoche, R. Gloaguen, C. Andermann, and P. Krause
Earth Surf. Dynam., 3, 333–362, https://doi.org/10.5194/esurf-3-333-2015, https://doi.org/10.5194/esurf-3-333-2015, 2015
Short summary
Short summary
A semi-distributed hydrological model is used to analyse the hydrological cycle of a glaciated high-mountain catchment in the Pamirs.
We overcome data scarcity by utilising various raster data sets as meteorological input. Temperature in combination with the amount of snow provided in winter play the key role in the annual cycle.
This implies that expected Earth surface processes along precipitation and altitude gradients differ substantially.
T. Croissant and J. Braun
Earth Surf. Dynam., 2, 155–166, https://doi.org/10.5194/esurf-2-155-2014, https://doi.org/10.5194/esurf-2-155-2014, 2014
Cited articles
Abellán, A., Jaboyedoff, M., Oppikofer, T., and Vilaplana, J. M.:
Detection of millimetric deformation using a terrestrial laser scanner: experiment and application to a rockfall event, Nat. Hazards Earth Syst. Sci., 9, 365–372, https://doi.org/10.5194/nhess-9-365-2009, 2009. a
Anders, K., Winiwarter, L., Lindenbergh, R., Williams, J. G., Vos, S. E., and Höfle, B.:
4D objects-by-change: Spatiotemporal segmentation of geomorphic surface change from LiDAR time series, ISPRS J. Photogramm., 159, 352–363, https://doi.org/10.1016/j.isprsjprs.2019.11.025, 2020. a
Berger, S., Hofmann, R., and Wimmer, L.:
Einwirkungen auf starre Barrieren durch fließähnliche gravitative Massenbewegungen, geotechnik, 44, 77–91, https://doi.org/10.1002/gete.202000026, 2021. a
Besl, P. and McKay, N. D.:
A method for registration of 3-D shapes, IEEE T. Pattern Anal., 14, 239–256, https://doi.org/10.1109/34.121791, 1992. a
Biasion, A., Bornaz, L., and Rinaudo, F.: Laser scanning applications on disaster management, in: Geo-information for disaster management, Springer, 19–33, https://doi.org/10.1007/3-540-27468-5_2, 2005. a
Bourgeois, B. S., Elmore, P. A., Avera, W. E., and Zambo, S. J.:
Achieving comparable uncertainty estimates with Kalman filters or linear smoothers for bathymetry data, Geochem. Geophy. Geosy., 17, 2576–2590, https://doi.org/10.1002/2015GC006239, 2016. a
Cooper, S. and Durrant-Whyte, H.: A Kalman filter model for GPS navigation of land vehicles, in: vol. 1, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94), 12–16 September 1994, Munich, Germany, 157–163, https://doi.org/10.1109/IROS.1994.407396, 1994.
a
Crameri, F.: Scientific colour maps, Zenodo [code], https://doi.org/10.5281/zenodo.5501399, 2021. a
Eitel, J. U., Höfle, B., Vierling, L. A., Abellán, A., Asner, G. P., Deems, J. S., Glennie, C. L., Joerg, P. C., LeWinter, A. L., Magney, T. S., Mandlburger, G., Morton, D. C., Müller, J., and Vierling, K. T.: Beyond 3-D: The new spectrum of lidar applications for earth and ecological sciences, Remote Sens. Environ., 186, 372–392, 2016. a
El-Sheimy, N.: Georeferencing component of LiDAR systems, in: Topographic Laser Ranging and Scanning, CRC Press, 195–214, https://doi.org/10.1201/9781420051438, 2017. a
Fey, C. and Wichmann, V.:
Long-range terrestrial laser scanning for geomorphological change detection in alpine terrain–handling uncertainties, Earth Surf. Proc. Land., 42, 789–802, 2017. a
Goovaerts, P.: Geostatistics for Natural Resources Evaluation, Applied geostatistics series, Oxford University Press, ISBN 0-19-511538-4, 1997. a
Grewal, M. S. and Andrews, A. P.:
Applications of Kalman filtering in aerospace 1960 to the present [historical perspectives], IEEE Contr. Syst. Mag., 30, 69–78, https://doi.org/10.1109/MCS.2010.936465, 2010. a
Hartigan, J. A. and Wong, M. A.:
Algorithm AS 136: A k-means clustering algorithm, J. R. Stat. Soc. C-Appl., 28, 100–108, 1979. a
James, M. R., Robson, S., and Smith, M. W.:
3-D uncertainty-based topographic change detection with structure-from-motion photogrammetry: Precision maps for ground control and directly georeferenced surveys, Earth Surf. Proc. Land., 42, 1769–1788, 2017. a
Kaiser, J. and Reed, W.:
Data smoothing using low-pass digital filters, Rev. Sci. Instrum., 48, 1447–1457, 1977. a
Kalman, R. E.:
A New Approach to Linear Filtering and Prediction Problems, J. Basic Eng-T. ASME, 82, 35–45, https://doi.org/10.1115/1.3662552, 1960. a
Kim, T. Y. and Cox, D. D.:
Bandwidth selection in kernel smoothing of time series, J. Time Ser. Anal., 17, 49–63, 1996. a
Kraus, K., Karel, W., Briese, C., and Mandlburger, G.:
Local accuracy measures for digital terrain models, The Photogrammetric Record, 21, 342–354, 2006. a
Kromer, R. A., Abellán, A., Hutchinson, D. J., Lato, M., Chanut, M.-A., Dubois, L., and Jaboyedoff, M.:
Automated terrestrial laser scanning with near-real-time change detection – monitoring of the Séchilienne landslide, Earth Surf. Dynam., 5, 293–310, https://doi.org/10.5194/esurf-5-293-2017, 2017. a
Lague, D., Brodu, N., and Leroux, J.:
Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z), ISPRS J. Photogramm., 82, 10–26, https://doi.org/10.1016/j.isprsjprs.2013.04.009, 2013. a, b, c, d
Lepot, M., Aubin, J.-B., and Clemens, F. H.: Interpolation in Time Series: An Introductive Overview of Existing Methods, Their Performance Criteria and Uncertainty Assessment, Water, 9, 796, https://doi.org/10.3390/w9100796, 2017. a
Lindenbergh, R., Keshin, M., van der Marel, H., and Hanssen, R.:
High resolution spatio-temporal water vapour mapping using GPS and MERIS observations, Int. J. Remote Sens., 29, 2393–2409, https://doi.org/10.1080/01431160701436825, 2008. a
Lloyd, C. and Atkinson, P.:
Assessing uncertainty in estimates with ordinary and indicator kriging, Comput. Geosci., 27, 929–937, https://doi.org/10.1016/S0098-3004(00)00132-1, 2001. a
Matheron, G.:
Principles of geostatistics, Econ. Geol., 58, 1246–1266, 1963. a
Niemeier, W.: Ausgleichungsrechnung, 1 edn., de Gruyter Lehrbuch, De Gruyter, Boston, MA, ISBN 9783110190557, 2001. a
Pasinetti, S., Nuzzi, C., Lancini, M., Sansoni, G., Docchio, F., and Fornaser, A.: Development and characterization of a safety system for robotic cells based on multiple Time of Flight (TOF) cameras and point cloud analysis, in: IEEE 2018 Workshop on Metrology for Industry 4.0 and IoT, 16–18 April 2018, Brescia, Italy, 1–6, https://doi.org/10.1109/METROI4.2018.8439037, 2018. a
PDAL Contributors: PDAL Point Data Abstraction Library, Zenodo [code], https://doi.org/10.5281/zenodo.2556738, 2018. a
Pingel, T. J., Clarke, K. C., and McBride, W. A.:
An improved simple morphological filter for the terrain classification of airborne LIDAR data, ISPRS J. Photogramm., 77, 21–30, 2013. a
Rauch, H. E., Tung, F., and Striebel, C. T.:
Maximum likelihood estimates of linear dynamic systems, AIAA J., 3, 1445–1450, https://doi.org/10.2514/3.3166, 1965. a
Rusu, R. B., Marton, Z. C., Blodow, N., Dolha, M., and Beetz, M.:
Towards 3D point cloud based object maps for household environments, Robot. Auton. Syst., 56, 927–941, 2008. a
Schröder, D., Anders, K., Winiwarter, L., and Wujanz, D.:
Permanent terrestrial LiDAR monitoring in mining, natural hazard prevention and infrastructure protection – Chances, risks, and challenges: A case study of a rockfall in Tyrol, Austria, in: 5th Joint International Symposium on Deformation Monitoring (JISDM), 20–22 June 2022, Valencia, Spain, https://doi.org/10.4995/JISDM2022.2022.13649, 2022. a, b, c
Sun, X., Mu noz, L., and Horowitz, R.: Mixture Kalman filter based highway congestion mode and vehicle density estimator and its application, in: vol. 3, IEEE Proceedings of the 2004 American Control Conference, 30 June–2 July 2004, Boston, MA, USA, 2098–2103, https://doi.org/10.23919/ACC.2004.1383770, 2004. a
Tekalp, A. M., Kaufman, H., and Woods, J. W.:
Edge-adaptive Kalman filtering for image restoration with ringing suppression, IEEE T. Acoust. Speech, 37, 892–899, 1989. a
Tobler, W. R.:
A computer movie simulating urban growth in the Detroit region, Econ. Geogr., 46, 234–240, https://doi.org/10.2307/143141, 1970. a
Travelletti, J., Malet, J.-P., and Delacourt, C.:
Image-based correlation of Laser Scanning point cloud time series for landslide monitoring, Int. J. Appl. Earth Obs., 32, 1–18, 2014. a
Van Gosliga, R., Lindenbergh, R., and Pfeifer, N.: Deformation analysis of a bored tunnel by means of terrestrial laser scanning, in: IAPRS Volume XXXVI, Part 5, 25–27 September 2006, Dresden, Germany, https://www.isprs.org/proceedings/xxxvi/part5/paper/LIND_629.pdf (last access: 14 July 2023), 2006.
a
Wegman, E. J. and Wright, I. W.:
Splines in Statistics, J. Am. Stat. Assoc., 78, 351–365, https://doi.org/10.1080/01621459.1983.10477977, 1983. a
Winiwarter, L.: 3dgeo-heidelberg/kalman4d: v0.0.4, Zenodo [code],
https://doi.org/10.5281/zenodo.8154401, 2023. a
Winiwarter, L., Esmorís Pena, A. M., Weiser, H., Anders, K., Martínez Sánchez, J., Searle, M., and Höfle, B.:
Virtual laser scanning with HELIOS++: A novel take on ray tracing-based simulation of topographic full-waveform 3D laser scanning, Remote Sens. Environ., 269, https://doi.org/10.1016/j.rse.2021.112772, 2022. a
Short summary
We present a method to extract surface change information from 4D time series of topographic point clouds recorded with a terrestrial laser scanner. The method uses sensor information to spatially and temporally smooth the data, reducing uncertainties. The Kalman filter used for the temporal smoothing also allows us to interpolate over data gaps or extrapolate into the future. Clustering areas where change histories are similar allows us to identify processes that may have the same causes.
We present a method to extract surface change information from 4D time series of topographic...