Articles | Volume 11, issue 5
https://doi.org/10.5194/esurf-11-979-2023
https://doi.org/10.5194/esurf-11-979-2023
Research article
 | 
09 Oct 2023
Research article |  | 09 Oct 2023

Geotechnical controls on erodibility in fluvial impact erosion

Jens M. Turowski, Gunnar Pruß, Anne Voigtländer, Andreas Ludwig, Angela Landgraf, Florian Kober, and Audrey Bonnelye

Related authors

A physics-based model for fluvial valley width
Jens Martin Turowski, Aaron Bufe, and Stefanie Tofelde
Earth Surf. Dynam., 12, 493–514, https://doi.org/10.5194/esurf-12-493-2024,https://doi.org/10.5194/esurf-12-493-2024, 2024
Short summary
A global dataset of the shape of drainage systems
Chuanqi He, Ci-Jian Yang, Jens M. Turowski, Richard F. Ott, Jean Braun, Hui Tang, Shadi Ghantous, Xiaoping Yuan, and Gaia Stucky de Quay
Earth Syst. Sci. Data, 16, 1151–1166, https://doi.org/10.5194/essd-16-1151-2024,https://doi.org/10.5194/essd-16-1151-2024, 2024
Short summary
Sourcing and Long-Range Transport of Particulate Organic Matter in River Bedload: Rio Bermejo, Argentina
Sophia Dosch, Niels Hovius, Marisa Repasch, Joel Scheingross, Jens M. Turowski, Stefanie Tofelde, Oliver Rach, and Dirk Sachse
EGUsphere, https://doi.org/10.5194/egusphere-2023-2485,https://doi.org/10.5194/egusphere-2023-2485, 2023
Short summary
Mobile evaporite enhances the cycle of physical–chemical erosion in badlands
Ci-Jian Yang, Pei-Hao Chen, Erica D. Erlanger, Jens M. Turowski, Sen Xu, Tse-Yang Teng, Jiun-Chuan Lin, and Jr-Chuang Huang
Earth Surf. Dynam., 11, 475–486, https://doi.org/10.5194/esurf-11-475-2023,https://doi.org/10.5194/esurf-11-475-2023, 2023
Short summary
Controls on the grain size distribution of landslides in Taiwan: the influence of drop height, scar depth and bedrock strength
Odin Marc, Jens M. Turowski, and Patrick Meunier
Earth Surf. Dynam., 9, 995–1011, https://doi.org/10.5194/esurf-9-995-2021,https://doi.org/10.5194/esurf-9-995-2021, 2021
Short summary

Related subject area

Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Evolution of submarine canyons and hanging-wall fans: insights from geomorphic experiments and morphodynamic models
Steven Y. J. Lai, David Amblas, Aaron Micallef, and Hervé Capart
Earth Surf. Dynam., 12, 621–640, https://doi.org/10.5194/esurf-12-621-2024,https://doi.org/10.5194/esurf-12-621-2024, 2024
Short summary
Riverine sediment response to deforestation in the Amazon basin
Anuska Narayanan, Sagy Cohen, and John R. Gardner
Earth Surf. Dynam., 12, 581–599, https://doi.org/10.5194/esurf-12-581-2024,https://doi.org/10.5194/esurf-12-581-2024, 2024
Short summary
Physical modeling of ice-sheet-induced salt movements using the example of northern Germany
Jacob Hardt, Tim P. Dooley, and Michael R. Hudec
Earth Surf. Dynam., 12, 559–579, https://doi.org/10.5194/esurf-12-559-2024,https://doi.org/10.5194/esurf-12-559-2024, 2024
Short summary
Downstream rounding rate of pebbles in the Himalaya
Prakash Pokhrel, Mikael Attal, Hugh D. Sinclair, Simon M. Mudd, and Mark Naylor
Earth Surf. Dynam., 12, 515–536, https://doi.org/10.5194/esurf-12-515-2024,https://doi.org/10.5194/esurf-12-515-2024, 2024
Short summary
A physics-based model for fluvial valley width
Jens Martin Turowski, Aaron Bufe, and Stefanie Tofelde
Earth Surf. Dynam., 12, 493–514, https://doi.org/10.5194/esurf-12-493-2024,https://doi.org/10.5194/esurf-12-493-2024, 2024
Short summary

Cited articles

Attal, M., Lavé, J., and Masson, J.P.: New facility to study river abrasion processes, J. Hydrol. Eng., 132, 624–628, https://doi.org/10.1061/(ASCE)0733-9429(2006)132:6(624), 2006. 
Auel, C., Boes, R. M., and Sumi, T.: Abrasion damage estimation of sediment bypass tunnels: Validation and comparison of two prediction models, Annuals of the Disaster Preventions Research Institute, Kyoto University, No. 58 B, https://mdi-de.baw.de/icheArchive/documents/2016/02-0020.pdf (last access: 4 October 2023), 2015. 
Auel, C., Albayrak, I., Sumi, T., and Boes, R. M.: Sediment transport in high-speed flows over a fixed bed: 2. Particle impacts and abrasion prediction, Earth Surf. Proc. Land., 42, 1384–1396, https://doi.org/10.1002/esp.4132, 2017. 
Barnhart, K. R., Tucker, G. E., Doty, S. G., Shobe, C. M., Glade, R. C., Rossi, M. W., and Hill, M. C.: Inverting topography for landscape evolution model process representation: 3. Determining parameter ranges for select mature geomorphic transport laws and connecting changes in fluvial erodibility to changes in climate, J. Geophys. Res., 125, e2019JF005287. https://doi.org/10.1029/2019JF005287, 2020. 
Beer, A. R. and Lamb, M. P.: Abrasion regimes in fluvial bedrock incision, Geology, 49, 682–686, https://doi.org/10.1130/G48466.1, 2021. 
Download
Short summary
Rivers can cut into rocks, and their strength modulates the river's erosion rates. Yet, which properties of the rock control its response to erosive action is poorly understood. Here, we describe parallel experiments to measure rock erosion rates under fluvial impact erosion and the rock's geotechnical properties such as fracture strength, elasticity, and density. Erosion rates vary over a factor of a million between different rock types. We use the data to improve current theory.