Articles | Volume 11, issue 5
https://doi.org/10.5194/esurf-11-979-2023
https://doi.org/10.5194/esurf-11-979-2023
Research article
 | 
09 Oct 2023
Research article |  | 09 Oct 2023

Geotechnical controls on erodibility in fluvial impact erosion

Jens M. Turowski, Gunnar Pruß, Anne Voigtländer, Andreas Ludwig, Angela Landgraf, Florian Kober, and Audrey Bonnelye

Related authors

Modeling memory in gravel-bed rivers: A flow history-dependent relation for evolving thresholds of motion
Claire C. Masteller, Joel P. L. Johnson, Dieter Rickenmann, and Jens M. Turowski
EGUsphere, https://doi.org/10.5194/egusphere-2024-3250,https://doi.org/10.5194/egusphere-2024-3250, 2024
This preprint is open for discussion and under review for Earth Surface Dynamics (ESurf).
Short summary
Sourcing and long-range transport of particulate organic matter in river bedload: Río Bermejo, Argentina
Sophia Dosch, Niels Hovius, Marisa Repasch, Joel Scheingross, Jens M. Turowski, Stefanie Tofelde, Oliver Rach, and Dirk Sachse
Earth Surf. Dynam., 12, 907–927, https://doi.org/10.5194/esurf-12-907-2024,https://doi.org/10.5194/esurf-12-907-2024, 2024
Short summary
Width evolution of channel belts as a random walk
Jens Martin Turowski, Fergus McNab, Aaron Bufe, and Stefanie Tofelde
EGUsphere, https://doi.org/10.5194/egusphere-2024-2342,https://doi.org/10.5194/egusphere-2024-2342, 2024
Short summary
A physics-based model for fluvial valley width
Jens Martin Turowski, Aaron Bufe, and Stefanie Tofelde
Earth Surf. Dynam., 12, 493–514, https://doi.org/10.5194/esurf-12-493-2024,https://doi.org/10.5194/esurf-12-493-2024, 2024
Short summary
A global dataset of the shape of drainage systems
Chuanqi He, Ci-Jian Yang, Jens M. Turowski, Richard F. Ott, Jean Braun, Hui Tang, Shadi Ghantous, Xiaoping Yuan, and Gaia Stucky de Quay
Earth Syst. Sci. Data, 16, 1151–1166, https://doi.org/10.5194/essd-16-1151-2024,https://doi.org/10.5194/essd-16-1151-2024, 2024
Short summary

Related subject area

Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Examination of analytical shear stress predictions for coastal dune evolution
Orie Cecil, Nicholas Cohn, Matthew Farthing, Sourav Dutta, and Andrew Trautz
Earth Surf. Dynam., 13, 1–22, https://doi.org/10.5194/esurf-13-1-2025,https://doi.org/10.5194/esurf-13-1-2025, 2025
Short summary
Post-fire evolution of ravel transport regimes in the Diablo Range, CA
Hayden L. Jacobson, Danica L. Roth, Gabriel Walton, Margaret Zimmer, and Kerri Johnson
Earth Surf. Dynam., 12, 1415–1446, https://doi.org/10.5194/esurf-12-1415-2024,https://doi.org/10.5194/esurf-12-1415-2024, 2024
Short summary
Landscape response to tectonic deformation and cyclic climate change since ca. 800 ka in the southern central Andes
Elizabeth N. Orr, Taylor F. Schildgen, Stefanie Tofelde, Hella Wittmann, and Ricardo N. Alonso
Earth Surf. Dynam., 12, 1391–1413, https://doi.org/10.5194/esurf-12-1391-2024,https://doi.org/10.5194/esurf-12-1391-2024, 2024
Short summary
The Aare main overdeepening on the northern margin of the European Alps: basins, riegels, and slot canyons
Fritz Schlunegger, Edi Kissling, Dimitri Tibo Bandou, Guilhem Amin Douillet, David Mair, Urs Marti, Regina Reber, Patrick Schläfli, and Michael Alfred Schwenk
Earth Surf. Dynam., 12, 1371–1389, https://doi.org/10.5194/esurf-12-1371-2024,https://doi.org/10.5194/esurf-12-1371-2024, 2024
Short summary
A simple model for faceted topographies at normal faults based on an extended stream-power law
Stefan Hergarten
Earth Surf. Dynam., 12, 1315–1327, https://doi.org/10.5194/esurf-12-1315-2024,https://doi.org/10.5194/esurf-12-1315-2024, 2024
Short summary

Cited articles

Attal, M., Lavé, J., and Masson, J.P.: New facility to study river abrasion processes, J. Hydrol. Eng., 132, 624–628, https://doi.org/10.1061/(ASCE)0733-9429(2006)132:6(624), 2006. 
Auel, C., Boes, R. M., and Sumi, T.: Abrasion damage estimation of sediment bypass tunnels: Validation and comparison of two prediction models, Annuals of the Disaster Preventions Research Institute, Kyoto University, No. 58 B, https://mdi-de.baw.de/icheArchive/documents/2016/02-0020.pdf (last access: 4 October 2023), 2015. 
Auel, C., Albayrak, I., Sumi, T., and Boes, R. M.: Sediment transport in high-speed flows over a fixed bed: 2. Particle impacts and abrasion prediction, Earth Surf. Proc. Land., 42, 1384–1396, https://doi.org/10.1002/esp.4132, 2017. 
Barnhart, K. R., Tucker, G. E., Doty, S. G., Shobe, C. M., Glade, R. C., Rossi, M. W., and Hill, M. C.: Inverting topography for landscape evolution model process representation: 3. Determining parameter ranges for select mature geomorphic transport laws and connecting changes in fluvial erodibility to changes in climate, J. Geophys. Res., 125, e2019JF005287. https://doi.org/10.1029/2019JF005287, 2020. 
Beer, A. R. and Lamb, M. P.: Abrasion regimes in fluvial bedrock incision, Geology, 49, 682–686, https://doi.org/10.1130/G48466.1, 2021. 
Download
Short summary
Rivers can cut into rocks, and their strength modulates the river's erosion rates. Yet, which properties of the rock control its response to erosive action is poorly understood. Here, we describe parallel experiments to measure rock erosion rates under fluvial impact erosion and the rock's geotechnical properties such as fracture strength, elasticity, and density. Erosion rates vary over a factor of a million between different rock types. We use the data to improve current theory.