Articles | Volume 12, issue 5
https://doi.org/10.5194/esurf-12-1049-2024
https://doi.org/10.5194/esurf-12-1049-2024
Research article
 | 
20 Sep 2024
Research article |  | 20 Sep 2024

Acceleration of coastal-retreat rates for high-Arctic rock cliffs on Brøggerhalvøya, Svalbard, over the past decade

Juditha Aga, Livia Piermattei, Luc Girod, Kristoffer Aalstad, Trond Eiken, Andreas Kääb, and Sebastian Westermann

Related authors

Simulating ice segregation and thaw consolidation in permafrost environments with the CryoGrid community model
Juditha Aga, Julia Boike, Moritz Langer, Thomas Ingeman-Nielsen, and Sebastian Westermann
The Cryosphere, 17, 4179–4206, https://doi.org/10.5194/tc-17-4179-2023,https://doi.org/10.5194/tc-17-4179-2023, 2023
Short summary
The CryoGrid community model (version 1.0) – a multi-physics toolbox for climate-driven simulations in the terrestrial cryosphere
Sebastian Westermann, Thomas Ingeman-Nielsen, Johanna Scheer, Kristoffer Aalstad, Juditha Aga, Nitin Chaudhary, Bernd Etzelmüller, Simon Filhol, Andreas Kääb, Cas Renette, Louise Steffensen Schmidt, Thomas Vikhamar Schuler, Robin B. Zweigel, Léo Martin, Sarah Morard, Matan Ben-Asher, Michael Angelopoulos, Julia Boike, Brian Groenke, Frederieke Miesner, Jan Nitzbon, Paul Overduin, Simone M. Stuenzi, and Moritz Langer
Geosci. Model Dev., 16, 2607–2647, https://doi.org/10.5194/gmd-16-2607-2023,https://doi.org/10.5194/gmd-16-2607-2023, 2023
Short summary
Simulating the effect of subsurface drainage on the thermal regime and ground ice in blocky terrain in Norway
Cas Renette, Kristoffer Aalstad, Juditha Aga, Robin Benjamin Zweigel, Bernd Etzelmüller, Karianne Staalesen Lilleøren, Ketil Isaksen, and Sebastian Westermann
Earth Surf. Dynam., 11, 33–50, https://doi.org/10.5194/esurf-11-33-2023,https://doi.org/10.5194/esurf-11-33-2023, 2023
Short summary
Surface temperatures and their influence on the permafrost thermal regime in high-Arctic rock walls on Svalbard
Juditha Undine Schmidt, Bernd Etzelmüller, Thomas Vikhamar Schuler, Florence Magnin, Julia Boike, Moritz Langer, and Sebastian Westermann
The Cryosphere, 15, 2491–2509, https://doi.org/10.5194/tc-15-2491-2021,https://doi.org/10.5194/tc-15-2491-2021, 2021
Short summary

Related subject area

Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
A landslide runout model for sediment transport, landscape evolution, and hazard assessment applications
Jeffrey Keck, Erkan Istanbulluoglu, Benjamin Campforts, Gregory Tucker, and Alexander Horner-Devine
Earth Surf. Dynam., 12, 1165–1191, https://doi.org/10.5194/esurf-12-1165-2024,https://doi.org/10.5194/esurf-12-1165-2024, 2024
Short summary
Tracking slow-moving landslides with PlanetScope data: new perspectives on the satellite's perspective
Ariane Mueting and Bodo Bookhagen
Earth Surf. Dynam., 12, 1121–1143, https://doi.org/10.5194/esurf-12-1121-2024,https://doi.org/10.5194/esurf-12-1121-2024, 2024
Short summary
Topographic metrics for unveiling fault segmentation and tectono-geomorphic evolution with insights into the impact of inherited topography, Ulsan Fault Zone, South Korea
Cho-Hee Lee, Yeong Bae Seong, John Weber, Sangmin Ha, Dong-Eun Kim, and Byung Yong Yu
Earth Surf. Dynam., 12, 1091–1120, https://doi.org/10.5194/esurf-12-1091-2024,https://doi.org/10.5194/esurf-12-1091-2024, 2024
Short summary
The impact of bedrock meander cutoffs on 50 kyr scale incision rates, San Juan River, Utah
Aaron T. Steelquist, Gustav B. Seixas, Mary L. Gillam, Sourav Saha, Seulgi Moon, and George E. Hilley
Earth Surf. Dynam., 12, 1071–1089, https://doi.org/10.5194/esurf-12-1071-2024,https://doi.org/10.5194/esurf-12-1071-2024, 2024
Short summary
How water, temperature, and seismicity control the preconditioning of massive rock slope failure (Hochvogel)
Johannes Leinauer, Michael Dietze, Sibylle Knapp, Riccardo Scandroglio, Maximilian Jokel, and Michael Krautblatter
Earth Surf. Dynam., 12, 1027–1048, https://doi.org/10.5194/esurf-12-1027-2024,https://doi.org/10.5194/esurf-12-1027-2024, 2024
Short summary

Cited articles

Aga, J.: Supplementary data for “Coastal retreat rates of high-Arctic rock cliffs on Brøgger peninsula, Svalbard, accelerate during the past decade”, Zenodo [data set], https://doi.org/10.5281/zenodo.7756973, 2023. a
Ambaum, M. H.: Significance tests in climate science, J. Climate, 23, 5927–5932, https://doi.org/10.1175/2010JCLI3746.1, 2010. a
Andrachuk, M. and Pearce, T.: Vulnerability and adaptation in two communities in the Inuvialuit Settlement Region, in: Community adaptation and vulnerability in Arctic Regions, Springer, Dordrecht Heidelberg London New York, https://doi.org/10.1007/978-90-481-9174-1_3, pp. 63–81, 2010. a
Annan, J.: Bayesian approaches to detection and attribution, WIREs Clim. Change, 1, 486–489, https://doi.org/10.1002/wcc.47, 2010. a
Are, F.: Thermal abrasion of sea coasts (Part II), Polar Geography and Geology, 12, https://doi.org/10.1080/10889378809377352, 1988a. a
Download
Short summary
Coastal rock cliffs on Svalbard are considered to be fairly stable; however, long-term trends in coastal-retreat rates remain unknown. This study examines changes in the coastline position along Brøggerhalvøya, Svalbard, using aerial images from 1970, 1990, 2010, and 2021. Our analysis shows that coastal-retreat rates accelerate during the period 2010–2021, which coincides with increasing storminess and retreating sea ice.