Articles | Volume 12, issue 6
https://doi.org/10.5194/esurf-12-1243-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-12-1243-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
River suspended-sand flux computation with uncertainty estimation using water samples and high-resolution ADCP measurements
RiverLy, INRAE, 5 Rue de la Doua, Villeurbanne, 69100, France
Guillaume Dramais
CORRESPONDING AUTHOR
RiverLy, INRAE, 5 Rue de la Doua, Villeurbanne, 69100, France
Jérôme Le Coz
RiverLy, INRAE, 5 Rue de la Doua, Villeurbanne, 69100, France
Blaise Calmel
RiverLy, INRAE, 5 Rue de la Doua, Villeurbanne, 69100, France
Benoît Camenen
RiverLy, INRAE, 5 Rue de la Doua, Villeurbanne, 69100, France
David J. Topping
U.S. Geological Survey, Southwest Biological Science Center, Grand Canyon Monitoring and Research Center, 2255 N. Gemini Drive, Flagstaff, AZ 86001, USA
William Santini
IRD-GET, Institut de Recherche pour le Développement, Laboratoire GET (IRD, CNRS, UPS, CNES), Toulouse, France
Gilles Pierrefeu
CACOH, CNR, 4 Rue de Chalon-sur-Saône, Lyon, 69007, France
François Lauters
Service Etudes Eau Environnement, EDF, 134 Chemin de l'étang, Saint Martin Le Vinoux, 38950, France
Related authors
No articles found.
Francisco Rodrigues do Amaral, Benoît Camenen, Tin Nguyen Trung, Tran Anh Tu, Thierry Pellarin, and Nicolas Gratiot
Hydrol. Earth Syst. Sci., 29, 4327–4340, https://doi.org/10.5194/hess-29-4327-2025, https://doi.org/10.5194/hess-29-4327-2025, 2025
Short summary
Short summary
This study explores how to improve models predicting water flow in southern Vietnam's Saigon and Dongnai rivers, where data are scarce. By testing three different methods to adjust the river model using river water level and river discharge measurements, we found ways of better predicting river behavior. These findings can help manage water resources more effectively and aid in decision-making for flood protection and environmental conservation.
Mathieu Lucas, Michel Lang, Benjamin Renard, and Jérôme Le Coz
Hydrol. Earth Syst. Sci., 28, 5031–5047, https://doi.org/10.5194/hess-28-5031-2024, https://doi.org/10.5194/hess-28-5031-2024, 2024
Short summary
Short summary
The proposed flood frequency model accounts for uncertainty in the perception threshold S and the starting date of the historical period. Using a 500-year-long case study, inclusion of historical floods reduces the uncertainty in flood quantiles, even when only the number of exceedances of S is known. Ignoring threshold uncertainty leads to underestimated flood quantile uncertainty. This underlines the value of using a comprehensive framework for uncertainty estimation.
Hugo Lepage, Alexandra Gruat, Fabien Thollet, Jérôme Le Coz, Marina Coquery, Matthieu Masson, Aymeric Dabrin, Olivier Radakovitch, Jérôme Labille, Jean-Paul Ambrosi, Doriane Delanghe, and Patrick Raimbault
Earth Syst. Sci. Data, 14, 2369–2384, https://doi.org/10.5194/essd-14-2369-2022, https://doi.org/10.5194/essd-14-2369-2022, 2022
Short summary
Short summary
The dataset contains concentrations and fluxes of suspended particle matter (SPM) and several particle-bound contaminants along the Rhône River downstream of Lake Geneva. These data allow us to understand the dynamics and origins. They show the impact of flood events which mainly contribute to a decrease in the contaminant concentrations while fluxes are significant. On the contrary, concentrations are higher during low flow periods probably due to the increase of organic matter.
Jérôme Le Coz, Guy D. Moukandi N'kaya, Jean-Pierre Bricquet, Alain Laraque, and Benjamin Renard
Proc. IAHS, 384, 25–29, https://doi.org/10.5194/piahs-384-25-2021, https://doi.org/10.5194/piahs-384-25-2021, 2021
Cited articles
Armijos, E., Crave, A., Espinoza, R., Fraizy, P., Santos, A. D., Sampaio, F., De Oliveira, E., Santini, W., Martinez, J., Autin, P., Pantoja, N., Oliveira, M., and Filizola, N.: Measuring and modeling vertical gradients in suspended sediments in the Solimões /Amazon River, Hydrol. Process., 31, 654–667, https://doi.org/10.1002/hyp.11059, 2017. a
ASTM D3977: Standard test method for determining sediment concentration in water samples, ASTM International, https://doi.org/10.1520/D3977-97R19, 2007. a
Boldt, J. A.: From mobile ADCP to high-resolution SSC: a cross-section calibration tool, in: 3rd Joint Federal Interagency Conference on Sedimentation and Hydrologic Modeling, Reno, Nevada, 19–23 April 2015, 1258–1260, https://water.usgs.gov/osw/SALT/documents/189_Boldt.pdf (last access: 22 October 2024), 2015. a
Bouchez, J., Métivier, F., Lupker, M., Maurice, L., Perez, M., Gaillardet, J., and France-Lanord, C.: Prediction of depth-integrated fluxes of suspended sediment in the Amazon River: Particle aggregation as a complicating factor, Hydrol. Process., 25, 778–794, https://doi.org/10.1002/hyp.7868, 2011. a, b
Camenen, B.: Simple and general formula for the settling velocity of particles, J. Hydraul. Eng., 133, 229–233, 2007. a
Camenen, B. and Larson, M.: A unified sediment transport formulation for coastal inlet application, Tech. rep., US Army Corps of Engineers, Engineer Research and Development Center, https://doi.org/10.21236/ada472064, 2007. a
Camenen, B., Holubova, K., Lukac, M., Le Coz, J., and Paquier, A.: Assessment of Methods Used in 1D Models for Computing Bed-Load Transport in a Large River: The Danube River in Slovakia, J. Hydraul. Eng., 137, 1190–1199, https://doi.org/10.1061/(ASCE)HY.1943-7900.0000427, 2011. a
Camenen, B., Le Coz, J., Dramais, G., Peteuil, C., Fretaud, T., Falgon, A., Dussouillez, P., and Moore, S. A.: A simple physically-based model for predicting sand transport dynamics in the Lower Mekong River, River Flow, Proc. River Flow conference, 3–5 September 2014, Lausanne, Switzerland, 2189–2197, ISBN 9780429069246, 2014. a
Camenen, B., Dramais, G., Laible, J., Le Coz, J., Pierrefeu, G., and Lauters, F.: Quantification of continuous sand flux time-series downstream of a dam during a flushing event, Environ. Fluid Mech., https://doi.org/10.1007/s10652-023-09955-9, 2023. a
Delile, H., Masson, M., Miège, C., Le Coz, J., Poulier, G., Le Bescond, C., Radakovitch, O., and Coquery, M.: Hydro-climatic drivers of land-based organic and inorganic particulate micropollutant fluxes: The regime of the largest river water inflow of the Mediterranean Sea, Water Res., 185, 116067, https://doi.org/10.1016/j.watres.2020.116067, 2020. a
Despax, A., Le Coz, J., Hauet, A., Mueller, D. S., Engel, F. L., Blanquart, B., Renard, B., and Oberg, K. A.: Decomposition of Uncertainty Sources in Acoustic Doppler Current Profiler Streamflow Measurements Using Repeated Measures Experiments, Water Resour. Res., 55, 7520–7540, https://doi.org/10.1029/2019WR025296, 2019. a
Despax, A., Le Coz, J., Mueller, D. S., Hauet, A., Calmel, B., Pierrefeu, G., Naudet, G., Blanquart, B., and Pobanz, K.: Validation of an Uncertainty Propagation Method for Moving-Boat Acoustic Doppler Current Profiler Discharge Measurements, Water Resour. Res., 59, e2021WR031878, https://doi.org/10.1029/2021WR031878, 2023. a, b
Dominguez Ruben, L., Szupiany, R., Latosinski, F., C., L. W., Wood, M., and Boldt, J.: Acoustic Sediment Estimation Toolbox (ASET): A software package for calibrating and processing TRDI ADCP data to compute suspended-sediment transport in sandy rivers, Comput. Geosci.-UK., 140, 104499, https://doi.org/10.1016/j.cageo.2020.104499, 2020. a, b, c
Edwards, T. K. and Glysson, G. D.: Field methods for measurement of fluvial sediment, U.S. Geological Survey, https://pubs.usgs.gov/twri/twri3-c2/pdf/TWRI_3-C2.pdf (last access: 22 October 2024), 1999. a
FISP: Laboratory investigation of suspended-sediment samplers, Tech. Rep. Report No. 5, Federal Interagency Sedimentation Project, https://water.usgs.gov/fisp/docs/Report_5.pdf (last access: 22 October 2024), 1941. a
FISP: The design of improved types of suspended sediment samplers, Tech. Rep. Report No. 6, Federal Interagency Sedimentation Project, https://water.usgs.gov/fisp/docs/Report_6.pdf (last access: 22 October 2024), 1952. a
Gitto, A. B., Venditti, J. G., Kostaschuk, R., and Church, M.: Representative point-integrated suspended sediment sampling in rivers, Water Resour. Res., 53, 2956–2971, https://doi.org/10.1002/2016WR019187, 2017. a, b, c, d
Gordon, J. D.: US Geological Survey Quality-assurance Project for Sediment Analysis, Tech. rep., U.S. Geological Service, 2000. a
Gray, J. and Gartner, J.: Overview of selected surrogate technologies for high-temporal resolution suspended sediment monitoring, in: Proceedings of the 2nd Joint Federal Interagency Conference, Las Vegas, NV, USA, 27 June–1 July, Citeseer, https://www.usgs.gov/publications/overview-selected-surrogate-technologies-high-temporal-resolution-suspended-sediment (last access: 2 June 2022), 2010. a
Gualtieri, C., Angeloudis, A., Bombardelli, F., Jha, S., and Stoesser, T.: On the values for the turbulent Schmidt number in environmental flows, Fluids, 2, 17, https://doi.org/10.3390/fluids2020017, 2017. a
Guy, H. P. and Norman, V. W.: Field methods for measurement of fluvial sediment, United State Geological Survey, Book 3, https://doi.org/10.3133/twri03C2, 1970. a, b, c, d
Hoffmann, T., Thorndycraft, V., Brown, A., Coulthard, T., Damnati, B., Kale, V., Middelkoop, H., Notebaert, B., and Walling, D.: Human impact on fluvial regimes and sediment flux during the Holocene: Review and future research agenda, Global Planet. Change, 72, 87–98, https://doi.org/10.1016/j.gloplacha.2010.04.008, 2010. a
International Organization for Standardization: Measurement of liquid flow in open channels. Methods for measurement of characteristics of suspended sediment, ISO 4363, Geneva, Switzerland, https://www.iso.org/obp/ui/#iso:std:iso:4363:ed-3:v1:en (last access: 24 October 2024), 2002. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q
International Organization for Standardization: Hydrometry. Measurement of liquid flow in open channels using current-meters or floats using point velocity measurements, ISO 748, Geneva, Switzerland, 46 pp., https://www.iso.org/obp/ui/#iso:std:iso:748:ed-5:v1:en (last access: 22 October 2024), 2009. a
Kästner, K., Hoitink, A. J. F., Torfs, P. J. J. F., Vermeulen, B., Ningsih, N. S., and Pramulya, M.: Prerequisites for accurate monitoring of river discharge based on fixed‐location velocity measurements, Water Resour. Res., 54, 1058–1076, https://doi.org/10.1002/2017WR020990, 2018.
Khodashenas, S. R. and Paquier, A.: A geometrical method for computing the distribution of boundary shear stress across irregular straight open channels, J. Hydraul. Res., 37, 381–388, 1999. a
Kondolf, G. M.: Hungry water: effects of dams and gravel mining on river channels, Environ. Manage., 21, 533–551, 1997. a
Kondolf, G. M., Gao, Y., Annandale, G. W., Morris, G. L., Jiang, E., Zhang, J., Cao, Y., Carling, P., Fu, K., Guo, Q., Hotchkiss, R., Peteuil, C., Sumi T., Wang, H.-W., Wang, Z., Wei, Z., Wu B., Wu, C., and Yang C. T.: Sustainable sediment management in reservoirs and regulated rivers: Experiences from five continents, Earths Future, 2, 256–280, 2014. a
Laible, J., Calmel, B., Le Coz, J., Camenen, B., Dramais, G., and Vassor, T.: Analysis solid gauging, Zenodo [code], https://doi.org/10.5281/zenodo.13973594, 2023a.
Laible, J., Dramais, G., Camenen, B., Le Coz, J., Topping, D. J., Santini, W., and Pierrefeu, G.: Data set of solid gaugings in several rivers, Recherche Data Gouv [data set], https://doi.org/10.57745/NLFT7Q, 2023b.
Lennermark, M. and Hauet, A.: Developing a post-processing software for ADCP discharge measurement piloted by an international and inter-agency group: a unique, ambitious experience… and one that works!, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9379, https://doi.org/10.5194/egusphere-egu22-9379, 2022. a, b, c, d
Lupker, M., France-Lanord, C., Lavé, J., Bouchez, J., Galy, V., Métivier, F., Gaillardet, J., Lartiges, B., and Mugnier, J.: A Rouse-based method to integrate the chemical composition of river sediments: Application to the Ganga basin, J. Geophys. Res.-Earth, 116, 1–24, https://doi.org/10.1029/2010JF001947, 2011. a
Mansanarez, V., Renard, B., Le Coz, J., Lang, M., and Darienzo, M.: Shift Happens! Adjusting Stage-Discharge Rating Curves to Morphological Changes at Known Times, Water Resour. Res., 55, 2876–2899, https://doi.org/10.1029/2018WR023389, 2019. a
Marggraf, J., Camenen, B., Le Coz, J., Dramais, G., Lauters, F., Pierrefeu, G.: Suspended sediment measurements in the Isère River at Grenoble Campus, Recherche Data Gouv [data set], https://doi.org/10.57745/YTCYSX, 2023.
Mueller, D. S.: QRev-Software for computation and quality assurance of acoustic Doppler current profiler moving-boat streamflow measurements, U.S. Geological Survey Open-File Report, 1052, 50, Technical Manual for version 2.8, https://doi.org/10.3133/ofr20161068, 2016. a
Némery, J., Mano, V., Coynel, A., Etcheber, H., Moatar, F., Meybeck, M., Belleudy, P., and Poirel, A.: Carbon and suspended sediment transport in an impounded alpine river (Isère, France), Hydrol. Process., 27, 2498–2508, https://doi.org/10.1002/hyp.9387, 2013. a
Oberg, K. and Mueller, D. S.: Validation of streamflow measurements made with acoustic Doppler current profilers, J. Hydraul. Eng., 133, 1421–1432, https://doi.org/10.1061/(ASCE)0733-9429(2007)133:12(1421, 2007. a, b
Parsons, D. R., Jackson, P., Czuba, J., Engel, F., Rhoads, B. L., Oberg, K., Best, J. L., Mueller, D., Johnson, K., and Riley, J.: Velocity Mapping Toolbox (VMT): a processing and visualization suite for moving-vessel ADCP measurements, Earth Surf. Processes, 38, 1244–1260, https://doi.org/10.1002/esp.3367, 2013. a, b, c
Perret, E., Camenen, B., Berni, C., El kadi Abderrezzak, K., and Renard, B.: Uncertainties in Models Predicting Critical Bed Shear Stress of Cohesionless Particles, J. Hydraul. Eng., 149, 04023002, https://doi.org/10.1061/JHEND8.HYENG-13101, 2023. a
Porterfield: Computation of fluvial-sediment discharge, Techniques of Water-Resources Investigations, https://doi.org/10.3133/twri03C3, 1972. a
Poulier, G., Launay, M., Le Bescond, C., Thollet, F., Coquery, M., and Le Coz, J.: Combining flux monitoring and data reconstruction to establish annual budgets of suspended particulate matter, mercury and PCB in the Rhône River from Lake Geneva to the Mediterranean Sea, Sci. Total Environ., 658, 457–473, https://doi.org/10.1016/j.scitotenv.2018.12.075, 2019. a
Renard, B., Garreta, V., and Lang, M.: An application of Bayesian analysis and Markov chain Monte Carlo methods to the estimation of a regional trend in annual maxima, Water Resour Res. 42, W12422, https://doi.org/10.1029/2005WR004591, 2006. a
Rozovskii, I. L.: Flow of water in bends of open channels, Academy of Sciences of the Ukrainian SSR: Kiev, translated from Russian by the Israel Program for Scientific Translations, Jerusalem, 1961, 1957. a
Sabol, T. A. and Topping, D. J.: Evaluation of intake efficiencies and associated sediment-concentration errors in US D-77 bag-type and US D-96-type depth-integrating suspended-sediment samplers, U.S. Geological Survey Scientific Investigations Report 2012-5208, 88 pp., 5208, 88, https://doi.org/10.3133/sir20125208, 2013. a
Santini, W., Camenen, B., Le Coz, J., Vauchel, P., Guyot, J.-L., Lavado, W., Carranza, J., Paredes, M. A., Pérez Arévalo, J. J., Arévalo, N., Espinoza Villar, R., Julien, F., and Martinez, J.-M.: An index concentration method for suspended load monitoring in large rivers of the Amazonian foreland, Earth Surf. Dynam., 7, 515–536, https://doi.org/10.5194/esurf-7-515-2019, 2019. a
Shah-Fairbank, S. C. and Julien, P. Y.: Sediment load calculations from point measurements in sand-bed rivers, Int. J. Sediment Res., 30, 1–12, https://doi.org/10.1016/S1001-6279(15)60001-4, 2015. a
Smart, G.: A base for the log law and von Karman’s constant problem, J. Hydraul. Res., 60, 935–943, https://doi.org/10.1080/00221686.2022.2076164, 2022. a
Soulsby, R. and Whitehouse, R.: Threshold of sediment motion in coastal environments, in: Pacific Coasts and Ports' 97: Proceedings of the 13th Australasian Coastal and Ocean Engineering Conference and the 6th Australasian Port and Harbour Conference, Christchurch, New Zealand, 7–11 September 1997, Vol. 1, Centre for Advanced Engineering, University of Canterbury, 145–150, https://search.informit.org/doi/epdf/10.3316/informit.929741720399033 (last access: 22 October 2024), 1997. a
Starosolsky, O. and Rakoczi, L.: Operational hydrology report (OHR), 16. Measurement of river sediments: prepared by the Rapporteur on Sediment Transport of the Commission for Hydrology, World Meteorological Organisation, https://library.wmo.int/viewer/33602/#page=1&viewer=picture&o=bookmarks&n=0&q= (last access: 22 October 2024), 1981. a
Szupiany, R. N., Lopez Weibel, C., Guerrero, M., Latosinski, F., Wood, M., Dominguez Ruben, L., and Oberg, K.: Estimating sand concentrations using ADCP-based acoustic inversion in a large fluvial system characterized by bi-modal suspended-sediment distributions, Earth Surf. Processes, 44, 1295–1308, https://doi.org/10.1002/esp.4572, 2019. a, b
Topping, D. J. and Wright, S. A.: Long-term continuous acoustical suspended-sediment measurements in rivers – Theory, application, bias, and error, U.S. Geological Survey Professional Paper 1823, 98 pp., https://doi.org/10.3133/pp1823, 2016. a
Topping, D. J., Rubin, D. M., Wright, S. A., and Melis, T. S.: Field evaluation of the error arising from inadequate time averaging in the standard use of depth-integrating suspended-sediment samplers, US Geological Survey Professional Paper 1774, 95 pp., https://pubs.usgs.gov/pp/1774/pp1774.pdf (last access: 18 February 2024), 2011. a, b, c, d, e
Topping, D. J., Grams, P. E., Griffiths, R. E., Dean, D. J., Wright, A. S., and Unema, J. A.: Self-limitation of sand storage in a bedrock-canyon river arising from the interaction of flow and grain size, J. Geophys. Res.-Earth, 126, e2020JF005565, https://doi.org/10.1029/2020JF005565, 2021. a
U.S. Geological Survey: USGS water data for the Nation:, U.S. Geological Survey National Water Information System database [data set], https://doi.org/10.5066/F7P55KJN, 2023. a
Van Rijn, L. C.: Sediment transport, part II: suspended load transport, J. Hydraul. Eng., 110, 1613–1641, 1984. a
Van Rossum, G. and Drake, F. L.: Python 3 reference manual, CreateSpace, Scotts Valley, CA, 242 pp., ISBN 978-1-4414-1269-0, 2009. a
Vauchel, P., Santini, W., Guyot, J. L., Moquet, J. S., Martinez, J. M., Espinoza, J. C., Baby, P., Fuertes, O., Noriega, L., Puita, O., et al.: A reassessment of the suspended sediment load in the Madeira River basin from the Andes of Peru and Bolivia to the Amazon River in Brazil, based on 10 years of data from the HYBAM monitoring programme, J. Hydrol., 553, 35–48, https://doi.org/10.1016/j.jhydrol.2017.07.018, 2017. a
Venditti, J., Church, M., Attard, M., and Haught, D.: Use of ADCPs for suspended sediment transport monitoring: An empirical approach, Water Resour. Res., 52, 2715–2736, https://doi.org/10.1002/2015WR017348, 2016. a, b
Vergne, A., Le Coz, J., Berni, C., and Pierrefeu, G.: Using a Down-Looking Multifrequency ABS for Measuring Suspended Sediments in Rivers, Water Resour. Res., 56, e2019WR024877, https://doi.org/10.1029/2019WR024877, 2020. a
Vergne, A., Le Coz, J., and Berni, C.: Some Backscatter Modeling Issues Complicating the Sonar-Based Monitoring of Suspended Sediments in Rivers, Water Resour. Res., 59, e2022WR032341, https://doi.org/10.1029/2022WR032341, 2023. a, b
Wren, D., Barkdoll, B., Kuhnle, R., and Derrow, R.: Field techniques for suspended-sediment measurement, J. Hydraul. Eng., 126, 97–104, https://doi.org/10.1061/(ASCE)0733-9429(2000)126:2(97), 2000. a, b
Short summary
Suspended-sand fluxes in rivers vary with time and space, complicating their measurement. The proposed method captures the vertical and lateral variations of suspended-sand concentration throughout a river cross-section. It merges water samples taken at various positions throughout the cross-section with high-resolution acoustic velocity measurements. This is the first method that includes a fully applicable uncertainty estimation; it can easily be applied to any other study sites.
Suspended-sand fluxes in rivers vary with time and space, complicating their measurement. The...