Articles | Volume 12, issue 6
https://doi.org/10.5194/esurf-12-1243-2024
https://doi.org/10.5194/esurf-12-1243-2024
Research article
 | 
05 Nov 2024
Research article |  | 05 Nov 2024

River suspended-sand flux computation with uncertainty estimation using water samples and high-resolution ADCP measurements

Jessica Marggraf, Guillaume Dramais, Jérôme Le Coz, Blaise Calmel, Benoît Camenen, David J. Topping, William Santini, Gilles Pierrefeu, and François Lauters

Related authors

A comprehensive uncertainty framework for historical flood frequency analysis: a 500-year-long case study
Mathieu Lucas, Michel Lang, Benjamin Renard, and Jérôme Le Coz
Hydrol. Earth Syst. Sci., 28, 5031–5047, https://doi.org/10.5194/hess-28-5031-2024,https://doi.org/10.5194/hess-28-5031-2024, 2024
Short summary
Technical Note: Operational calibration and performance improvement for hydrodynamic models in data-scarce coastal areas
Francisco Rodrigues do Amaral, Benoît Camenen, Tin Nguyen Trung, Tran Anh Tu, Thierry Pellarin, and Nicolas Gratiot
EGUsphere, https://doi.org/10.5194/egusphere-2024-1563,https://doi.org/10.5194/egusphere-2024-1563, 2024
Short summary
Concentrations and fluxes of suspended particulate matter and associated contaminants in the Rhône River from Lake Geneva to the Mediterranean Sea
Hugo Lepage, Alexandra Gruat, Fabien Thollet, Jérôme Le Coz, Marina Coquery, Matthieu Masson, Aymeric Dabrin, Olivier Radakovitch, Jérôme Labille, Jean-Paul Ambrosi, Doriane Delanghe, and Patrick Raimbault
Earth Syst. Sci. Data, 14, 2369–2384, https://doi.org/10.5194/essd-14-2369-2022,https://doi.org/10.5194/essd-14-2369-2022, 2022
Short summary
Estimation bayésienne des courbes de tarage et des incertitudes associées : application de la méthode BaRatin au Congo à Brazzaville
Jérôme Le Coz, Guy D. Moukandi N'kaya, Jean-Pierre Bricquet, Alain Laraque, and Benjamin Renard
Proc. IAHS, 384, 25–29, https://doi.org/10.5194/piahs-384-25-2021,https://doi.org/10.5194/piahs-384-25-2021, 2021
An index concentration method for suspended load monitoring in large rivers of the Amazonian foreland
William Santini, Benoît Camenen, Jérôme Le Coz, Philippe Vauchel, Jean-Loup Guyot, Waldo Lavado, Jorge Carranza, Marco A. Paredes, Jhonatan J. Pérez Arévalo, Nore Arévalo, Raul Espinoza Villar, Frédéric Julien, and Jean-Michel Martinez
Earth Surf. Dynam., 7, 515–536, https://doi.org/10.5194/esurf-7-515-2019,https://doi.org/10.5194/esurf-7-515-2019, 2019
Short summary

Related subject area

Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Automatic detection of floating instream large wood in videos using deep learning
Janbert Aarnink, Tom Beucler, Marceline Vuaridel, and Virginia Ruiz-Villanueva
Earth Surf. Dynam., 13, 167–189, https://doi.org/10.5194/esurf-13-167-2025,https://doi.org/10.5194/esurf-13-167-2025, 2025
Short summary
Investigating uncertainty and parameter sensitivity in bedform analysis by using a Monte Carlo approach
Julius Reich and Axel Winterscheid
Earth Surf. Dynam., 13, 191–217, https://doi.org/10.5194/esurf-13-191-2025,https://doi.org/10.5194/esurf-13-191-2025, 2025
Short summary
Geomorphic imprint of high-mountain floods: insights from the 2022 hydrological extreme across the upper Indus River catchment in the northwestern Himalayas
Abhishek Kashyap, Kristen L. Cook, and Mukunda Dev Behera
Earth Surf. Dynam., 13, 147–166, https://doi.org/10.5194/esurf-13-147-2025,https://doi.org/10.5194/esurf-13-147-2025, 2025
Short summary
A numerical model for duricrust formation by water table fluctuations
Caroline Fenske, Jean Braun, François Guillocheau, and Cécile Robin
Earth Surf. Dynam., 13, 119–146, https://doi.org/10.5194/esurf-13-119-2025,https://doi.org/10.5194/esurf-13-119-2025, 2025
Short summary
Width evolution of channel belts as a random walk
Jens M. Turowski, Fergus McNab, Aaron Bufe, and Stefanie Tofelde
Earth Surf. Dynam., 13, 97–117, https://doi.org/10.5194/esurf-13-97-2025,https://doi.org/10.5194/esurf-13-97-2025, 2025
Short summary

Cited articles

Armijos, E., Crave, A., Espinoza, R., Fraizy, P., Santos, A. D., Sampaio, F., De Oliveira, E., Santini, W., Martinez, J., Autin, P., Pantoja, N., Oliveira, M., and Filizola, N.: Measuring and modeling vertical gradients in suspended sediments in the Solimões /Amazon River, Hydrol. Process., 31, 654–667, https://doi.org/10.1002/hyp.11059, 2017. a
ASTM D3977: Standard test method for determining sediment concentration in water samples, ASTM International, https://doi.org/10.1520/D3977-97R19, 2007. a
Boldt, J. A.: From mobile ADCP to high-resolution SSC: a cross-section calibration tool, in: 3rd Joint Federal Interagency Conference on Sedimentation and Hydrologic Modeling, Reno, Nevada, 19–23 April 2015, 1258–1260, https://water.usgs.gov/osw/SALT/documents/189_Boldt.pdf (last access: 22 October 2024), 2015. a
Bouchez, J., Métivier, F., Lupker, M., Maurice, L., Perez, M., Gaillardet, J., and France-Lanord, C.: Prediction of depth-integrated fluxes of suspended sediment in the Amazon River: Particle aggregation as a complicating factor, Hydrol. Process., 25, 778–794, https://doi.org/10.1002/hyp.7868, 2011. a, b
Camenen, B.: Simple and general formula for the settling velocity of particles, J. Hydraul. Eng., 133, 229–233, 2007. a
Download
Short summary
Suspended-sand fluxes in rivers vary with time and space, complicating their measurement. The proposed method captures the vertical and lateral variations of suspended-sand concentration throughout a river cross-section. It merges water samples taken at various positions throughout the cross-section with high-resolution acoustic velocity measurements. This is the first method that includes a fully applicable uncertainty estimation; it can easily be applied to any other study sites.
Share