Articles | Volume 12, issue 2
https://doi.org/10.5194/esurf-12-493-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-12-493-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A physics-based model for fluvial valley width
Jens Martin Turowski
CORRESPONDING AUTHOR
Helmholtz Zentrum Potsdam, GeoForschungsZentrum (GFZ) Potsdam, Potsdam, Germany
Aaron Bufe
Helmholtz Zentrum Potsdam, GeoForschungsZentrum (GFZ) Potsdam, Potsdam, Germany
Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Munich, Germany
Stefanie Tofelde
Institute of Geosciences, University of Potsdam, Potsdam, Germany
now at: Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
Related authors
Claire C. Masteller, Joel P. L. Johnson, Dieter Rickenmann, and Jens M. Turowski
Earth Surf. Dynam., 13, 593–605, https://doi.org/10.5194/esurf-13-593-2025, https://doi.org/10.5194/esurf-13-593-2025, 2025
Short summary
Short summary
This paper presents a novel model that predicts how gravel riverbeds may evolve in response to differences in the frequency and severity of flood events. We test our model using a 23-year-long record of river flow and gravel transport from the Swiss Prealps. We find that our model reliably captures yearly patterns in gravel transport in this setting. Our new model is a major advance towards better predictions of river erosion that account for the flood history of a gravel-bed river.
Fergus McNab, Taylor F. Schildgen, Jens Martin Turowski, and Andrew D. Wickert
EGUsphere, https://doi.org/10.5194/egusphere-2025-2468, https://doi.org/10.5194/egusphere-2025-2468, 2025
Short summary
Short summary
Alluvial rivers form networks, but many concepts we use to analyse their long-term evolution derive from models that treat them as single streams. We develop a model including tributary interactions and show that, while patterns of sediment output can be similar for network and single-segment models, complex signal propagation affects aggradation and incision within networks. We argue that understanding a specific catchment's evolution requires a model with its specific network structure.
Matanya Hamawi, Joel P. L. Johnson, Susan Bilek, Jens M. Turowski, and John B. Laronne
EGUsphere, https://doi.org/10.5194/egusphere-2025-591, https://doi.org/10.5194/egusphere-2025-591, 2025
This preprint is open for discussion and under review for Earth Surface Dynamics (ESurf).
Short summary
Short summary
Water level suddenly rises during flash floods in dry regions having a distinct impact on bedload – large sediment rolling and saltating on the riverbed. Using sensor-equipped pebbles and seismic monitoring in a field setting, we demonstrate that bedload activity is very high in both shallow and deep sudden flows. These findings can help improve bedload transport models, particularly when using seismic sensors, by providing new insights into bedload dynamics.
Jens M. Turowski, Fergus McNab, Aaron Bufe, and Stefanie Tofelde
Earth Surf. Dynam., 13, 97–117, https://doi.org/10.5194/esurf-13-97-2025, https://doi.org/10.5194/esurf-13-97-2025, 2025
Short summary
Short summary
Channel belts comprise the area affected by a river due to lateral migration and floods. As a landform, they affect water resources and flood hazard, and they often host unique ecological communities. We develop a model describing the evolution of channel-belt area over time. The model connects the behaviour of the river to the evolution of the channel belt over a timescale of centuries. A comparison to selected data from experiments and real river systems verifies the random walk approach.
Sophia Dosch, Niels Hovius, Marisa Repasch, Joel Scheingross, Jens M. Turowski, Stefanie Tofelde, Oliver Rach, and Dirk Sachse
Earth Surf. Dynam., 12, 907–927, https://doi.org/10.5194/esurf-12-907-2024, https://doi.org/10.5194/esurf-12-907-2024, 2024
Short summary
Short summary
The transport of plant debris in rivers is an important part of the global carbon cycle and influences atmospheric carbon levels through time. We sampled plant debris at the bed of a lowland river and determined the sources as it is transported hundreds of kilometers. Plant debris can persist at the riverbed, but mechanical breakdown reduces its amount, and it is only a small fraction compared to the suspended load. This plant debris and transport patterns need further investigation globally.
Chuanqi He, Ci-Jian Yang, Jens M. Turowski, Richard F. Ott, Jean Braun, Hui Tang, Shadi Ghantous, Xiaoping Yuan, and Gaia Stucky de Quay
Earth Syst. Sci. Data, 16, 1151–1166, https://doi.org/10.5194/essd-16-1151-2024, https://doi.org/10.5194/essd-16-1151-2024, 2024
Short summary
Short summary
The shape of drainage basins and rivers holds significant implications for landscape evolution processes and dynamics. We used a global 90 m resolution topography to obtain ~0.7 million drainage basins with sizes over 50 km2. Our dataset contains the spatial distribution of drainage systems and their morphological parameters, supporting fields such as geomorphology, climatology, biology, ecology, hydrology, and natural hazards.
Jens M. Turowski, Gunnar Pruß, Anne Voigtländer, Andreas Ludwig, Angela Landgraf, Florian Kober, and Audrey Bonnelye
Earth Surf. Dynam., 11, 979–994, https://doi.org/10.5194/esurf-11-979-2023, https://doi.org/10.5194/esurf-11-979-2023, 2023
Short summary
Short summary
Rivers can cut into rocks, and their strength modulates the river's erosion rates. Yet, which properties of the rock control its response to erosive action is poorly understood. Here, we describe parallel experiments to measure rock erosion rates under fluvial impact erosion and the rock's geotechnical properties such as fracture strength, elasticity, and density. Erosion rates vary over a factor of a million between different rock types. We use the data to improve current theory.
Ci-Jian Yang, Pei-Hao Chen, Erica D. Erlanger, Jens M. Turowski, Sen Xu, Tse-Yang Teng, Jiun-Chuan Lin, and Jr-Chuang Huang
Earth Surf. Dynam., 11, 475–486, https://doi.org/10.5194/esurf-11-475-2023, https://doi.org/10.5194/esurf-11-475-2023, 2023
Short summary
Short summary
Observations of the interaction between extreme physical erosion and chemical weathering dynamics are limited. We presented major elements of stream water in the badland catchment at 3 h intervals during a 3 d typhoon. The excess sodium in the evaporite deposits causes material dispersion through deflocculation, which enhances the suspended sediment flux. Moreover, we observed a shift from predominantly evaporite weathering at peak precipitation to silicate weathering at peak discharge.
Odin Marc, Jens M. Turowski, and Patrick Meunier
Earth Surf. Dynam., 9, 995–1011, https://doi.org/10.5194/esurf-9-995-2021, https://doi.org/10.5194/esurf-9-995-2021, 2021
Short summary
Short summary
The size of grains delivered to rivers is an essential parameter for understanding erosion and sediment transport and their related hazards. In mountains, landslides deliver these rock fragments, but few studies have analyzed the landslide properties that control the resulting sizes. We present measurements on 17 landslides from Taiwan and show that their grain sizes depend on rock strength, landslide depth and drop height, thereby validating and updating a previous theory on fragmentation.
Claire C. Masteller, Joel P. L. Johnson, Dieter Rickenmann, and Jens M. Turowski
Earth Surf. Dynam., 13, 593–605, https://doi.org/10.5194/esurf-13-593-2025, https://doi.org/10.5194/esurf-13-593-2025, 2025
Short summary
Short summary
This paper presents a novel model that predicts how gravel riverbeds may evolve in response to differences in the frequency and severity of flood events. We test our model using a 23-year-long record of river flow and gravel transport from the Swiss Prealps. We find that our model reliably captures yearly patterns in gravel transport in this setting. Our new model is a major advance towards better predictions of river erosion that account for the flood history of a gravel-bed river.
Fergus McNab, Taylor F. Schildgen, Jens Martin Turowski, and Andrew D. Wickert
EGUsphere, https://doi.org/10.5194/egusphere-2025-2468, https://doi.org/10.5194/egusphere-2025-2468, 2025
Short summary
Short summary
Alluvial rivers form networks, but many concepts we use to analyse their long-term evolution derive from models that treat them as single streams. We develop a model including tributary interactions and show that, while patterns of sediment output can be similar for network and single-segment models, complex signal propagation affects aggradation and incision within networks. We argue that understanding a specific catchment's evolution requires a model with its specific network structure.
Matanya Hamawi, Joel P. L. Johnson, Susan Bilek, Jens M. Turowski, and John B. Laronne
EGUsphere, https://doi.org/10.5194/egusphere-2025-591, https://doi.org/10.5194/egusphere-2025-591, 2025
This preprint is open for discussion and under review for Earth Surface Dynamics (ESurf).
Short summary
Short summary
Water level suddenly rises during flash floods in dry regions having a distinct impact on bedload – large sediment rolling and saltating on the riverbed. Using sensor-equipped pebbles and seismic monitoring in a field setting, we demonstrate that bedload activity is very high in both shallow and deep sudden flows. These findings can help improve bedload transport models, particularly when using seismic sensors, by providing new insights into bedload dynamics.
Jens M. Turowski, Fergus McNab, Aaron Bufe, and Stefanie Tofelde
Earth Surf. Dynam., 13, 97–117, https://doi.org/10.5194/esurf-13-97-2025, https://doi.org/10.5194/esurf-13-97-2025, 2025
Short summary
Short summary
Channel belts comprise the area affected by a river due to lateral migration and floods. As a landform, they affect water resources and flood hazard, and they often host unique ecological communities. We develop a model describing the evolution of channel-belt area over time. The model connects the behaviour of the river to the evolution of the channel belt over a timescale of centuries. A comparison to selected data from experiments and real river systems verifies the random walk approach.
Elizabeth N. Orr, Taylor F. Schildgen, Stefanie Tofelde, Hella Wittmann, and Ricardo N. Alonso
Earth Surf. Dynam., 12, 1391–1413, https://doi.org/10.5194/esurf-12-1391-2024, https://doi.org/10.5194/esurf-12-1391-2024, 2024
Short summary
Short summary
Fluvial terraces and alluvial fans in the Toro Basin, NW Argentina, record river evolution and global climate cycles over time. Landform dating reveals lower-frequency climate cycles (100 kyr) preserved downstream and higher-frequency cycles (21/40 kyr) upstream, supporting theoretical predications that longer rivers filter out higher-frequency climate signals. This finding improves our understanding of the spatial distribution of sedimentary paleoclimate records within landscapes.
Sophia Dosch, Niels Hovius, Marisa Repasch, Joel Scheingross, Jens M. Turowski, Stefanie Tofelde, Oliver Rach, and Dirk Sachse
Earth Surf. Dynam., 12, 907–927, https://doi.org/10.5194/esurf-12-907-2024, https://doi.org/10.5194/esurf-12-907-2024, 2024
Short summary
Short summary
The transport of plant debris in rivers is an important part of the global carbon cycle and influences atmospheric carbon levels through time. We sampled plant debris at the bed of a lowland river and determined the sources as it is transported hundreds of kilometers. Plant debris can persist at the riverbed, but mechanical breakdown reduces its amount, and it is only a small fraction compared to the suspended load. This plant debris and transport patterns need further investigation globally.
Chuanqi He, Ci-Jian Yang, Jens M. Turowski, Richard F. Ott, Jean Braun, Hui Tang, Shadi Ghantous, Xiaoping Yuan, and Gaia Stucky de Quay
Earth Syst. Sci. Data, 16, 1151–1166, https://doi.org/10.5194/essd-16-1151-2024, https://doi.org/10.5194/essd-16-1151-2024, 2024
Short summary
Short summary
The shape of drainage basins and rivers holds significant implications for landscape evolution processes and dynamics. We used a global 90 m resolution topography to obtain ~0.7 million drainage basins with sizes over 50 km2. Our dataset contains the spatial distribution of drainage systems and their morphological parameters, supporting fields such as geomorphology, climatology, biology, ecology, hydrology, and natural hazards.
Jens M. Turowski, Gunnar Pruß, Anne Voigtländer, Andreas Ludwig, Angela Landgraf, Florian Kober, and Audrey Bonnelye
Earth Surf. Dynam., 11, 979–994, https://doi.org/10.5194/esurf-11-979-2023, https://doi.org/10.5194/esurf-11-979-2023, 2023
Short summary
Short summary
Rivers can cut into rocks, and their strength modulates the river's erosion rates. Yet, which properties of the rock control its response to erosive action is poorly understood. Here, we describe parallel experiments to measure rock erosion rates under fluvial impact erosion and the rock's geotechnical properties such as fracture strength, elasticity, and density. Erosion rates vary over a factor of a million between different rock types. We use the data to improve current theory.
Ci-Jian Yang, Pei-Hao Chen, Erica D. Erlanger, Jens M. Turowski, Sen Xu, Tse-Yang Teng, Jiun-Chuan Lin, and Jr-Chuang Huang
Earth Surf. Dynam., 11, 475–486, https://doi.org/10.5194/esurf-11-475-2023, https://doi.org/10.5194/esurf-11-475-2023, 2023
Short summary
Short summary
Observations of the interaction between extreme physical erosion and chemical weathering dynamics are limited. We presented major elements of stream water in the badland catchment at 3 h intervals during a 3 d typhoon. The excess sodium in the evaporite deposits causes material dispersion through deflocculation, which enhances the suspended sediment flux. Moreover, we observed a shift from predominantly evaporite weathering at peak precipitation to silicate weathering at peak discharge.
Aaron Bufe, Kristen L. Cook, Albert Galy, Hella Wittmann, and Niels Hovius
Earth Surf. Dynam., 10, 513–530, https://doi.org/10.5194/esurf-10-513-2022, https://doi.org/10.5194/esurf-10-513-2022, 2022
Short summary
Short summary
Erosion modulates Earth's carbon cycle by exposing a variety of lithologies to chemical weathering. We measured water chemistry in streams on the eastern Tibetan Plateau that drain either metasedimentary or granitoid rocks. With increasing erosion, weathering shifts from being a CO2 sink to being a CO2 source for both lithologies. However, metasedimentary rocks typically weather 2–10 times faster than granitoids, with implications for the role of lithology in modulating the carbon cycle.
Odin Marc, Jens M. Turowski, and Patrick Meunier
Earth Surf. Dynam., 9, 995–1011, https://doi.org/10.5194/esurf-9-995-2021, https://doi.org/10.5194/esurf-9-995-2021, 2021
Short summary
Short summary
The size of grains delivered to rivers is an essential parameter for understanding erosion and sediment transport and their related hazards. In mountains, landslides deliver these rock fragments, but few studies have analyzed the landslide properties that control the resulting sizes. We present measurements on 17 landslides from Taiwan and show that their grain sizes depend on rock strength, landslide depth and drop height, thereby validating and updating a previous theory on fragmentation.
Cited articles
Abdrakhmatov, K. Y., Aldazhanov, S. A., Hager, B. H., Hamburger, M. W., Herring, T. A., Kalabaev, K. B., Makarov, V. I., Molnar, P., Panasyuk, S. V., Prilepin, M. T., Reilinger, R. E., Sadybakasov, I. S., Souter, B. J., Trapeznikov, Y. A., Tsurkov, V. Y., and Zubovich, A. V.: Relatively recent construction of the Tian Shan inferred from GPS measurements of present-day crustal deformation rates, Nature, 384, 450–453, https://doi.org/10.1038/384450a0, 1996.
Appledorn, M. v., Baker, M. E., and Miller, A. J.: River-valley morphology, basin size, and flow-event magnitude interact to produce wide variation in flooding dynamics, Ecosphere, 10, e02546, https://doi.org/10.1002/ecs2.2546, 2019.
Avouac, J. P., Tapponnier, P., Bai, P., You, M., and Wang G.: Active thrusting and folding along the northern Tien Shan and Late Cenozoic rotation of the Tarim relative to Dzungaria and Kazakhstan, J. Geophys. Res.-Sol. Ea., 4, 11791–11808, https://doi.org/10.1029/92JB01963, 1993.
Baker, M. E. and Wiley, M. J.: Multiscale control of flooding and riparian-forest composition in Lower Michigan, USA, Ecology, 90, 145–159, https://doi.org/10.1890/07-1242.1, 2009.
Barnhart, K. R., Hutton, E. W. H., Tucker, G. E., Gasparini, N. M., Istanbulluoglu, E., Hobley, D. E. J., Lyons, N. J., Mouchene, M., Nudurupati, S. S., Adams, J. M., and Bandaragoda, C.: Short communication: Landlab v2.0: a software package for Earth surface dynamics, Earth Surf. Dynam., 8, 379–397, https://doi.org/10.5194/esurf-8-379-2020, 2020.
Beeson, H. W., Flitcroft, R. L, Fonstad, M. A., and Roering, J. J.: Deep-seated landslides drive variability in valley width and increase connectivity of salmon habitat in the Oregon Coast Range, Am. Wat. Res., 54, 1325–1340, https://doi.org/10.1111/1752-1688.12693, 2018.
Blöthe, J. H., Munack, H., Korup, O., Fülling, A., Garzanti, E., Resentini, A., and Kubik, P. W.: Late quaternary valley infill and dissection in the Indus River, western Tibetan, Plateau margin, Quaternary Sci. Rev., 94, 102–119, https://doi.org/10.1016/j.quascirev.2014.04.011, 2014.
Blum, M. D. and Törnqvist, T. E.: Fluvial responses to climate and sea-level change: A review and look forward, Sedimentology, 47, 2–48, https://doi.org/10.1046/j.1365-3091.2000.00008.x, 2000.
Bridgland, D. and Westaway, R.: Climatically controlled river terrace staircases: A worldwide Quaternary phenomenon, Geomorphology, 98, 285–315, https://doi.org/10.1016/j.geomorph.2006.12.032, 2008.
Brocard, G. Y. and Van der Beek, P. A.: Influence of incision rate, rock strength, and bedload supply on bedrock river gradients and valley-flat widths: Field-based evidence and calibrations from western Alpine rivers (southeast France), in: Tectonics, Climate, and Landscape Evolution, edited by: Willett, S. D.,Hovius, N., Brandon, M. T., and Fisher, D. M., Vol. 398, Special Papers, Geological Society of America, 101–126, https://doi.org/10.1130/2006.2398(07), 2006.
Bufe, A., Paola, C., and Burbank, D. W.: Fluvial bevelling of topography controlled by lateral channel mobility and uplift rate, Nat. Geosci., 9, 706–710, https://doi.org/10.1038/ngeo2773, 2016a.
Bufe, A., Burbank, D. W., and Paola, C.: Fold erosion by an antecedent river, University of Michigan ARC Repository [data set], https://doi.org/10.5967/M0CF9N3H, 2016b.
Bufe, A., Bekaert, D. P. S., Hussain, E., Bookhagen, B., Burbank, D. W., Thompson Jobe, J. A., Chen, J., Li, T., Liu, L., and Gan, W.: Temporal changes in rock uplift rates of folds in the foreland of the Tian Shan and the Pamir from geodetic and geologic data, Geophys. Res. Lett., 44, 10977–10987, https://doi.org/10.1002/2017GL073627, 2017a.
Bufe, A., Burbank, D. W., Liu, L., Bookhagen, B., Qin, J., Chen, J., Li, T., Thompson Jobe, J. A., and Yang, H.: Variations of Lateral Bedrock Erosion Rates Control Planation of Uplifting Folds in the Foreland of the Tian Shan, NW China, J. Geophys. Res.-Earth, 122, 2431–2467, https://doi.org/10.1002/2016JF004099, 2017b.
Bufe, A., Turowski, J. M., Burbank, D. W., Paola, C., Wickert, A. D., and Tofelde, S.: Controls on the lateral channel-migration rate of braided channel systems in coarse non-cohesive sediment, Earth Surf. Proc. Land., 44, 2823–2836, https://doi.org/10.1002/esp.4710, 2019.
Bursztyn, N., Pederson, J. L., Tressler, C., Mackley, R. D., and Mitchell, K. J.: rock strength along a fluvial transect of the Colorado Plateau – quantifying a fundamental control on geomorphology, Earth Planet. Sc. Lett., 429, 90–100, https://doi.org/10.1016/j.epsl.2015.07.042, 2015.
Chen, J., Heermance, R., Burbank, D. W., Scharer, K. M., Miao, J., and Wang, C.: Quantification of growth and lateral propagation of the Kashi anticline, southwest Chinese Tian Shan, J. Geophys. Res.-Sol. Ea., 112, B03S16, https://doi.org/10.1029/2006JB004345, 2007.
Clubb, F. J., Weir, E. F., and Mudd, S. M.: Continuous measurements of valley floor width in mountainous landscapes, Earth Surf. Dynam., 10, 437–456, https://doi.org/10.5194/esurf-10-437-2022, 2022.
Clubb, F., Mudd, S., Schildgen, T., van der Beek, P., Devrani, R., and Sinclair, H.: Himalayan valley-floor widths controlled by tectonically driven exhumation, Nat. Geosci., 16, 739–746, https://doi.org/10.1038/s41561-023-01238-8, 2023a.
Clubb, F., Mudd, S., Schildgen, T., van der Beek, P., Devrani, R., and Sinclair, H.: Valley-floor widths across the Himalayan orogen, Durham University [data set], https://doi.org/10.15128/r2z890rt27d, 2023b.
Constantine, J. A., Dunne, T., Ahmed, J., Legleiter, C., and Lazarus, E. D.: Sediment supply as a driver of river meandering and floodplain evolution in the Amazon Basin, Nat. Geosci., 7, 899–903, https://doi.org/10.1038/ngeo2282, 2014.
Cook, K. L., Turowski, J. M., and Hovius, N.: River gorge eradication by downstream sweep erosion, Nat. Geosci., 7, 682–686, https://doi.org/10.1038/ngeo2224, 2014.
Cook, K. L., Andermann, C., Gimbert, F., Adhikari, B. R., and Hovius, N.: Glacial lake outburst floods as drivers of fluvial erosion in the Himalaya, Science, 362, 53–57, https://doi.org/10.1126/science.aat4981, 2018.
Cruden, D. M. Lu, Z.-Y., and Thomson, S.: The 1939 Montagneuse River landslide, Alberta, Can. Geotech. J., 34, 799–810, https://doi.org/10.1139/t97-035, 1997.
Dunne, T., Constantine, J. A., and Singer, M.: The role of sediment transport and sediment supply in the evolution of river channel and floodplain complexity. Transactions – Japanese Geomorphological Union, 31, 155–170, 2010.
Ehlen, J. and Wohl., E.: Joints and landform evolution in bedrock canyons, Transactions, Japanese Geomorphological Union, 23, 237–255, 2002.
Fan, M., Xu, J., Chen, Y., and Li, W.: Simulating the precipitation in the data-scarce Tianshan Mountains, Northwest China based on the Earth system data products, Arab. J. Geosci., 13, 637, https://doi.org/10.1007/s12517-020-05509-1, 2020.
Ferguson, R. I.: Hydraulics and hydraulic geometry, Prog. Phys. Geog., 10, 1–31, https://doi.org/10.1177/030913338601000101, 1986.
Fotherby, L. M.: Valley confinement as a factor of braided river pattern for the Platte River, Geomorphology, 103, 562–576, https://doi.org/10.1016/j.geomorph.2008.08.001, 2009.
Gailleton, B., Malatesta, L. C., Cordonnier, G., and Braun, J.: CHONK 1.0: landscape evolution framework: cellular automata meets graph theory, Geosci. Model Dev., 17, 71–90, https://doi.org/10.5194/gmd-17-71-2024, 2024.
Gasparini, N. M., Whipple, K. X., and Bras, R. L.: Predictions of steady state and transient landscape morphology using sediment-flux-dependent river incision models, J. Geophys. Res., 112, F03S09, https://doi.org/10.1029/2006JF000567, 2007.
Gleason, C. J.: Hydraulic geometry of natural rivers: A review and future directions, Prog. Phys. Geog., 39, 337–360, https://doi.org/10.1177/0309133314567584, 2015.
Gong, Z., Li, S.-H., and Li, B: The evolution of a terrace sequence along the Manas River in the northern foreland basin of Tian Shan, China, as inferred from optical dating, Geomorphology, 213, 201–212, https://doi.org/10.1016/j.geomorph.2014.01.009, 2014.
Grant, G. E. and Swanson, F. J.: Morphology and processes of valley floors in mountain streams, western Cascades, Oregon, in: Natural and Anthropomorphic Influences in Fluvial Geomorphology, edited by: Costa, J. E., Miller, A. J., Potter, K. W., and Wilcock, P. R., Geophysical Monograph, 89, American Geophysical Union, Washington, DC, 83–101, https://doi.org/10.1029/GM089p0083, 1995.
Hancock, G. S. and Anderson, R. S.: Numerical modeling of fluvial strath-terrace formation in response to oscillating climate, B. Geol. Soc. Am., 114, 1131–1142, https://doi.org/10.1130/0016-7606(2002)114<1131:NMOFST>2.0.CO;2, 2002.
Harbor, J. M.: Numerical modeling of the development of U-shaped valleys by glacial erosion, Geol. Soc. Am. Bull., 104, 1364–1375, https://doi.org/10.1130/0016-7606(1992)104<1364:NMOTDO>2.3.CO;2, 1992.
Harel, E., Goren, L., Crouvi, O., Ginat, H., and Shelef, E.: Drainage reorganization induces deviations in the scaling between valley width and drainage area, Earth Surf. Dynam., 10, 875–894, https://doi.org/10.5194/esurf-10-875-2022, 2022.
Heermance, R. V., Chen, J., Burbank, D. W., and Wang, C.: Chronology and tectonic controls of Late Tertiary deposition in the southwestern Tian Shan foreland, NW China, Basin Res., 19, 599–632, https://doi.org/10.1111/j.1365-2117.2007.00339.x, 2007.
Heermance, R. V., Chen, J., Burbank, D. W., and Miao, J.: Temporal constraints and pulsed Late Cenozoic deformation during the structural disruption of the active Kashi foreland, northwest China, Tectonics, 27, TC6012, https://doi.org/10.1029/2007TC002226, 2008.
Heimann, F. U. M., Rickenmann, D., Turowski, J. M., and Kirchner, J. W.: sedFlow – a tool for simulating fractional bedload transport and longitudinal profile evolution in mountain streams, Earth Surf. Dynam., 3, 15–34, https://doi.org/10.5194/esurf-3-15-2015, 2015.
Hillier, J. K., Bunbury, J. M., and Graham, A.: Monuments on a migrating Nile, J. Archaeol. Sci., 34, 1011–1015, https://doi.org/10.1016/j.jas.2006.09.011, 2007.
Hodges, K. V., Wbous, C., Ruhl, K., Schildgen, T., and Whipple, K.: Quaternary deformation, river steepening, and heavy precipitation at the front of the Higher Himalayan ranges, Earth Planet. Sc. Lett., 220, 379–389, https://doi.org/10.1016/S0012-821X(04)00063-9, 2004.
Howard, A. D.: A detachment-limited model of drainage basin evolution, Water Resour. Res., 30, 2261–2285, https://doi.org/10.1029/94WR00757, 1994.
Hubert-Ferrari, A., Suppe, J., Gonzalez-Mieres, R., and Wang, X.: Mechanisms of active folding of the landscape (southern Tian Shan, China), J. Geophys. Res., 112, B03S09, https://doi.org/10.1029/2006JB004362, 2007.
Humphrey, N. F. and Konrad, S. K.: River incision or diversion in response to bedrock uplift, Geology, 28, 43–46, https://doi.org/10.1130/0091-7613(2000)28<43:RIODIR>2.0.CO;2, 2000.
Hupp, C. R.: Stream-grade variation and riparian-forest ecology along Passage Creek, Virginia, B. Torrey Bot. Club, 109, 488–499, https://doi.org/10.2307/2996489, 1982.
Ielpi, A. and Lapôtre, M. G. A.: A tenfold slowdown in river meander migration driven by plant life, Nat. Geosci., 13, 82–86, https://doi.org/10.1038/s41561-019-0491-7, 2019.
Johnson, K. N. and Finnegan, N. J.: A lithologic control on active meandering in bedrock channels, Geol. Soc. Am. Bull., 127, 1766–1776, https://doi.org/10.1130/B31184.1, 2015.
Jonell, T. N., Owen, L. A., Carter, A., Schwenniger, J.-L., and Clift, P. D.: Quantifying episodic erosion and transient storage on the western margin of the Tibetan Plateau, upper Indus River, Quaternary Res., 89, 281–306, https://doi.org/10.1017/qua.2017.92, 2018.
Keen-Zebert, A., Hudson, M. R., Shepherd, S. L., and Thaler, E. A.: The effect of lithology on valley width, terrace distribution, and bedload provenance in a tectonically stable catchment with flat-lying stratigraphy, Earth Surf. Proc. Land., 42, 1573–1587, https://doi.org/10.1002/esp.4116, 2017.
Kirby, E. and Whipple, K.: Quantifying differential rock-uplift rates via stream profile analysis, Geology, 29, 415–418, 2001.
Kirby, E. and Whipple, K.: Expression of active tectonics in erosional landscapes, J. Struct. Geol., 44, 54–75, https://doi.org/10.1016/j.jsg.2012.07.009, 2012.
Korup, O.: Rock-slope failure and the river long profile, Geology, 34, 45–48, https://doi.org/10.1130/G21959.1, 2006.
Krautblatter, M. and Moore, J. R.: Rock slope instability and erosion: toward improved process understanding. Earth Surf. Proc. Land., 39, 1273–1278, https://doi.org/10.1002/esp.3578, 2014.
Lague, D.: The stream power river incision model: evidence, theory and beyond, Earth Surf. Proc. Land., 39, 38–61, https://doi.org/10.1002/esp.3462, 2014.
Lamb, M. P. and Fonstad, M. A.: Rapid formation of a modern bedrock canyon by a single flood event, Nat. Geosci., 3, 477–481, https://doi.org/10.1038/ngeo894, 2010.
Langston, A. L. and Robertson, C. H.: Wide bedrock valley development and sensitivity to environmental perturbations: Insights from flume experiments in erodible bedrock, Earth Surf. Proc. Land., 48, 3041–3058, https://doi.org/10.1002/esp.5680, 2023.
Langston, A. L. and Temme, A. J. A. M.: Impacts of lithologically controlled mechanisms on downstream bedrock valley widening. Geophys. Res. Lett., 46, 12056–12064, https://doi.org/10.1029/2019GL085164, 2019.
Langston, A. L. and Tucker, G. E.: Developing and exploring a theory for the lateral erosion of bedrock channels for use in landscape evolution models, Earth Surf. Dynam., 6, 1–27, https://doi.org/10.5194/esurf-6-1-2018, 2018.
Lavé, J. and Avouac, J. P.: Fluvial incision and tectonic uplift across the Himalayas of central Nepal, J. Geophys. Res.-Sol. Ea., 106, 26526–26591, https://doi.org/10.1029/2001JB000359, 2001.
Lenard, J. P. S., Lavé, J., France-Lanord, C., Aumaître, G., Bourlès, D. L., and Keddadouche, K.: Steady erosion rates in the Himalayas through late Cenozoic climatic changes, Nat. Geosci., 13, 448–452, https://doi.org/10.1038/s41561-020-0585-2, 2020.
Leopold, L. B. and Maddock, T.: The hydraulic geometry of stream channels and some physiographic implications, USGS Professional Paper 252, https://doi.org/10.3133/pp252, 1953.
Li, T., Chen, J., Thompson, J. A., Burbank, D. W., and Xiao, W.: Equivalency of geologic and geodetic rates in contractional orogens: New insights from the Pamir Frontal Thrust, Geophys. Res. Lett., 39, L15305, https://doi.org/10.1029/2012GL051782, 2012.
Li, T., Chen, J., Thompson, J. A., Burbank, D. W., and Yang, X.: Quantification of three-dimensional folding using fluvial terraces: A case study from the Mushi anticline, northern margin of the Chinese Pamir, J. Geophys. Res.-Sol. Ea., 118, 4628–4647, https://doi.org/10.1002/jgrb.50316, 2013.
Li, T., Chen, J., Thompson, J. A., Burbank, D. W., and Yang, H.: Hinge-migrated fold-scarp model based on an analysis of bed geometry: A study from the Mingyaole anticline, southern foreland of Chinese Tian Shan, J. Geophys. Res.-Sol. Ea., 120, 6592–6613, https://doi.org/10.1002/2015JB012102, 2015.
Lifton, Z. M., Thackray, G. D., Van Kirk, R., and Glenn, N. F.: Influence of rock strength on the valley morphometry of Big Creek, central Idaho, USA, Geomorphology, 111, 173–181, https://doi.org/10.1016/j.geomorph.2009.04.014, 2009.
Limaye, A. B. S.: How do braided rivers grow channel belts?, J. Geophys. Res.-Earth, 125, 1–24, https://doi.org/10.1029/2020JF005570, 2020.
Limaye, A. B. S. and Lamb, M. P.: Numerical simulations of bedrock valley evolution by meandering rivers with variable bank material, J. Geophys. Res.-Earth, 119, 927–950, https://doi.org/10.1002/2013JF002871, 2014.
Lu, H., Wu., D., Cheng, L., Zhang, T., Xiong, J., Zheng, X., and Li, Y.: Late Quaternary drainage evolution in response to fold growth in the northern Chinese Tian Shan foreland, Geomorphology, 299, 12–23, https://doi.org/10.1016/j.geomorph.2017.09.037, 2017.
Maasri, A., Pyron, M., Arsenault, E. R., Thorp, J. H., Mendsaikhan, B., Tromboni, F., Minder, M., Kenner, S. J., Costello, J., Chandra, S., Otganganbat, A., and Boldgiv, B.: Valley-scale hydrogeomorphology drives river fish assemblage variation in Mongolia, Ecol. Evol., 11, 6527–6535, https://doi.org/10.1002/ece3.7505, 2021.
Macklin, M. G. and Lewin, J.: The rivers of civilization, Quaternary Sci. Rev., 114, 228–244, https://doi.org/10.1016/j.quascirev.2015.02.004, 2015.
Maddy, D., Bridgland, D., and Westaway, R.: Uplift-driven valley incision and climate-controlled river terrace development in the Thames Valley, UK, Quatern. Int., 79, 23–36, https://doi.org/10.1016/s1040-6182(00)00120-8, 2001.
Malatesta, L. C., Prancevic, J. P., and Avouac, J. P.: Autogenic entrenchment patterns and terraces due to coupling with lateral erosion in incising alluvial channels, J. Geophys. Res.-Earth, 122, 335–355, https://doi.org/10.1002/2015JF003797, 2017.
Malatesta, L. C., Avouac, J. P., Brown, N. D., Breitenbach, S. F. M., Pan, J., Chevalier, M.-L., Rhodes, E., Saint-Carlier, D., and Zhang, W.: Lag and mixing during sediment transfer across the Tian Shan piedmont caused by climate-driven aggradation–incision cycles, Basin Res., 30, 613–635, https://doi.org/10.1111/bre.12267, 2018.
Marcotte, A. L., Neudorf, C. M., and Langston, A. L.: Lateral bedrock erosion and valley formation in a heterogeneously layered landscape, Northeast Kansas. Earth Surf. Proc. Land., 46, 2248–2263, https://doi.org/10.1002/esp.5172, 2021.
Martin, J., Cantelli, A., Paola, C., Blum, M., and Wolinsky, M.: Quantitative modeling of the evolution and geometry of incised valleys, J. Sediment. Res., 81, 64–79, https://doi.org/10.2110/jsr.2011.5, 2011.
May, C., Roering, J., Eaton, L. S., and Burnett, K. M.: Controls on valley width in mountainous landscapes: The role of landsliding and implications for salmonid habitat, Geology, 41, 503–506, https://doi.org/10.1130/G33979.1, 2013.
McClain, K. P., Yildirim, C., Ciner, A., Sarikaya, M. A., Özcan, O., Görüm, T., Köse, O., Sahin, S., Kiyak, N. G., and Öztürk, T.: River, alluvial fan and landslide interactions in a tributary junction setting: Implications for tectonic controls on Quaternary fluvial landscape development (Central Anatolian Plateau northern margin, Turkey), Geomorphology, 376, 107567, https://doi.org/10.1016/j.geomorph.2020.107567, 2020.
Miller, A. J.: Valley morphology and boundary conditions influencing spatial patterns of flood flow, in: Natural and Anthropomorphic Influences in Fluvial Geomorphology, edited by: Costa, J. E., Miller, A. J., Potter, K. W., and Wilcock, P. R., Geophysical Monograph, 89, American Geophysical Union, Washington, DC, 57–81, https://doi.org/10.1029/GM089p0057, 1995.
Mizutani, T.: Laboratory experiment and digital simulation of multiple fill-cut terrace formation, Geomorphology, 24, 353–361, https://doi.org/10.1016/S0169-555X(98)00027-0, 1998.
Montgomery, D. R.: Valley formation by fluvial and glacial erosion, Geology, 30, 1047–1050, https://doi.org/10.1130/0091-7613(2002)030<1047:VFBFAG>2.0.CO;2, 2002.
Montgomery, D. R.: Observations on the role of lithology in strath terrace formation and bedrock channel width, Am. J. Sci., 304, 454–476, https://doi.org/10.2475/ajs.304.5.454, 2004.
Montgomery, D. R. and Gran, K. B.: Downstream variations in the width of bedrock channels, Water Resour. Res., 37, 1841–1846, https://doi.org/10.1029/2000WR900393, 2001.
Moore, J. R., Sanders, J. W., Dietrich, W. E., and Glaser, S. D.: Influence of rock mass strength on the erosion rate of alpine cliffs. Earth Surf. Proc. Land., 34, 1339–1352, https://doi.org/10.1002/esp.1821, 2009.
Moore, R. C.: Origin of inclosed meanders in the physiographic history of the Colorado Plateau country, J. Geol., 34, 29–57, 1926.
Naiman, R. J., Bechtold, J. S., Beechie, T. J., Latterell, J. J., and Van Pelt, R.: A process-based view of floodplain forest patterns in coastal river valleys of the Pacific Northwest, Ecosystems, 13, 1–31, https://doi.org/10.1007/s10021-009-9298-5, 2010.
Park, C. C.: World-wide variations in hydraulic geometry exponents of stream channels: An analysis and some observations, J. Hydrol., 33, 133–146, https://doi.org/10.1016/0022-1694(77)90103-2, 1977.
Perrigo, A., Hoorn, C., and Antonelli, A.: Why mountains matter for biodiversity, J. Biogeogr. 47, 315–325, https://doi.org/10.1111/jbi.13731, 2020.
Repasch, M., Scheingross, J. S., Hovius, N., Lupker, M., Wittmann, H., Haghipour, N., Gröcke, D. R., Eglinton T. I., and Sachse, D.: Fluvial organic carbon cycling regulated by sediment transit time and mineral protection, Nat. Geosci., 14, 842–848, https://doi.org/10.1038/s41561-021-00845-7, 2021.
Rhodes, D. D.: World-wide variations in hydraulic geometry exponents of stream channels: An analysis and some observation – Comments, J. Hydrol., 39, 193–197, https://doi.org/10.1016/0022-1694(78)90123-3, 1978.
Rigsby, C. A., Baker, P. A., and Aldenderfer, M. S.: Fluvial history of the Rio Ilave valley, Peru, and its relationship to climate and human history, Palaeogeogr. Palaeocl., 194, 165–185, https://doi.org/10.1016/S0031-0182(03)00276-1, 2003.
Salisbury, N. E.: Thresholds and valley widths in the South River Basin, Iowa, in: Thresholds in Geomorphology, George Allan and Unwin, Chap. 6, edited by: Coates, D. R. and Vitek, J. D., 103–129, https://doi.org/10.4324/9781003028697, 1980.
Salisbury, N. E., Knox, J. C., and Stephenson, R. A.: The Valleys of Iowa I: Valley Width and Stream Discharge Relationships in the Major Streams, Iowa Studies in Geography, No. 5, Univ. of Iowa, Iowa City, 1968.
Savi, S., Tofelde, S., Wickert, A. D., Bufe, A., Schildgen, T. F., and Strecker, M. R.: Interactions between main channels and tributary alluvial fans: channel adjustments and sediment-signal propagation, Earth Surf. Dynam., 8, 303–322, https://doi.org/10.5194/esurf-8-303-2020, 2020.
Schanz, S. A. and Montgomery, D. R.: Lithologic controls on valley width and strath terrace formation, Geomorphology, 258, 58–68, https://doi.org/10.1016/j.geomorph.2016.01.015, 2016.
Schanz, S. A., Montgomery, D. R., Collins, B. D., and Duvall, A. R.: Multiple paths to straths: A review and reassessment of terrace genesis, Geomorphology, 312, 12–23, https://doi.org/10.1016/j.geomorph.2018.03.028, 2018.
Scharer, K. M., Burbank, D. W., Chen, J., Weldon, R. J., Rubin, C., Zhao, R., and Shen, J.: Detachment folding in the Southwestern Tian Shan–Tarim foreland, China: shortening estimates and rates, J. Struct. Geol., 26, 2119–2137, https://doi.org/10.1016/j.jsg.2004.02.016, 2004.
Scherler, D., Bookhagen, B., and Strecker, M. R.: Tectonic control on 10Be-derived erosion rates in the Garhwal Himalaya, India, J. Geophys. Res. 119, 83–105, https://doi.org/10.1002/2013JF002955, 2014.
Schumm, S. A. and Lichty, R. W.: Channel widening and floodplain construction along Cimarron River, in southwestern Kansas, Geol. Surv. Prof. Pap. 352-DUS Gov. Printing Office, Washington, https://doi.org/10.3133/pp352D, 1963.
Shepherd, R. G.: Incised river meanders: Evolution in simulated bedrock, Science, 178, 409–411, https://doi.org/10.1126/science.178.4059.409, 1972.
Snyder, N. P. and Kammer, L. L.: Dynamic adjustments in channel width in response to a forced diversion: Gower Gulch, Death Valley National Park, California, Geology, 36, 187–190, https://doi.org/10.1130/G24217A.1, 2008.
Snyder, N. P., Whipple, K. X., Tucker, G. E., and Merritts, D. J.: Channel response to tectonic forcing: field analysis of stream morphology and hydrology in the Mendocino triple junction region, northern California, Geomorphology, 53, 97–127, https://doi.org/10.1016/S0169-555X(02)00349-5, 2003.
Spotila, J. A., Moskey, K. A., and Prince, P. S.: Geologic controls on bedrock channel width in large, slowly-eroding catchments: Case study of the New River in eastern North America, Geomorphology, 230, 51–63, https://doi.org/10.1016/j.geomorph.2014.11.004, 2015.
Som, S. M., Montgomery, D. R., and Greenberg, H. M.: Scaling relations for large Martian valleys, J. Geophys. Res., 114, E02005, https://doi.org/10.1029/2008JE003132, 2009.
Steinbauer, M. J., Field, R., Grytnes, J. A., Trigas, P., Ah-Peng, C., Attorre, F., Birks, J. B., Borges, P. A. V., Cardoso, P, Chou, C.-H., De Sanctis, M., de Sequeira, M. M., Duarte, M. C., Elias, R. B., Fernández-Palacios, J. M., Gabriel, R., Gereau, R. E., Gillespie, R. G., Greimler, J., harter, D. E. V., Huang, T.-H., Irl, S. D. H., Jeanmonod, D., Jentsch, A., Jump, A. S., Kueffer, C., Nogué, S., Otto, R., Price, J., Romeiras, M. M., Strasberg, D., Stuessy, T., Svenning, J.-C., Vetaas, O. R., and Beierkuhnlein, C.: Topography-driven isolation, speciation and a global increase of endemism with elevation, Global Ecol. Biogeogr., 25, 1097–1107, https://doi.org/10.1111/geb.12469, 2016.
Stolle, A., Bernhardt, A., Schwanghart, W., Hoelzmann, P., Adhikari, B. R., Fort, M., and Korup, O.: Catastrophic valley fills record large Himalayan earthquakes, Pokhara, Nepal, Quaternary Sci. Rev., 177, 88–103, https://doi.org/10.1016/j.quascirev.2017.10.015, 2017.
Suzuki, T.: Rate of lateral planation by Iwaki River, Japan, Transactions – Japanese Geomorphological Union, 3, 1–24, 1982.
Tapponnier, P. and Molnar, P.: Active faulting and cenozoic tectonics of the Tien Shan, Mongolia, and Baykal Regions, J. Geophys. Res., 84, 3425–3459, https://doi.org/10.1029/JB084iB07p03425, 1979.
Thompson, J. A.: Neogene tectonic evolution of the NE Pamir Margin, NW China: University of California, Santa Barbara, PhD thesis, 2013.
Thompson Jobe, J. A., Li, T., Chen, J., Burbank, D. W., and Bufe, A.: Quaternary tectonic evolution of the Pamir-Tian Shan convergence zone, Northwest China: Tectonics, 36, 1944–9194, https://doi.org/10.1002/2017TC004541, 2017.
Tinkler, K. J., and Wohl, E. E.: A primer on bedrock channels, in: Rivers Over Rock: Fluvial Processes in Bedrock Channels, edited by: Tinkler, K. J. and Wohl, E. E., Geophysical Monograph Series 107, American Geophysical Union, Washington, D.C., 1–18, https://doi.org/10.1029/GM107, 1998.
Tofelde, S., Bufe, A., and Turowski, J. M.: Hillslope sediment supply limits alluvial valley width, AGU Advances, 3, e2021AV000641, https://doi.org/10.1029/2021AV000641, 2022.
Tomkin, J. H., Brandon, M. T., Pazzaglia, F. J., Barbour, J. R., and Willett, S. D.: Quantitative testing of bedrock incision models for the Clearwater River, NW Washington State, J. Geophys. Res., 108, 2308, https://doi.org/10.1029/2001JB000862, 2003.
Turowski, J. M.: Alluvial cover controlling the width, slope and sinuosity of bedrock channels, Earth Surf. Dynam., 6, 29–48, https://doi.org/10.5194/esurf-6-29-2018, 2018.
Turowski, J. M.: Mass balance, grade, and adjustment timescales in bedrock channels, Earth Surf. Dynam., 8, 103–122, https://doi.org/10.5194/esurf-8-103-2020, 2020.
Turowski, J. M., Badoux, A., Leuzinger, J., and Hegglin, R.: Large floods, alluvial overprint, and bedrock erosion, Earth Surf. Proc. Land., 38, 947–958, https://doi.org/10.1002/esp.3341, 2013.
Wang, P., Scherler, D., Jing L.-Z., Mey, J., Avouac, J.-P., Zhang, Y., and Shi, D.: Tectonic control of Yarlung Tsangpo Gorge revealed by a buried canyon in Southern Tibet, Science, 346, 978–981, https://doi.org/10.1126/science.1259041, 2014.
Wickert, A. D. and Schildgen, T. F.: Long-profile evolution of transport-limited gravel-bed rivers, Earth Surf. Dynam., 7, 17–43, https://doi.org/10.5194/esurf-7-17-2019, 2019.
Wickert, A. D., Martin, J. M., Tal, M., Kim, W., Sheets, B., and Paola, C.: River channel lateral mobility: Metrics, time scales, and controls, J. Geophys. Res.-Earth, 118, 396–412, https://doi.org/10.1029/2012JF002386, 2013.
Wobus, C., Whipple, K. X., Kirby, E., Snyder, N., Johnson, J., Spyropolou, K., Crosby, B., and Sheehan, D.: Tectonics from topography: procedures, promise, and pitfalls, in: Tectonics, Climate, and Landscape Evolution, edited by: Willett, S. D., Hovius, N., Brandon, M. T., and Fisher, D., Geological Society of America Special Paper 398, Geological Society of America: Washington, DC, 55–74, https://doi.org/10.1130/2006.2398(04), 2006.
Yanites, B. J., Tucker, G. E., Mueller, K. J., Chen, Y. G., Wilcox, T., Huang, S. Y., and Shi, K. W.: Incision and channel morphology across active structures along the Peikang River, central Taiwan: implications for the importance of channel width, Geol. Soc. Am. Bull., 122, 1192–1208, https://doi.org/10.1130/B30035.1, 2010.
Zakrzewska, B.: Valleys of driftless areas, Ann. Assoc. Am. Geogr., 61, 441–459, https://www.jstor.org/stable/2569224 (last access: 20 March 2024), 1971.
Zavala, V., Carretier, S., Regard, V., Bonnet, S., Riquelme, R., and Choy, S.: Along-stream variations in valley flank Erosion rates measured using 10Be concentrations in colluvial deposits from Canyons in the Atacama Desert, Geophys. Res. Lett., 48, 1–11, https://doi.org/10.1029/2020GL089961, 2021.
Zhang, L., Yang, X., Huang, W., Yang, H., and Li, S.: Fold segment linkage and lateral propagation along the Qiulitage anticline, South Tianshan, NW China, Geomorphology, 381, 107662, https://doi.org/10.1016/j.geomorph.2021.107662, 2021.
Zubovich, A. V., Wang, X.-Q., Scherba, Y. G., Schelochkov, G. G., Reilinger, R., Reigber, C., Mosienko, O. I., Molnar, P., Michajljow, W., Makarov, V. I., Li, J., Kuzikov, S. I., Herring, T. A., Hamburger, M. W., Hager, B. H., Dang, Y.-M., Bragin, V. D., and Beisenbaev, R. T.: GPS velocity field for the Tian Shan and surrounding regions, Tectonics, 29, TC6014, https://doi.org/10.1029/2010TC002772, 2010.
Zubovich, A. V., Schöne, T., Metzger, S., Mosienko, O., Mukhamediev, S., Sharshebaev, A., and Zech, C.: Tectonic interaction between the Pamir and Tian Shan observed by GPS, Tectonics, 32, 283–292, https://doi.org/10.1002/2015TC004055, 2016.
Short summary
Fluvial valleys are ubiquitous landforms, and understanding their formation and evolution affects a wide range of disciplines from archaeology and geology to fish biology. Here, we develop a model to predict the width of fluvial valleys for a wide range of geographic conditions. In the model, fluvial valley width is controlled by the two competing factors of lateral channel mobility and uplift. The model complies with available data and yields a broad range of quantitative predictions.
Fluvial valleys are ubiquitous landforms, and understanding their formation and evolution...