Articles | Volume 12, issue 3
https://doi.org/10.5194/esurf-12-801-2024
https://doi.org/10.5194/esurf-12-801-2024
Research article
 | 
10 Jun 2024
Research article |  | 10 Jun 2024

A machine learning approach to the geomorphometric detection of ribbed moraines in Norway

Thomas J. Barnes, Thomas V. Schuler, Simon Filhol, and Karianne S. Lilleøren

Related authors

Changes in Supraglacial Lakes on George VI Ice Shelf, Antarctic Peninsula: 1973–2020
Thomas James Barnes, Amber Alexandra Leeson, Malcolm McMillan, Vincent Verjans, Jeremy Carter, and Christoph Kittel
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-214,https://doi.org/10.5194/tc-2021-214, 2021
Revised manuscript not accepted
Short summary

Related subject area

Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Surface grain-size mapping of braided channels from SfM photogrammetry
Loïs Ribet, Frédéric Liébault, Laurent Borgniet, Michaël Deschâtres, and Gabriel Melun
Earth Surf. Dynam., 13, 607–627, https://doi.org/10.5194/esurf-13-607-2025,https://doi.org/10.5194/esurf-13-607-2025, 2025
Short summary
Spatiotemporal denudation rates of the Swabian Alb escarpment (southwestern Germany) dominated by anthropogenic impact, lithology, and base-level lowering
Mirjam Schaller, Daniel Peifer, Alexander B. Neely, Thomas Bernard, Christoph Glotzbach, Alexander R. Beer, and Todd A. Ehlers
Earth Surf. Dynam., 13, 571–591, https://doi.org/10.5194/esurf-13-571-2025,https://doi.org/10.5194/esurf-13-571-2025, 2025
Short summary
Short communication: Learning how landscapes evolve with neural operators
Gareth G. Roberts
Earth Surf. Dynam., 13, 563–570, https://doi.org/10.5194/esurf-13-563-2025,https://doi.org/10.5194/esurf-13-563-2025, 2025
Short summary
Sediment aggradation rates in Himalayan rivers revealed through the InSAR differential residual topographic phase
Jingqiu Huang and Hugh D. Sinclair
Earth Surf. Dynam., 13, 531–547, https://doi.org/10.5194/esurf-13-531-2025,https://doi.org/10.5194/esurf-13-531-2025, 2025
Short summary
The glacial paleolandscapes of Southern Africa: the legacy of the Late Paleozoic Ice Age
Pierre Dietrich, François Guillocheau, Guilhem A. Douillet, Neil P. Griffis, Guillaume Baby, Daniel P. Le Héron, Laurie Barrier, Maximilien Mathian, Isabel P. Montañez, Cécile Robin, Thomas Gyomlai, Christoph Kettler, and Axel Hofmann
Earth Surf. Dynam., 13, 495–529, https://doi.org/10.5194/esurf-13-495-2025,https://doi.org/10.5194/esurf-13-495-2025, 2025
Short summary

Cited articles

Aario, R.: Classification and terminology of morainic landforms in Finland, Boreas, 6, 87–100, https://doi.org/10.1111/j.1502-3885.1977.tb00338.x, 1977. 
Ali, A., Dunlop, P., Coleman, S., Kerr, D., McNabb, R. W., and Noormets, R.: Glacier area changes in the Arctic and high latitudes using satellite remote sensing, J. Maps, 19, 1–7, https://doi.org/10.1080/17445647.2023.2247416, 2023. 
Aydda, A., Althuwaynee, O. F., and Pokharel, B.: An easy method for barchan dunes automatic extraction from multispectral satellite data, IOP Conf. Ser. Earth Environ. Sci., 419, 012015, https://doi.org/10.1088/1755-1315/419/1/012015, 2020. 
Barnes, R.: RichDEM: terrain Analysis Software, GitHub [code], https://github.com/r-barnes/richdem (last access: 3 June 2023), 2016. 
Barnes, T. and Filhol, S.: Aeteia/Ribbed-Moraine: Release ver.8.3 for ribbed moraines detection script, Zenodo [code and data set], https://doi.org/10.5281/zenodo.7991094, 2023. 
Download
Short summary
In this paper, we use machine learning to automatically outline landforms based on their characteristics. We test several methods to identify the most accurate and then proceed to develop the most accurate to improve its accuracy further. We manage to outline landforms with 65 %–75 % accuracy, at a resolution of 10 m, thanks to high-quality/high-resolution elevation data. We find that it is possible to run this method at a country scale to quickly produce landform inventories for future studies.
Share