Articles | Volume 12, issue 4
https://doi.org/10.5194/esurf-12-907-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-12-907-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sourcing and long-range transport of particulate organic matter in river bedload: Río Bermejo, Argentina
GFZ German Research Centre for Geosciences, Potsdam, Germany
Institute of Geosciences, Universität Potsdam, Potsdam, Germany
Niels Hovius
GFZ German Research Centre for Geosciences, Potsdam, Germany
Institute of Geosciences, Universität Potsdam, Potsdam, Germany
Marisa Repasch
Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USA
Joel Scheingross
Department of Geological Sciences and Engineering, University of Nevada Reno, Nevada Geosciences, Reno, NV, USA
Jens M. Turowski
GFZ German Research Centre for Geosciences, Potsdam, Germany
Stefanie Tofelde
Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
Oliver Rach
GFZ German Research Centre for Geosciences, Potsdam, Germany
Dirk Sachse
GFZ German Research Centre for Geosciences, Potsdam, Germany
Department of Geography, Humboldt Universität zu Berlin, Berlin, Germany
Related authors
No articles found.
Claire C. Masteller, Joel P. L. Johnson, Dieter Rickenmann, and Jens M. Turowski
Earth Surf. Dynam., 13, 593–605, https://doi.org/10.5194/esurf-13-593-2025, https://doi.org/10.5194/esurf-13-593-2025, 2025
Short summary
Short summary
This paper presents a novel model that predicts how gravel riverbeds may evolve in response to differences in the frequency and severity of flood events. We test our model using a 23-year-long record of river flow and gravel transport from the Swiss Prealps. We find that our model reliably captures yearly patterns in gravel transport in this setting. Our new model is a major advance towards better predictions of river erosion that account for the flood history of a gravel-bed river.
Charlotte Läuchli, Nestor Gaviria-Lugo, Anne Bernhardt, Hella Wittmann, Patrick J. Frings, Mahyar Mohtadi, Andreas Lückge, and Dirk Sachse
EGUsphere, https://doi.org/10.5194/egusphere-2025-3153, https://doi.org/10.5194/egusphere-2025-3153, 2025
Short summary
Short summary
Large-scale atmospheric pathways connecting climate across latitudes are poorly documented in the past. Here, we report a high resolution spatial and temporal reconstruction of the evolution of the Southern Hemisphere Westerlies since the Last Glacial Maximum, which, compared with the past evolution of the Intertropical Convergence Zone, allows identifying the dominant atmospheric pathways acting on past climate in South America.
Fergus McNab, Taylor F. Schildgen, Jens Martin Turowski, and Andrew D. Wickert
EGUsphere, https://doi.org/10.5194/egusphere-2025-2468, https://doi.org/10.5194/egusphere-2025-2468, 2025
Short summary
Short summary
Alluvial rivers form networks, but many concepts we use to analyse their long-term evolution derive from models that treat them as single streams. We develop a model including tributary interactions and show that, while patterns of sediment output can be similar for network and single-segment models, complex signal propagation affects aggradation and incision within networks. We argue that understanding a specific catchment's evolution requires a model with its specific network structure.
Matanya Hamawi, Joel P. L. Johnson, Susan Bilek, Jens M. Turowski, and John B. Laronne
EGUsphere, https://doi.org/10.5194/egusphere-2025-591, https://doi.org/10.5194/egusphere-2025-591, 2025
This preprint is open for discussion and under review for Earth Surface Dynamics (ESurf).
Short summary
Short summary
Water level suddenly rises during flash floods in dry regions having a distinct impact on bedload – large sediment rolling and saltating on the riverbed. Using sensor-equipped pebbles and seismic monitoring in a field setting, we demonstrate that bedload activity is very high in both shallow and deep sudden flows. These findings can help improve bedload transport models, particularly when using seismic sensors, by providing new insights into bedload dynamics.
Jens M. Turowski, Fergus McNab, Aaron Bufe, and Stefanie Tofelde
Earth Surf. Dynam., 13, 97–117, https://doi.org/10.5194/esurf-13-97-2025, https://doi.org/10.5194/esurf-13-97-2025, 2025
Short summary
Short summary
Channel belts comprise the area affected by a river due to lateral migration and floods. As a landform, they affect water resources and flood hazard, and they often host unique ecological communities. We develop a model describing the evolution of channel-belt area over time. The model connects the behaviour of the river to the evolution of the channel belt over a timescale of centuries. A comparison to selected data from experiments and real river systems verifies the random walk approach.
Elizabeth N. Orr, Taylor F. Schildgen, Stefanie Tofelde, Hella Wittmann, and Ricardo N. Alonso
Earth Surf. Dynam., 12, 1391–1413, https://doi.org/10.5194/esurf-12-1391-2024, https://doi.org/10.5194/esurf-12-1391-2024, 2024
Short summary
Short summary
Fluvial terraces and alluvial fans in the Toro Basin, NW Argentina, record river evolution and global climate cycles over time. Landform dating reveals lower-frequency climate cycles (100 kyr) preserved downstream and higher-frequency cycles (21/40 kyr) upstream, supporting theoretical predications that longer rivers filter out higher-frequency climate signals. This finding improves our understanding of the spatial distribution of sedimentary paleoclimate records within landscapes.
Jens Martin Turowski, Aaron Bufe, and Stefanie Tofelde
Earth Surf. Dynam., 12, 493–514, https://doi.org/10.5194/esurf-12-493-2024, https://doi.org/10.5194/esurf-12-493-2024, 2024
Short summary
Short summary
Fluvial valleys are ubiquitous landforms, and understanding their formation and evolution affects a wide range of disciplines from archaeology and geology to fish biology. Here, we develop a model to predict the width of fluvial valleys for a wide range of geographic conditions. In the model, fluvial valley width is controlled by the two competing factors of lateral channel mobility and uplift. The model complies with available data and yields a broad range of quantitative predictions.
Chuanqi He, Ci-Jian Yang, Jens M. Turowski, Richard F. Ott, Jean Braun, Hui Tang, Shadi Ghantous, Xiaoping Yuan, and Gaia Stucky de Quay
Earth Syst. Sci. Data, 16, 1151–1166, https://doi.org/10.5194/essd-16-1151-2024, https://doi.org/10.5194/essd-16-1151-2024, 2024
Short summary
Short summary
The shape of drainage basins and rivers holds significant implications for landscape evolution processes and dynamics. We used a global 90 m resolution topography to obtain ~0.7 million drainage basins with sizes over 50 km2. Our dataset contains the spatial distribution of drainage systems and their morphological parameters, supporting fields such as geomorphology, climatology, biology, ecology, hydrology, and natural hazards.
Nestor Gaviria-Lugo, Charlotte Läuchli, Hella Wittmann, Anne Bernhardt, Patrick Frings, Mahyar Mohtadi, Oliver Rach, and Dirk Sachse
Biogeosciences, 20, 4433–4453, https://doi.org/10.5194/bg-20-4433-2023, https://doi.org/10.5194/bg-20-4433-2023, 2023
Short summary
Short summary
We analyzed how leaf wax hydrogen isotopes in continental and marine sediments respond to climate along one of the strongest aridity gradients in the world, from hyperarid to humid, along Chile. We found that under extreme aridity, the relationship between hydrogen isotopes in waxes and climate is non-linear, suggesting that we should be careful when reconstructing past hydrological changes using leaf wax hydrogen isotopes so as to avoid overestimating how much the climate has changed.
Jens M. Turowski, Gunnar Pruß, Anne Voigtländer, Andreas Ludwig, Angela Landgraf, Florian Kober, and Audrey Bonnelye
Earth Surf. Dynam., 11, 979–994, https://doi.org/10.5194/esurf-11-979-2023, https://doi.org/10.5194/esurf-11-979-2023, 2023
Short summary
Short summary
Rivers can cut into rocks, and their strength modulates the river's erosion rates. Yet, which properties of the rock control its response to erosive action is poorly understood. Here, we describe parallel experiments to measure rock erosion rates under fluvial impact erosion and the rock's geotechnical properties such as fracture strength, elasticity, and density. Erosion rates vary over a factor of a million between different rock types. We use the data to improve current theory.
Ci-Jian Yang, Pei-Hao Chen, Erica D. Erlanger, Jens M. Turowski, Sen Xu, Tse-Yang Teng, Jiun-Chuan Lin, and Jr-Chuang Huang
Earth Surf. Dynam., 11, 475–486, https://doi.org/10.5194/esurf-11-475-2023, https://doi.org/10.5194/esurf-11-475-2023, 2023
Short summary
Short summary
Observations of the interaction between extreme physical erosion and chemical weathering dynamics are limited. We presented major elements of stream water in the badland catchment at 3 h intervals during a 3 d typhoon. The excess sodium in the evaporite deposits causes material dispersion through deflocculation, which enhances the suspended sediment flux. Moreover, we observed a shift from predominantly evaporite weathering at peak precipitation to silicate weathering at peak discharge.
Aaron Bufe, Kristen L. Cook, Albert Galy, Hella Wittmann, and Niels Hovius
Earth Surf. Dynam., 10, 513–530, https://doi.org/10.5194/esurf-10-513-2022, https://doi.org/10.5194/esurf-10-513-2022, 2022
Short summary
Short summary
Erosion modulates Earth's carbon cycle by exposing a variety of lithologies to chemical weathering. We measured water chemistry in streams on the eastern Tibetan Plateau that drain either metasedimentary or granitoid rocks. With increasing erosion, weathering shifts from being a CO2 sink to being a CO2 source for both lithologies. However, metasedimentary rocks typically weather 2–10 times faster than granitoids, with implications for the role of lithology in modulating the carbon cycle.
Odin Marc, Jens M. Turowski, and Patrick Meunier
Earth Surf. Dynam., 9, 995–1011, https://doi.org/10.5194/esurf-9-995-2021, https://doi.org/10.5194/esurf-9-995-2021, 2021
Short summary
Short summary
The size of grains delivered to rivers is an essential parameter for understanding erosion and sediment transport and their related hazards. In mountains, landslides deliver these rock fragments, but few studies have analyzed the landslide properties that control the resulting sizes. We present measurements on 17 landslides from Taiwan and show that their grain sizes depend on rock strength, landslide depth and drop height, thereby validating and updating a previous theory on fragmentation.
Cited articles
Allen, G. P., Laurier, D., and Thouvenin, J.: Étude sédimentologique du delta de la Mahakam, Compagnie Française des Pétroles, Notes et Mémoires, 1–156, 1979.
Allen, J. R. L.: Current Ripples. Their relation to patterns of water and sediment motion, Geol. Mag., 106, 614–614, https://doi.org/10.1017/S001675680005946X, 1968.
Aller, R. C.: Mobile deltaic and continental shelf muds as suboxic, fluidized bed reactors, Mar. Chem., 61, 143–155, https://doi.org/10.1016/S0304-4203(98)00024-3, 1998.
Allison, G. B., Barnes, C. J., Hughes, M. W., and Leaney, F. W. J.: Effect of climate and vegetation on oxygen-18 and deuterium profiles in soils, IAEA – International Atomic Energy Agency, 15, 105–123, 1984.
Allison, L. E.: Organic Carbon, in: Methods of Soil Analysis, Wiley, 1367–1378, https://doi.org/10.2134/agronmonogr9.2.c39, 1965.
Attal, M. and Lavé, J.: Pebble abrasion during fluvial transport: Experimental results and implications for the evolution of the sediment load along rivers, J. Geophys. Res., 114, F04023, https://doi.org/10.1029/2009jf001328, 2009.
Battin, T. J., Luyssaert, S., Kaplan, L. A., Aufdenkampe, A. K., Richter, A., and Tranvik, L. J.: The boundless carbon cycle, Nat. Geosci., 2, 598–600, https://doi.org/10.1038/ngeo618, 2009.
Berner, R. A.: Burial of organic carbon and pyrite sulfur in the modern ocean – Its geochemical and environmental significance, Am. J. Sci., 282, 451–473, https://doi.org/10.2475/ajs.282.4.451, 1982.
Blair, N. E. and Aller, R. C.: The fate of terrestrial organic carbon in the marine environment, Annu. Rev. Mar. Sci., 4, 401–423, https://doi.org/10.1146/annurev-marine-120709-142717, 2012.
Blattmann, T. M., Liu, Z., Zhang, Y., Zhao, Y., Haghipour, N., Montlucon, D. B., Plötze, M., and Eglinton, T. I.: Mineralogical control on the fate of continentally derived organic matter in the ocean, Science, 366, 742–745, https://doi.org/10.1126/science.aax5345, 2019.
Bouchez, J., Galy, V., Hilton, R. G., Gaillardet, J., Moreira-Turcq, P., Pérez, M. A., France-Lanord, C., and Maurice, L.: Source, transport and fluxes of Amazon River particulate organic carbon: Insights from river sediment depth-profiles, Geochim. Cosmochim. Ac., 133, 280–298, https://doi.org/10.1016/j.gca.2014.02.032, 2014.
Bray, E. E. and Evans, E. D.: Distribution of n-pamlEns as a clue to recognition of source beds, Geochim. Cosmochim. Ac., 22, 2–15, https://doi.org/10.1016/0016-7037(61)90069-2, 1961.
Bunte, K., Abt, S. R., Potyondy, J. P., and Swingle, K. W.: A Comparison of Coarse Bedload Transport Measured with Bedload Traps and Helley-Smith Samplers, Geodin. Acta, 21, 53–66, https://doi.org/10.3166/ga.21.53-66, 2008.
Bunte, K., Swingle, K. W., Turowski, J. M., Abt, S. R., and Cenderelli, D. A. A.: Measurements of coarse particulate organic matter transport in steep mountain streams and estimates of decadal CPOM exports, J. Hydrol., 539, 162–176, https://doi.org/10.1016/j.jhydrol.2016.05.022, 2016.
Canuel, E. A. and Hardison, A. K.: Sources, Ages, and Alteration of Organic Matter in Estuaries, Annu. Rev. Mar. Sci., 8, 409–434, https://doi.org/10.1146/annurev-marine-122414-034058, 2016.
Chatanantavet, P., Whipple, K. X., Adams, M. A., and Lamb, M. P.: Experimental study on coarse grain saltation dynamics in bedrock channels, J. Geophys. Res.-Earth, 118, 1161–1176, https://doi.org/10.1002/jgrf.20053, 2013.
Chikaraishi, Y., Naraoka, H., and Poulson, S. R.: Hydrogen and carbon isotopic fractionations of lipid biosynthesis among terrestrial (C3, C4 and CAM) and aquatic plants, Phytochemistry, 65, 1369–1381, https://doi.org/10.1016/j.phytochem.2004.03.036, 2004.
Collister, J. W., Rieley, G., Stern, B., Eglinton, G., and Fry, B.: Compound-specific δ13C analyses of leaf lipids from plants with differing carbon dioxide metabolisms, Org. Geochem., 21, 619–627, https://doi.org/10.1016/0146-6380(94)90008-6, 1994.
Cranwell, P. A.: Chain-length distribution of n-alkanes from lake sedimentsin relation to post-glacial environmental change, Freshwater Biol., 2, 259–265, 1972.
Dellinger, M., Hilton, R. G., Baronas, J. J., Torres, M. A., Burt, E. I., Clark, K. E., Galy, V., Ccahuana Quispe, A. J., and West, A. J.: High Rates of Rock Organic Carbon Oxidation Sustained as Andean Sediment Transits the Amazon Foreland-Floodplain, P. Natl. Acad. Sci. USA, 120, e2306343120, https://doi.org/10.1073/pnas.2306343120, 2023.
Dosch, S., Hovius, N., Repasch, M., Scheingross, J., Turowski, J., and Sachse, D.: Terrestrial biospheric carbon export from rivers by bedload transport, EGU General Assembly 2021, online, 19–30 Apr 2021, https://doi.org/10.5194/egusphere-egu21-10684, 2021.
Dosch, S., Hovius, N.,Repasch, M., Scheingross, J., Tofelde, S., Turowski, J., Rach, O., and Sachse, D.: Sourcing and Long-Range Transport of Particulate Organic Matter in River Bedload: Rio Bermejo, Argentina, GFZ Data Services [data set], https://doi.org/10.5880/GFZ.4.6.2023.005, 2023.
Eglinton, G. and Hamilton, R. J.: Leaf Epicuticular Waxes, Science, 156, 1322–1335, https://doi.org/10.1126/science.156.3780.1322, 1967.
Einstein, H. A., Anderson, A. G., and Johnson, J. W.: A distinction between bed-load and suspended load in natural streams, Eos, Transactions American Geophysical Union, 21, 628–633, https://doi.org/10.1029/TR021i002p00628, 1940.
Feng, X., Feakins, S. J., Liu, Z., Ponton, C., Wang, R. Z., Karkabi, E., Galy, V., Berelson, W. M., Nottingham, A. T., Meir, P., and West, A. J.: Source to sink: Evolution of lignin composition in the Madre de Dios River system with connection to the Amazon basin and offshore, J. Geophys. Res.-Biogeo., 121, 1316–1338, https://doi.org/10.1002/2016jg003323, 2016.
Fogel, C. B. and Lininger, K. B.: Geomorphic complexity influences coarse particulate organic matter transport and storage in headwater streams, Frontiers in Water, 5, 1227167, https://doi.org/10.3389/frwa.2023.1227167, 2023.
France-Lanord, C. and Derry, L. A.: Organic carbon burial forcing of the carbon cycle from Himalayan erosion, Nature, 390, 65–67, https://doi.org/10.1038/36324, 1997.
Freeman, K. H. and Colarusso, L. A.: Molecular and isotopic records of C4 grassland expansion in the late Miocene, Geochim. Cosmochim. Ac., 65, 1439–1454, https://doi.org/10.1016/s0016-7037(00)00573-1, 2001.
Galy, V., France-Lanord, C., and Lartiges, B.: Loading and fate of particulate organic carbon from the Himalaya to the Ganga–Brahmaputra delta, Geochim. Cosmochim. Ac., 72, 1767–1787, https://doi.org/10.1016/j.gca.2008.01.027, 2008.
Galy, V., Eglinton, T., France-Lanord, C., and Sylva, S.: The provenance of vegetation and environmental signatures encoded in vascular plant biomarkers carried by the Ganges–Brahmaputra rivers, Earth Planet. Sc. Lett., 304, 1–12, https://doi.org/10.1016/j.epsl.2011.02.003, 2011.
Galy, V., Peucker-Ehrenbrink, B., and Eglinton, T.: Global carbon export from the terrestrial biosphere controlled by erosion, Nature, 521, 204–207, https://doi.org/10.1038/nature14400, 2015.
Garcia, C., Laronne, J. B., and Sala, M.: Variable source areas of bedload in a gravel-bed stream, J. Sediment. Res., 69, 27–31, 1999.
Garcin, Y., Schefuß, E., Schwab, V. F., Garreta, V., Gleixner, G., Vincens, A., Todou, G., Séné, O., Onana, J.-M., Achoundong, G., and Sachse, D.: Reconstructing C 3 and C 4 vegetation cover using n-alkane carbon isotope ratios in recent lake sediments from Cameroon, Western Central Africa, Geochim. Cosmochim. Ac., 142, 482–500, https://doi.org/10.1016/j.gca.2014.07.004, 2014.
Golombek, N., Scheingross, J. S., Repasch, M. N., Hovius, N., Sachse, D., Lupker, M., Eglinton, T. I., Menges, J., Haghipour, N., Poulson, S. R., Gröcke, D. R., Latosinski, F. G., and Szupiany, R. N.: Seasonal variability of fluvial organic carbon composition between 2016–2018 in the Río Bermejo, Argentina, https://doi.org/10.1594/PANGAEA.932558, 2021.
Hage, S., Galy, V. V., Cartigny, M. J. B., Acikalin, S., Clare, M. A., Gröcke, D. R., Hilton, R. G., Hunt, J. E., Lintern, D. G., McGhee, C. A., Parsons, D. R., Stacey, C. D., Sumner, E. J., and Talling, P. J.: Efficient preservation of young terrestrial organic carbon in sandy turbidity-current deposits, Geology, 48, 882–887, https://doi.org/10.1130/g47320.1, 2020.
Hage, S., Galy, V. V., Cartigny, M. J. B., Heerema, C., Heijnen, M. S., Acikalin, S., Clare, M. A., Giesbrecht, I., Gröcke, D. R., Hendry, A., Hilton, R. G., Hubbard, S. M., Hunt, J. E., Lintern, D. G., McGhee, C., Parsons, D. R., Pope, E. L., Stacey, C. D., Sumner, E. J., Tank, S., and Talling, P. J.: Turbidity currents can dictate organic carbon fluxes across river-fed fjords: An example from Bute Inlet (BC, Canada), J. Geophys. Res.-Biogeo., 127, e2022JG006824, https://doi.org/10.1029/2022jg006824, 2022.
Hayes, J. M., Strauss, H., and Kaufman, A. J.: The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma, Chem. Geol., 161, 103–125, https://doi.org/10.1016/S0009-2541(99)00083-2, 1999.
Heijnen, M. S., Clare, M. A., Cartigny, M. J. B., Talling, P. J., Hage, S., Pope, E. L., Bailey, L., Sumner, E., Lintern, D. G., Stacey, C., Parsons, D. R., Simmons, S. M., Chen, Y., Hubbard, S. M., Eggenhuisen, J. T., Kane, I., and Hughes Clarke, J. E.: Fill, flush or shuffle: How is sediment carried through submarine channels to build lobes?, Earth Planet. Sc. Lett., 584, 117481, https://doi.org/10.1016/j.epsl.2022.117481, 2022.
Hemingway, J. D., Schefuß, E., Dinga, B. J., Pryer, H., and Galy, V. V.: Multiple plant-wax compounds record differential sources and ecosystem structure in large river catchments, Geochim. Cosmochim. Ac., 184, 20–40, https://doi.org/10.1016/j.gca.2016.04.003, 2016.
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A.: Very high resolution interpolated climate surfaces for global land areas, Int. J. Climatol., 25, 1965–1978, https://doi.org/10.1002/joc.1276, 2005.
Hilton, R. G. and West, A. J.: Mountains, erosion and the carbon cycle, Nature Reviews Earth & Environment, 1, 284–299, https://doi.org/10.1038/s43017-020-0058-6, 2020.
Hilton, R. G., Galy, A., and Hovius, N.: Riverine particulate organic carbon from an active mountain belt: Importance of landslides, Global Biogeochem. Cy., 22, GB1017, https://doi.org/10.1029/2006gb002905, 2008.
Hilton, R. G., Galy, A., Hovius, N., Horng, M.-J., and Chen, H.: Efficient transport of fossil organic carbon to the ocean by steep mountain rivers: An orogenic carbon sequestration mechanism, Geology, 39, 71–74, https://doi.org/10.1130/g31352.1, 2011.
Hilton, R. G., Galy, A., Hovius, N., Kao, S.-J., Horng, M.-J., and Chen, H.: Climatic and geomorphic controls on the erosion of terrestrial biomass from subtropical mountain forest, Global Biogeochem. Cy., 26, 3, https://doi.org/10.1029/2012gb004314, 2012.
Hoffmann, B., Feakins, S. J., Bookhagen, B., Olen, S. M., Adhikari, D. P., Mainali, J., and Sachse, D.: Climatic and geomorphic drivers of plant organic matter transport in the Arun River, E Nepal, Earth Planet. Sc. Lett., 452, 104–114, https://doi.org/10.1016/j.epsl.2016.07.008, 2016.
Hoover, T. M., Marczak, L. B., Richardson, J. S., and Yonemitsu, N.: Transport and settlement of organic matter in small streams, Freshwater Biol., 55, 436–449, https://doi.org/10.1111/j.1365-2427.2009.02292.x, 2010.
Hou, J., D'Andrea, W. J., and Huang, Y.: Can sedimentary leaf waxes record D/H ratios of continental precipitation? Field, model, and experimental assessments, Geochim. Cosmochim. Ac., 72, 3503–3517, https://doi.org/10.1016/j.gca.2008.04.030, 2008.
Huang, Y., Clemens, S. C., Liu, W., Wang, Y., and Prell, W. L.: Large-scale hydrological change drove the late Miocene C4 plant expansion in the Himalayan foreland and Arabian Peninsula, Geology, 35, 531–534, https://doi.org/10.1130/g23666a.1, 2007.
Iroumé, A., Ruiz-Villanueva, V., and Salas-Coliboro, S.: Fluvial transport of coarse particulate organic matter in a coastal mountain stream of a rainy-temperate evergreen broadleaf forest in southern Chile, Earth Surf. Proc. Land., 45, 3216–3230, https://doi.org/10.1002/esp.4961, 2020.
Kao, S.-J., Hilton, R. G., Selvaraj, K., Dai, M., Zehetner, F., Huang, J.-C., Hsu, S.-C., Sparkes, R., Liu, J. T., Lee, T.-Y., Yang, J.-Y. T., Galy, A., Xu, X., and Hovius, N.: Preservation of terrestrial organic carbon in marine sediments offshore Taiwan: mountain building and atmospheric carbon dioxide sequestration, Earth Surf. Dynam., 2, 127–139, https://doi.org/10.5194/esurf-2-127-2014, 2014.
KC Denmark A/S: Helley-Smith Sampler, https://www.kc-denmark.dk/products/sediment-trap-station/helley-smith-sampler.aspx, last access: 20 September 2023.
Lee, H., Galy, V., Feng, X., Ponton, C., Galy, A., France-Lanord, C., and Feakins, S. J.: Sustained wood burial in the Bengal Fan over the last 19 My, P. Natl. Acad. Sci. USA, 116, 22518–22525, https://doi.org/10.1073/pnas.1913714116, 2019.
Liu, J. T., Kao, S. J., Huh, C. A., and Hung, C. C.: Gravity flows associated with flood events and carbon burial: Taiwan as instructional source area, Annu. Rev. Mar. Sci., 5, 47–68, https://doi.org/10.1146/annurev-marine-121211-172307, 2013.
Liu, Z., Zhao, Y., Colin, C., Stattegger, K., Wiesner, M. G., Huh, C.-A., Zhang, Y., Li, X., Sompongchaiyakul, P., You, C.-F., Huang, C.-Y., Liu, J. T., Siringan, F. P., Le, K. P., Sathiamurthy, E., Hantoro, W. S., Liu, J., Tuo, S., Zhao, S., Zhou, S., He, Z., Wang, Y., Bunsomboonsakul, S., and Li, Y.: Source-to-sink transport processes of fluvial sediments in the South China Sea, Earth-Sci. Rev., 153, 238–273, https://doi.org/10.1016/j.earscirev.2015.08.005, 2016.
McArthur, A. D., Kneller, B. C., Wakefield, M. I., Souza, P. A., and Kuchle, J.: Palynofacies classification of the depositional elements of confined turbidite systems: Examples from the Gres d'Annot, SE France, Mar. Petrol. Geol., 77, 1254–1273, https://doi.org/10.1016/j.marpetgeo.2016.08.020, 2016.
McGlue, M. M., Smith, P. H., Zani, H., Silva, A., Carrapa, B., Cohen, A. S., and Pepper, M. B.: An Integrated Sedimentary Systems Analysis of the Rio Bermejo (Argentina): Megafan Character in the Overfilled Southern Chaco Foreland Basin, J. Sediment. Res., 86, 1359–1377, https://doi.org/10.2110/jsr.2016.82, 2016.
Merten, E. C., Vaz, P. G., Decker-Fritz, J. A., Finlay, J. C., and Stefan, H. G.: Relative importance of breakage and decay as processes depleting large wood from streams, Geomorphology, 190, 40–47, https://doi.org/10.1016/j.geomorph.2013.02.006, 2013.
NASA EOSDIS Land Processes DAAC: ASTER Global Digital Elevation Model NetCDF V003, NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/MEaSUREs/NASADEM/NASADEM_NC.001, 2019.
Nichols, G. J., Cripps, J. A., Collinson, M. E., and Scott, A. C.: Experiments in waterlogging and sedimentology of charcoal: results and implications, Palaeogeogr. Palaeocl., 164, 43–56, https://doi.org/10.1016/S0031-0182(00)00174-7, 2000.
Nieto-Moreno, V., Rohrmann, A., van der Meer, M. T. J., Sinninghe Damsté, J. S., Sachse, D., Tofelde, S., Niedermeyer, E. M., Strecker, M. R., and Mulch, A.: Elevation-dependent changes in n-alkane δD and soil GDGTs across the South Central Andes, Earth Planet. Sc. Lett., 453, 234–242, https://doi.org/10.1016/j.epsl.2016.07.049, 2016.
Parsons, D. R., Jackson, P. R., Czuba, J. A., Engel, F. L., Rhoads, B. L., Oberg, K. A., Best, J. L., Mueller, D. S., Johnson, K. K., and Riley, J. D.: Velocity Mapping Toolbox (VMT): a processing and visualization suite for moving-vessel ADCP measurements, Earth Surf. Proc. Land., 38, 1244–1260, https://doi.org/10.1002/esp.3367, 2013.
Ponton, C., West, A. J., Feakins, S. J., and Galy, V.: Leaf wax biomarkers in transit record river catchment composition, Geophys. Res. Lett., 41, 6420–6427, https://doi.org/10.1002/2014gl061328, 2014.
Powell, R. L., Zoo, E.-H., and Still, C. J.: Vegetation and soil carbon-13 isoscapes for South America integrating remote sensing and ecosystem isotope measurements, Ecosphere, 3, 109, https://doi.org/10.1890/ES12-00162.1, 2012.
Rach, O., Hadeen, X., and Sachse, D.: An automated solid phase extraction procedure for lipid biomarker purification and stable isotope analysis, Org. Geochem., 142, 103995, https://doi.org/10.1016/j.orggeochem.2020.103995, 2020.
Reid, I., Laronne, J. B., and Powell, D. M.: Flash-flood and bedload dynamics of desert gravel-bed streams, Hydrol. Process., 12, 543–557, https://doi.org/10.1002/(SICI)1099-1085(19980330)12:4<543::AID-HYP593>3.0.CO;2-C, 1998.
Repasch, M., Wittmann, H., Scheingross, J. S., Sachse, D., Szupiany, R., Orfeo, O., Fuchs, M., and Hovius, N.: Sediment Transit Time and Floodplain Storage Dynamics in Alluvial Rivers Revealed by Meteoric10Be, J. Geophys. Res.-Earth, 125, e2019JF00541, https://doi.org/10.1029/2019jf005419, 2020.
Repasch, M., Scheingross, J. S., Hovius, N., Lupker, M., Wittmann, H., Haghipour, N., Gröcke, D. R., Orfeo, O., Eglinton, T. I., and Sachse, D.: Fluvial organic carbon cycling regulated by sediment transit time and mineral protection, Nat. Geosci., 14, 842–848, https://doi.org/10.1038/s41561-021-00845-7, 2021.
Repasch, M., Scheingross, J. S., Hovius, N., Vieth-Hillebrand, A., Mueller, C. W., Höschen, C., Szupiany, R. N., and Sachse, D.: River Organic Carbon Fluxes Modulated by Hydrodynamic Sorting of Particulate Organic Matter, Geophys. Res. Lett., 49, e2021GL096343, https://doi.org/10.1029/2021gl096343, 2022.
Repasch, M., Scheingross, J. S., Cook, K. L., Sachse, D., Dosch, S., Orfeo, O., and Hovius, N.: Lithospheric Flexure Controls on Geomorphology, Hydrology, and River Chemistry in the Andean Foreland Basin, AGU Advances, 4, e2023AV000924, https://doi.org/10.1029/2023AV000924, 2023.
Rickenmann, D.: Variability of Bed Load Transport During Six Summers of Continuous Measurements in Two Austrian Mountain Streams (Fischbach and Ruetz), Water Resour. Res., 54, 107–131, https://doi.org/10.1002/2017WR021376, 2018.
Rohrmann, A., Strecker, M. R., Bookhagen, B., Mulch, A., Sachse, D., Pingel, H., Alonso, R. N., Schildgen, T. F., and Montero, C.: Can stable isotopes ride out the storms? The role of convection for water isotopes in models, records, and paleoaltimetry studies in the central Andes, Earth Planet. Sc. Lett., 407, 187–195, https://doi.org/10.1016/j.epsl.2014.09.021, 2014.
Ruiz-Villanueva, V., Mazzorana, B., Bladé, E., Bürkli, L., Iribarren-Anacona, P., Mao, L., Nakamura, F., Ravazzolo, D., Rickenmann, D., Sanz-Ramos, M., Stoffel, M., and Wohl, E.: Characterization of wood-laden flows in rivers, Earth Surf. Proc. Land., 44, 1694–1709, https://doi.org/10.1002/esp.4603, 2019.
Sachse, D., Radke, J., and Gleixner, G.: Hydrogen isotope ratios of recent lacustrine sedimentary n-alkanes record modern climate variability, Geochim. Cosmochim. Ac., 68, 4877–4889, https://doi.org/10.1016/j.gca.2004.06.004, 2004.
Sachse, D., Billault, I., Bowen, G. J., Chikaraishi, Y., Dawson, T. E., Feakins, S. J., Freeman, K. H., Magill, C. R., McInerney, F. A., van der Meer, M. T. J., Polissar, P., Robins, R. J., Sachs, J. P., Schmidt, H.-L., Sessions, A. L., White, J. W. C., West, J. B., and Kahmen, A.: Molecular Paleohydrology: Interpreting the Hydrogen-Isotopic Composition of Lipid Biomarkers from Photosynthesizing Organisms, Annu. Rev. Earth Pl. Sc., 40, 221–249, https://doi.org/10.1146/annurev-earth-042711-105535, 2012.
Sambrook Smith, G. H., Best, J. L., Leroy, J. Z., Orfeo, O., and Baas, J.: The alluvial architecture of a suspended sediment dominated meandering river: the Río Bermejo, Argentina, Sedimentology, 63, 1187–1208, https://doi.org/10.1111/sed.12256, 2016.
Schefuss, E., Schouten, S., and Schneider, R. R.: Climatic controls on central African hydrology during the past 20 000 years, Nature, 437, 1003–1006, https://doi.org/10.1038/nature03945, 2005.
Scheingross, J. S., Hovius, N., Dellinger, M., Hilton, R. G., Repasch, M., Sachse, D., Gröcke, D. R., Vieth-Hillebrand, A., and Turowski, J. M.: Preservation of organic carbon during active fluvial transport and particle abrasion, Geology, 47, 958–962, https://doi.org/10.1130/g46442.1, 2019.
Scheingross, J. S., Repasch, M. N., Hovius, N., Sachse, D., Lupker, M., Fuchs, M., Halevy, I., Gröcke, D. R., Golombek, N. Y., Haghipour, N., Eglinton, T. I., Orfeo, O., and Schleicher, A. M.: The fate of fluvially-deposited organic carbon during transient floodplain storage, Earth Planet. Sc. Lett., 561, 116822, https://doi.org/10.1016/j.epsl.2021.116822, 2021.
Schlünz, B. and Schneider, R. R.: Transport of terrestrial organic carbon to the oceans by rivers: re-estimating flux- and burial rates, Int. J. Earth Sci., 88, 599–606, https://doi.org/10.1007/s005310050290, 2000.
Schwab, M. S., Hilton, R. G., Haghipour, N., Baronas, J. J., and Eglinton, T. I.: Vegetal Undercurrents – Obscured Riverine Dynamics of Plant Debris, J. Geophys. Res.-Biogeo., 127, e2021JG006726, https://doi.org/10.1029/2021jg006726, 2022.
Selva, E. C., Couto, E. G., Johnson, M. S., and Lehmann, J.: Litterfall production and fluvial export in headwater catchments of the southern Amazon, J. Trop. Ecol., 23, 329–335, https://doi.org/10.1017/s0266467406003956, 2007.
Seo, J. I., Nakamura, F., Nakano, D., Ichiyanagi, H., and Chun, K. W.: Factors controlling the fluvial export of large woody debris, and its contribution to organic carbon budgets at watershed scales, Water Resour. Res., 44, W04428, https://doi.org/10.1029/2007wr006453, 2008.
Silva, L. C. R., Giorgis, M. A., Anand, M., Enrico, L., Pérez-Harguindeguy, N., Falczuk, V., Tieszen, L. L., and Cabido, M.: Evidence of shift in C4 species range in central Argentina during the late Holocene, Plant Soil, 349, 261–279, https://doi.org/10.1007/s11104-011-0868-x, 2011.
Smith, J. A., Mazumder, D., Suthers, I. M., Taylor, M. D., and Bowen, G.: To fit or not to fit: evaluating stable isotope mixing models using simulated mixing polygons, Methods Ecol. Evol., 4, 612–618, https://doi.org/10.1111/2041-210x.12048, 2013.
Smith, J. C., Galy, A., Hovius, N., Tye, A. M., Turowski, J. M., and Schleppi, P.: Runoff-driven export of particulate organic carbon from soil in temperate forested uplands, Earth Planet. Sc. Lett., 365, 198–208, https://doi.org/10.1016/j.epsl.2013.01.027, 2013.
Sparkes, R. B., Lin, I.-T., Hovius, N., Galy, A., Liu, J. T., Xu, X., and Yang, R.: Redistribution of multi-phase particulate organic carbon in a marine shelf and canyon system during an exceptional river flood: Effects of Typhoon Morakot on the Gaoping River–Canyon system, Mar. Geol., 363, 191–201, https://doi.org/10.1016/j.margeo.2015.02.013, 2015.
Stallard, R. F.: Terrestrial sedimentation and the carbon cycle: Coupling weathering and erosion to carbon burial, Global Biogeochem. Cy., 12, 231–257, https://doi.org/10.1029/98gb00741, 1998.
Stewart, M. K. and Taylor, C. B.: Environmental isotopes in New Zealand hydrology; 1 Introduction The role of oxygen-18, deuterium, and tritium in hydrology, New Zeal. J. Sci., 24, 295–311, 1981.
Thomas, C. L., Jansen, B., van Loon, E. E., and Wiesenberg, G. L. B.: Transformation of n-alkanes from plant to soil: a review, SOIL, 7, 785–809, https://doi.org/10.5194/soil-7-785-2021, 2021.
Turowski, J. M., Rickenmann, D., and Dadson, S. J.: The partitioning of the total sediment load of a river into suspended load and bedload: a review of empirical data, Sedimentology, 57, 1126–1146, https://doi.org/10.1111/j.1365-3091.2009.01140.x, 2010.
Turowski, J. M., Badoux, A., Bunte, K., Rickli, C., Federspiel, N., and Jochner, M.: The mass distribution of coarse particulate organic matter exported from an Alpine headwater stream, Earth Surf. Dynam., 1, 1–11, https://doi.org/10.5194/esurf-1-1-2013, 2013.
Turowski, J. M., Hilton, R. G., and Sparkes, R.: Decadal carbon discharge by a mountain stream is dominated by coarse organic matter, Geology, 44, 27–30, https://doi.org/10.1130/g37192.1, 2016.
Tyson, R. V. and Follows, B.: Palynofacies prediction of distance from sediment source – A case study from the Upper Cretaceous of the Pyrenees, Geology, 28, 569–571, 2000.
Walker, C. D. and Richardson, S. B.: The use of stable isotopes of water in characterising the source of water in vegetation, Chemical Geology: Isotope Geoscience section, 94, 145–158, https://doi.org/10.1016/0168-9622(91)90007-J, 1991.
West, A. J., Lin, C. W., Lin, T. C., Hilton, R. G., Liu, S. H., Chang, C. T., Lin, K. C., Galy, A., Sparkes, R. B., and Hovius, N.: Mobilization and transport of coarse woody debris to the oceans triggered by an extreme tropical storm, Limnol. Oceanogr., 56, 77–85, https://doi.org/10.4319/lo.2011.56.1.0077, 2011.
Wohl, E., Ogden, F. L., and Goode, J.: Episodic wood loading in a mountainous neotropical watershed, Geomorphology, 111, 149–159, https://doi.org/10.1016/j.geomorph.2009.04.013, 2009.
Wohl, E., Kramer, N., Ruiz-Villanueva, V., Scott, D. N., Comiti, F., Gurnell, A. M., Piegay, H., Lininger, K. B., Jaeger, K. L., Walters, D. M., and Fausch, K. D.: The Natural Wood Regime in Rivers, BioScience, 69, 259–273, https://doi.org/10.1093/biosci/biz013, 2019.
Yager, E. M., Turowski, J. M., Rickenmann, D., and McArdell, B. W.: Sediment supply, grain protrusion, and bedload transport in mountain streams, Geophys. Res. Lett., 39, L10402, https://doi.org/10.1029/2012gl051654, 2012.
Editor
Many previous studies have examined the transfer of organic carbon in river systems within suspended sediment (fine particles carried in suspension making the water appear muddy etc..), however, few have looked at how much carbon is transported with bedload (coarser sand and pebbles that bounce along the base of the channel). This paper looks at the fluxes of carbon in the bedload and finds they are a far smaller percentage than that carried as suspended load, but may be more important for long term sinks or stores of carbon as they are more readily deposited in sediments that may become buried for a considerable period of time.
Many previous studies have examined the transfer of organic carbon in river systems within...
Short summary
The transport of plant debris in rivers is an important part of the global carbon cycle and influences atmospheric carbon levels through time. We sampled plant debris at the bed of a lowland river and determined the sources as it is transported hundreds of kilometers. Plant debris can persist at the riverbed, but mechanical breakdown reduces its amount, and it is only a small fraction compared to the suspended load. This plant debris and transport patterns need further investigation globally.
The transport of plant debris in rivers is an important part of the global carbon cycle and...