Articles | Volume 13, issue 2
https://doi.org/10.5194/esurf-13-257-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-13-257-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Haloturbation in the northern Atacama Desert revealed by a hidden subsurface network of calcium sulfate wedges
Aline Zinelabedin
CORRESPONDING AUTHOR
Institute of Geology and Mineralogy, University of Cologne, Zülpicher Str. 49b, 50674 Cologne, Germany
Institute of Geography, University of Cologne, Zülpicher Str. 45, 50674 Cologne, Germany
Joel Mohren
Institute of Geology and Mineralogy, University of Cologne, Zülpicher Str. 49b, 50674 Cologne, Germany
Department of Geography, RWTH Aachen University, Wüllnerstr. 5b, 52062 Aachen, Germany
Maria Wierzbicka-Wieczorek
Institute of Geology and Mineralogy, University of Cologne, Zülpicher Str. 49b, 50674 Cologne, Germany
Tibor Janos Dunai
Institute of Geology and Mineralogy, University of Cologne, Zülpicher Str. 49b, 50674 Cologne, Germany
Stefan Heinze
Institute for Nuclear Physics, University of Cologne, Zülpicher Str. 77, 50937 Cologne, Germany
Benedikt Ritter
Institute of Geology and Mineralogy, University of Cologne, Zülpicher Str. 49b, 50674 Cologne, Germany
Related authors
No articles found.
Juan Ríos-Contesse, Richard Albert, Benedikt Ritter-Prinz, Axel Gerdes, Tibor Dunai, and Eduardo Campos
EGUsphere, https://doi.org/10.5194/egusphere-2025-4801, https://doi.org/10.5194/egusphere-2025-4801, 2025
This preprint is open for discussion and under review for Geochronology (GChron).
Short summary
Short summary
This study dated chrysocolla, a supergene copper mineral, from copper deposits hosted in the Coastal Cordillera of northern Chile, with ages between 8.4 and 0.046 million years. Results show that from the Late Miocene to the Pleistocene, short periods of moisture triggered mineral formation despite the hyperarid climate. These wetter periods were likely caused by occasional rainfall or stronger coastal fog, causing repeated pulses of supergene activity in the Coastal Cordillera.
Volker Wennrich, Julia Diederich-Leicher, Bárbara Nataly Blanco-Arrué, Christoph Büttner, Stefan Buske, Eduardo Campos Sepulveda, Tibor Dunai, Jacob Feller, Emma Galego, Ascelina Hasberg, Niklas Leicher, Damián Alejandro López, Jorge Maldonado, Alicia Medialdea, Lukas Ninnemann, Russell Perryman, Juan Cristóbal Ríos-Contesse, Benedikt Ritter, Stephanie Scheidt, Barbara Vargas-Machuca, Pritam Yogeshwar, and Martin Melles
Sci. Dril., 34, 1–20, https://doi.org/10.5194/sd-34-1-2025, https://doi.org/10.5194/sd-34-1-2025, 2025
Short summary
Short summary
We present the results of comprehensive pre-site surveys and deep drillings in two clay pans in the central Atacama Desert of northern Chile, one of the driest deserts on Earth. The results of the site surveys as well as lithological and downhole-logging data of the deep-drilling operations highlight the potential of the sediment records from the PAG (Playa Adamito Grande) and Paranal clay pans to provide unprecedented information on the Neogene precipitation history of the hyperarid core of the Atacama Desert.
Joel Mohren, Hendrik Wiesel, Wulf Amelung, L. Keith Fifield, Alexandra Sandhage-Hofmann, Erik Strub, Steven A. Binnie, Stefan Heinze, Elmarie Kotze, Chris Du Preez, Stephen G. Tims, and Tibor J. Dunai
Biogeosciences, 22, 1077–1094, https://doi.org/10.5194/bg-22-1077-2025, https://doi.org/10.5194/bg-22-1077-2025, 2025
Short summary
Short summary
We measured concentrations of nuclear fallout in soil samples taken from arable land in South Africa. We find that during the second half of the 20th century, the data strongly correlate with the organic matter content of the soils. The finding implies that wind erosion strongly influenced the loss of organic matter in the soils we investigated. Furthermore, the exponential decline of fallout concentrations and organic matter content over time peaks shortly after native grassland is ploughed.
Benedikt Ritter, Richard Albert, Aleksandr Rakipov, Frederik M. Van der Wateren, Tibor J. Dunai, and Axel Gerdes
Geochronology, 5, 433–450, https://doi.org/10.5194/gchron-5-433-2023, https://doi.org/10.5194/gchron-5-433-2023, 2023
Short summary
Short summary
Chronological information on the evolution of the Namib Desert is scarce. We used U–Pb dating of silcretes formed by pressure solution during calcrete formation to track paleoclimate variability since the Late Miocene. Calcrete formation took place during the Pliocene with an abrupt cessation at 2.9 Ma. The end took place due to deep canyon incision which we dated using TCN exposure dating. With our data we correct and contribute to the Neogene history of the Namib Desert and its evolution.
Tibor János Dunai, Steven Andrew Binnie, and Axel Gerdes
Geochronology, 4, 65–85, https://doi.org/10.5194/gchron-4-65-2022, https://doi.org/10.5194/gchron-4-65-2022, 2022
Short summary
Short summary
We develop in situ-produced terrestrial cosmogenic krypton as a new tool to date and quantify Earth surface processes, the motivation being the availability of six stable isotopes and one radioactive isotope (81Kr, half-life 229 kyr) and of an extremely weathering-resistant target mineral (zircon). We provide proof of principle that terrestrial Krit can be quantified and used to unravel Earth surface processes.
Benedikt Ritter, Andreas Vogt, and Tibor J. Dunai
Geochronology, 3, 421–431, https://doi.org/10.5194/gchron-3-421-2021, https://doi.org/10.5194/gchron-3-421-2021, 2021
Short summary
Short summary
We describe the design and performance of a new noble gas mass laboratory dedicated to the development of and application to cosmogenic nuclides at the University of Cologne (Germany). At the core of the laboratory are a state-of-the-art high-mass-resolution multicollector Helix MCPlus (Thermo-Fisher) noble gas mass spectrometer and a novel custom-designed automated extraction line, including a laser-powered extraction furnace. Performance was tested with intercomparison (CREU-1) material.
Joel Mohren, Steven A. Binnie, Gregor M. Rink, Katharina Knödgen, Carlos Miranda, Nora Tilly, and Tibor J. Dunai
Earth Surf. Dynam., 8, 995–1020, https://doi.org/10.5194/esurf-8-995-2020, https://doi.org/10.5194/esurf-8-995-2020, 2020
Short summary
Short summary
In this study, we comprehensively test a method to derive soil densities under fieldwork conditions. The method is mainly based on images taken from consumer-grade cameras. The obtained soil/sediment densities reflect
truevalues by generally > 95 %, even if a smartphone is used for imaging. All computing steps can be conducted using freeware programs. Soil density is an important variable in the analysis of terrestrial cosmogenic nuclides, for example to infer long-term soil production rates.
Cited articles
Alewell, C., Pitois, A., Meusburger, K., Ketterer, M., and Mabit, L.: 239+240Pu from “contaminant” to soil erosion tracer: Where do we stand?, Earth Sci. Rev., 172, 107–123, https://doi.org/10.1016/j.earscirev.2017.07.009, 2017.
Allmendinger, R. W. and González, G.: Invited review paper: Neogene to Quaternary tectonics of the Coastal Cordillera, Northern Chile, Tectonophysics, 495, 93–110, https://doi.org/10.1016/j.tecto.2009.04.019, 2010.
Amit, R., Gerson, R., and Yaalon, D. H.: Stages and rate of the gravel shattering process by salts in desert Reg Soils, Geoderma, 57, 295–324, https://doi.org/10.1016/0016-7061(93)90011-9, 1993.
Amundson, R.: Meteoric water alteration of soil and landscapes at Meridiani Planum, Mars, Earth Plane. Sci. Lett., 488, 155–167, https://doi.org/10.1016/j.epsl.2018.02.012, 2018.
Arens, F. L., Airo, A., Feige, J., Sager, C., Wiechert, U., and Schulze-Makuch, D.: Geochemical proxies for water-soil interactions in the hyperarid Atacama Desert, Chile, CATENA, 206, 105531, https://doi.org/10.1016/j.catena.2021.105531, 2021.
Balco, G., Stone, J. O., Lifton, N. A., and Dunai, T. J.: A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements, Quat. Geochronol., 3, 174–195, https://doi.org/10.1016/j.quageo.2007.12.001, 2008.
Balme, M. R. and Gallagher, C.: An equatorial periglacial landscape on Mars, Earth Planet. Sci. Lett., 285, 1–15, https://doi.org/10.1016/j.epsl.2009.05.031, 2009.
Beaugnon, F., Quiligotti, S., Chevreux, S., and Wallez, G.: On the monoclinic distortion of β-anhydrite CaSO4, Solid State Sci., 108, 106399, https://doi.org/10.1016/j.solidstatesciences.2020.106399, 2020.
Benavente, D., Linares-Fernández, L., Cultrone, G., and Sebastián, E.: Influence of microstructure on the resistance to salt crystallisation damage in brick, Mater. Struct., 39, 105–113, https://doi.org/10.1617/s11527-005-9037-0, 2006.
Bishop, J. L., Quinn, R., and Dyar, M. D.: Spectral and thermal properties of perchlorate salts and implications for Mars, Am. Min., 99, 1580–1592, https://doi.org/10.2138/am.2014.4707, 2014.
Black, R. F.: Periglacial features indicative of permafrost: Ice and soil wedges, Quaternary Res., 6, 3–26, https://doi.org/10.1016/0033-5894(76)90037-5, 1976.
Bobst, A. L., Lowenstein, T. K., Jordan, T. E., Godfrey, L. V., Ku, T.-L., and Luo, S.: A 106 ka Paleoclimate record from drill core of the Salar de Atacama, Northern Chile, Palaeogeogr. Palaeoclimatol. Palaeoecol., 173, 21–42, https://doi.org/10.1016/s0031-0182(01)00308-x, 2001.
Böhm, C., Reyers, M., Knarr, L., and Crewell, S.: The role of moisture conveyor belts for precipitation in the Atacama Desert, Geophys. Res. Lett., 48, e2021GL094372., https://doi.org/10.1029/2021gl094372, 2021.
Bozkurt, D., Rondanelli, R., Garreaud, R., and Arriagada, A.: Impact of warmer Eastern Tropical Pacific SST on the March 2015 Atacama floods, Mon. Weather Rev., 144, 4441–4460, https://doi.org/10.1175/mwr-d-16-0041.1, 2016.
Buck, B. J., Rech, J. A., Howell, M. S., Prellwitz, J., and Brock, A. L.: Salt Heave: A new formation process for patterned ground, Atacama Desert, Chile, Geological Society of America Abstracts with Programs 38, no.7, 520, 2006.
Butscher, C., Scheidler, S., Farhadian, H., Dresmann, H., and Huggenberger, P.: Swelling potential of clay-sulfate rocks in tunneling in complex geological settings and impact of hydraulic measures assessed by 3D groundwater modeling, Eng. Geol., 221, 143–153, https://doi.org/10.1016/j.enggeo.2017.03.010, 2017.
Butscher, C., Breuer, S., and Blum, P.: Swelling laws for clay-sulfate rocks revisited, Bull. Eng. Geol., 77, 399–408, https://doi.org/10.1007/s10064-016-0986-z, 2018.
Cabré, A., Remy, D., Marc, O., Burrows, K., and Carretier, S.: Flash floods triggered by the 15–17th March 2022 rainstorm event in the Atacama Desert mapped from insar coherence time series, Nat. Hazards, 116, 1345–1353, https://doi.org/10.1007/s11069-022-05707-y, 2022.
Campbell-Heaton, K., Lacelle, D., and Fisher, D.: Ice wedges as winter temperature proxy: Principles, limitations and noise in the Δ18O records (an example from high Arctic Canada), Quaternary Sci. Rev., 269, 107135, https://doi.org/10.1016/j.quascirev.2021.107135, 2021.
Cereceda, P., Larrain, H., Osses, P., Farías, M., and Egaña, I.: The spatial and temporal variability of fog and its relation to fog oases in the Atacama Desert, Chile, Atmos. Res., 87, 312–323, https://doi.org/10.1016/j.atmosres.2007.11.012, 2008.
Certini, G. and Ugolini, F. C.: Nonsorted Patterned Ground, in: Encyclopedia of Planetary Landforms, edited by: Hargitai, H. and Kereszturi, Á., Springer, New York, NY, https://doi.org/10.1007/978-1-4614-3134-3_518, 2015.
Chamizo, E., García-León, M., Peruchena, J. I., Cereceda, F., Vidal, V., Pinilla, E., and Miró, C.: Presence of plutonium isotopes, 239Pu and 240Pu, in soils from Chile, Nucl. Instrum. Methods Phys. Res. B Nucl. Instrum. Meth. B., 269, 3163–3166, https://doi.org/10.1016/j.nimb.2011.04.021, 2011.
Chatterji, S. and Jeffery, J. W.: A new hypothesis of sulphate expansion, Mag. Concrete Res., 15, 83–86, https://doi.org/10.1680/macr.1964.16.49.236, 1963.
Cheng, R.-L., He, H., Michalski, J. R., and Li, Y.-L.: A new type of polygonal terrain formed by sulfate weathering in arid regions, Geomorphology, 383, 107695, https://doi.org/10.1016/j.geomorph.2021.107695, 2021.
Chukanov, N. V., Krivoveichev, S. V., Chernyatieva, A. P., Möhn, G., Pekov, I. V., Belakovskiy, D. I., Van, K. V., and Lorenz, J. A.: Vendidaite Al2(SO4)(OH)3Cl • 6H2O, a new mineral from La Vendida copper mine, Antofagasta region, Chile, Can. Mineral., 51, 559–568, https://doi.org/10.3749/canmin.51.4.559, 2013.
Clark, B. and van Hart, D. C.: The salts of Mars, Icarus, 45, 370–378, https://doi.org/10.1016/0019-1035(81)90041-5, 1981.
Cody, R. D. and Hull, A. B.: Experimental growth of primary anhydrite at low temperatures and water salinities, Geology, 8, 505–509, https://doi.org/10.1130/0091-7613(1980)8$<$505:EGOPAA$>$2.0.CO;2, 1980.
Cooke, R. U. and Warren, A.: Geomorphology in Deserts, Univ. of California Press, Berkeley, 374 pp., https://doi.org/10.1525/9780520329584, 1973.
Cosentino, N. J. and Jordan, T. E.: 87Sr/86Sr of calcium sulfate in ancient soils of hyperarid settings as a paleoaltitude proxy: Pliocene to Quaternary constraints for northern Chile (19.5–21.7° S), Tectonics, 36, 137–162, https://doi.org/10.1002/2016tc004185, 2017.
Croudace, I. W., Rindby, A., and Rothwell, R. G.: ITRAX: description and evaluation of a new multi-function X-ray core scanner, Geol. Soc. Spec. Publ., 267, 51–63, 2006.
Dang, Y., Zhang, F., Zhao, J., Wang, J., Xu, Y., Huang, T., and Xiao, L.: Diverse polygonal patterned grounds in the Northern Eridania Basin, mars: Possible origins and implications, J. Geophys. Res. Planets, 125, e2020JE006647, https://doi.org/10.1029/2020JE006647, 2020.
del Río, C., Garcia, J.-L., Osses, P., Zanetta, N., Lambert, F., Rivera, D., Siegmund, A., Wolf, N., Cereceda, P., Larraín, H., and Lobos, F.: ENSO influence on coastal fog-water yield in the Atacama Desert, Chile, Aerosol Air Qual. Res., 18, 127–144, https://doi.org/10.4209/aaqr.2017.01.0022, 2018.
de Porras, M. E., Maldonado, A., De Pol-Holz, R., Latorre, C., and Betancourt, J. L.: Late Quaternary environmental dynamics in the Atacama Desert reconstructed from rodent midden pollen records, J. Quat. Sci., 32, 665–684, https://doi.org/10.1002/jqs.2980, 2017.
Dewald, A., Heinze, S., Jolie, J., Zilges, A., Dunai, T., Rethemeyer, J., Melles, M., Staubwasser, M., Kuczewski, B., Richter, J., Radtke, U., von Blanckenburg, F., and Klein, M.: CologneAMS, a dedicated center for accelerator mass spectrometry in Germany, Nucl. Instrum. Methods Phys. Res. B Nucl. Instrum. Meth. B., 294, 18–23, https://doi.org/10.1016/j.nimb.2012.04.030, 2013a.
Dewald, A., Heinze, S., Feuerstein, C., Müller-Gatermann, C., Stolz, A., Schiffer, M., Zitzer, G., Dunai, T., Rethemeyer, J., Melles, M., Wiesel, H., and von Blanckenburg, F.: The first year of operation of CologneAMS; performance and developments, EPJ Web Conf, 63, 03006, https://doi.org/10.1051/epjconf/20136303006, 2013b.
Diederich, J. L., Wennrich, V., Bao, R., Büttner, C., Bolten, A., Brill, D., Buske, S., Campos, E., Fernández-Galego, E., Gödickmeier, P., Ninnemann, L., Reyers, M., Ritter, B., Ritterbach, L., Rolf, C., Scheidt, S., Dunai, T. J., and Melles, M.: A 68 ka precipitation record from the hyperarid core of the Atacama Desert in northern Chile, Glob. Planet. Change, 184, 103054, https://doi.org/10.1016/j.gloplacha.2019.103054, 2020.
Dunai, T. J., González López, G. A., and Juez-Larré, J.: Oligocene–Miocene age of aridity in the Atacama Desert revealed by exposure dating of erosion-sensitive landforms, Geology, 33, 321, https://doi.org/10.1130/g21184.1, 2005.
Edelman, C. H., Florschutz, F., and Jeswiet, J.: Über Spätpleistozäne und frühholozäne kryoturbate Ablagerungen in östlichen Niederlanden.Verhandelingen van het Geologisch-Mijnbouwkundig Genootschap voor Nederland en Koloniën, Geol. Ser., 11, 301–336, 1936.
Ehlmann, B. L. and Edwards, C. S.: Mineralogy of the Martian surface, Annu. Rev. Earth Planet. Sci., 42, 291–315, https://doi.org/10.1146/annurev-earth-060313-055024, 2014.
Ericksen, A. G. E.: Geology and Origin of the Chilean Nitrate Deposits, Geological Survey Professional Paper, 1188, 37 pp., https://doi.org/10.3133/pp1188, 1981.
Ericksen, A. G. E.: The Chilean Nitrate Deposits: The origin of the Chilean nitrate deposits, which contain a unique group of saline minerals, has provoked lively discussion for more than 100 years, Am. Sci., 71, 366–374, 1983.
Evenstar, L. A., Hartley, A. J., Stuart, F. M., Mather, A. E., Rice, C. M., and Chong, G.: Multiphase development of the Atacama planation surface recorded by cosmogenic 3He exposure ages: Implications for uplift and Cenozoic climate change in western South America, Geology, 37, 27–30, https://doi.org/10.1130/g25437a.1, 2009.
Evenstar, L. A., Mather, A. E., Hartley, A. J., Stuart, F. M., Sparks, R. S. J., and Cooper, F. J.: Geomorphology on geologic timescales: Evolution of the Late Cenozoic pacific paleosurface in northern Chile and Southern Peru, Earth-Sci. Rev., 171, 1–27, https://doi.org/10.1016/j.earscirev.2017.04.004, 2017.
Ewing, S. A., Sutter, B., Owen, J., Nishiizumi, K., Sharp, W., Cliff, S. S., Perry, K., Dietrich, W., McKay, C. P., and Amundson, R.: A threshold in soil formation at Earth's arid–hyperarid transition, Geochim. Cosmochim. Acta, 70, 5293–5322, https://doi.org/10.1016/j.gca.2006.08.020, 2006.
Farías, M., Charrier, R., Comte, D., Martinod, J., and Hérail, G.: Late Cenozoic deformation and uplift of the western flank of the Altiplano: evidence from the depositional, tectonic, and geomorphologic evolution and shallow seismic activity (northern Chile at 19°30′ S), Tectonics, 24, TC4001, https://doi.org/10.1029/2004TC001667, 2005.
Finstad, K., Pfeiffer, M., McNicol, G., Barnes, J., Demergasso, C., Chong, G., and Amundson, R.: Rates and geochemical processes of soil and salt crust formation in Salars of the Atacama Desert, Chile, Geoderma, 284, 57–72, https://doi.org/10.1016/j.geoderma.2016.08.020, 2016.
Flatt, R. J., Caruso, F., Sanchez, A. M., and Scherer, G. W.: Chemo-mechanics of salt damage in stone, Nat. Commun., 5, 4823, https://doi.org/10.1038/ncomms5823, 2014.
Fookes, P. G. and Lee, E. M.: Salt Weathering and Haloturbation, in: Geology for Engineers, CRC Press, 345–367, https://doi.org/10.1201/9780203740784, 2018.
Garreaud, R. D., Vuille, M., Compagnucci, R., and Marengo, J.: Present-day South American climate, Palaeogeogr. Palaeoclimatol. Palaeoecol., 281, 180–195, https://doi.org/10.1016/j.palaeo.2007.10.032, 2009.
Gendrin, A., Mangold, N., Bibring, J.-P., Langevin, Y., Gondet, B., Poulet, F., Bonello, G., Quantin, C., Mustard, J., Arvidson, R., and Lemouélic, S.: Sulfates in Martian Layered Terrains: The OMEGA/Mars Express View, Science, 307, 1587–1591, https://doi/10.1126/science.1109087, 2005.
Hanley, J., Chevrier, V. F., Berget, D. J., and Adams, R. D.: Chlorate salts and solutions on Mars, Geohys. Res. Lett., 39, L08201, https://doi.org/10.1029/2012gl051239, 2012.
Hardie, L. A.: The gypsum-anhydrite equilibrium at one atmosphere pressure, Amer. Mineral., 52, 171–200, 1967.
Hartley, A. J. and Evenstar, L.: Cenozoic stratigraphic development in the North Chilean forearc: Implications for basin development and uplift history of the Central Andean Margin, Tectonophysics, 495, 67–77, https://doi.org/10.1016/j.tecto.2009.05.013, 2010.
Hartley, A. J. and May, G.: Miocene gypcretes from the Calama Basin, Northern Chile, Sedimentology, 45, 351–364, https://doi.org/10.1046/j.1365-3091.1998.0166e.x, 1998.
Hauber, E., Reiss, D., Ulrich, M., Preusker, F., Trauthan, F., Zanetti, M., Hiesinger, H., Jaumann, R., Johansson, L., Johnsson, A., Van Gasselt, S., and Olvmo, M.: Landscape evolution in Martian mid-latitude regions: Insights from analogous periglacial landforms in Svalbard, Geol. Soc. Spec. Publ., 356, 111–131, https://doi.org/10.1144/sp356.7, 2011.
Houston, J.: Variability of precipitation in the Atacama Desert: Its causes and hydrological impact, Int. J. Climate, 26, 2181–2198, https://doi.org/10.1002/joc.1359, 2006.
Howell, M. S.: Mineralogy and micromorphology of an Atacama Desert soil, Chile: A model for hyperarid pedogenesis, Master's thesis, UNLV Theses, Dissertations, Professional Papers, and Capstones 52, https://doi.org/10.34870/1363798, 2009.
Howell, M. S., Buck, B. J., Rech, J. A., Brock, A. L., and Prellwitz, J.: Genesis of the Hyperarid Soils of the Atacama Desert: Analogue for Mars?, 18th World Congress of Soil Science, Philadelphia, Pennsylvania, 2006.
Jarzyna, A., Bąbel, M., Ługowski, D., and Vladi, F.: Petrographic record and conditions of expansive hydration of anhydrite in the recent weathering zone at the abandoned Dingwall Gypsum Quarry, Nova Scotia, Canada, Minerals, 12, 58, https://doi.org/10.3390/min12010058, 2021.
Joeckel, R. M., Wally, K. D., Ang Clement, B. J., Hanson, P. R., Dillon, J. S., and Wilson, S. K.: Secondary minerals from extrapedogenic per latus acidic weathering environments at geomorphic edges, Eastern Nebraska, USA, Catena, 85, 253–266, https://doi.org/10.1016/j.catena.2011.01.01, 2011.
Jordan, T. E., Kirk-Lawlor, N. E., Blanco, N. P., Rech, J. A., and Cosentino, N. J.: Landscape modification in response to repeated onset of hyperarid paleoclimate states since 14 Ma, Atacama Desert, Chile, Geol. Soc. Am. Bull., 126, 1016–1046, https://doi.org/10.1130/b30978.1, 2014.
Jordan, T. E., Herrera L., C., Godfrey, L. V., Colucci, S. J., Gamboa P., C., Urrutia M., J., González L., G., and Paul, J. F.: Isotopic characteristics and paleoclimate implications of the extreme precipitation event of March 2015 in Northern Chile, Andean Geol., 46, 1, https://doi.org/10.5027/andgeov46n1-3087, 2019.
Kelley, J. M., Bond, L. A., and Beasley, T. M.: Global distribution of Pu isotopes and 237Np, Sci. Total Environ., 237–238, 483–500, https://doi.org/10.1016/s0048-9697(99)00160-6, 1999.
Kessler, M. A. and Werner, B. T.: Self-organization of sorted patterned ground, Science, 299, 380–383, https://doi.org/10.1126/science.1077309, 2003.
Kober, F., Ivy-Ochs, S., Schlunegger, F., Baur, H., Kubik, P. W., and Wieler, R.: Denudation rates and a topography-driven rainfall threshold in northern Chile: Multiple cosmogenic nuclide data and sediment yield budgets, Geomorphology, 83, 97–120, https://doi.org/10.1016/j.geomorph.2006.06.029, 2007.
Kohl, C. P. and Nishiizumi, K.: Chemical isolation of quartz for measurement of in-situ -produced cosmogenic nuclides, Geochim. Cosmochim. Acta, 56, 3583–3587, https://doi.org/10.1016/0016-7037(92)90401-4, 1992.
Lachenbruch, A. H.: Mechanics of thermal contraction cracks and ice-wedge polygons in permafrost. Geol. Soc. Am. Spec. Pap., 70, 1–69, https://doi.org/10.1130/SPE70, 1962.
Lal, D.: Cosmic Ray labeling of erosion surfaces: In situ nuclide production rates and erosion models, Earth Planet. Sci. Lett., 104, 424–439, https://doi.org/10.1016/0012-821x(91)90220-c, 1991.
Latorre, C., González, A. L., Quade, J., Fariña, J. M., Pinto, R., and Marquet, P. A.: Establishment and formation of fog-dependent tillandsia landbecki i dunes in the Atacama Desert: Evidence from radiocarbon and stable isotopes, J. Geophys. Res.-Biogeosci., 116, 1–11, https://doi.org/10.1029/2010jg001521, 2011.
Lehmann, S. B.: Climatic and Tectonic Implications of a mid-Miocene Landscape: Examination of the Tarapaca Pediplain, Atacama Desert, Chile, Master’s thesis, Miami University, OhioLINK Electronic Theses and Dissertations Center, http://rave.ohiolink.edu/etdc/view?acc_num=miami1375486991 (last access: 2 August 2023), 2013.
Levy, J., Head, J., and Marchant, D.: Thermal contraction crack polygons on Mars: Classification, distribution, and climate implications from HiRISE Observations, J. Geophys. Res., 114, E01007, https://doi.org/10.1029/2008je003273, 2009.
Levy, J., Head, J. W., and Marchant, D. R.: Concentric crater fill in the northern mid-latitudes of Mars: Formation processes and relationships to similar landforms of glacial origin, Icarus, 209, 390–404, https://doi.org/10.1016/j.icarus.2010.03.036, 2010.
Lifton, N., Sato, T., and Dunai, T. J.: Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes, Earth Planet. Sci. Lett., 386, 149–160, https://doi.org/10.1016/j.epsl.2013.10.052, 2014.
Liu, X.-J. and Lai, Z.-P.: Optical dating of sand wedges and ice-wedge casts from Qinghai Lake area on the northeastern Qinghai-Tibetan Plateau and its palaeoenvironmental implications, Boreas, 42, 333–341, https://doi.org/10.1111/j.1502-3885.2012.00288.x, 2013.
Mackay, J. R.: Some observations on the growth and deformation of epigenetic, Syngenetic and anti-syngenetic ice wedges, Permafr. Periglac. Process., 1, 15–29, https://doi.org/10.1002/ppp.3430010104, 1990.
Mangold, N.: High latitude patterned grounds on Mars: Classification, distribution and Climatic Control, Icarus, 174, 336–359, https://doi.org/10.1016/j.icarus.2004.07.030, 2005.
Mangold, N., Maurice, S., Feldman, W. C., Costard, F., and Forget, F.: Spatial relationships between patterned ground and ground ice detected by the Neutron Spectrometer on Mars, J. Geophys. Res., 109, E08001., https://doi.org/10.1029/2004je002235, 2004.
May, S. M., Hoffmeister, D., Wolf, D., and Bubenzer, O.: Zebra stripes in the Atacama Desert revisited – Granular fingering as a mechanism for zebra stripe formation?, Geomorphology, 344, 46–59, https://doi.org/10.1016/j.geomorph.2019.07.014, 2019.
Medialdea, A., May, S. M., Brill, D., King, G., Ritter, B., Wennrich, V., Bartz, M., Zander, A., Kuiper, K., Hurtado, S., Hoffmeister, D., Schulte, P., Gröbner, M., Opitz, S., Brückner, H., and Bubenzer, O.: Identification of humid periods in the Atacama Desert through hillslope activity established by infrared stimulated luminescence (IRSL) dating, Glob. Planet. Change, 185, 103086, https://doi.org/10.1016/j.gloplacha.2019.103086, 2020.
Michalski, G., Böhlke, J. K., and Thiemens, M.: Long term atmospheric deposition as the source of nitrate and other salts in the Atacama Desert, Chile: New evidence from mass-independent oxygen isotopic compositions, Geochim. Cosmochim. Acta, 68, 4023–4038, https://doi.org/10.1016/j.gca.2004.04.009, 2004.
Milsch, H., Priegnitz, M., and Blöcher, G.: Permeability of gypsum samples dehydrated in Air, Geophys. Res. Lett., 38, L18304, https://doi.org/10.1029/2011gl048797, 2011.
Mohren, J., Binnie, S. A., Ritter, B., and Dunai, T. J.: Development of a steep erosional gradient over a short distance in the hyperarid core of the Atacama Desert, northern Chile, Glob. Planet. Change, 184, 995–1020, https://doi.org/10.1016/j.gloplacha.2019.103068, 2020.
Mörchen, R., Amelung, W., Giese, C., Böhnert, T., Ruhm, J., and Lehndorff, E.: Fingerprint of plant life in the Atacama Desert – insights from n-alkane analyses, Org. Geochem., 151, 104145, https://doi.org/10.1016/j.orggeochem.2020.104145, 2021.
Mossop, G. D. and Shearman, D. J.: Origins of secondary gypsum, Trans. Inst. Mining, Metal. 82, 147–154, 1973.
Muñoz, N. and Sepúlveda, S. A.: Estructuras compresivas con vergencia al oeste en el borde oriental de la Depresión Central, Norte de Chile (19°15′ S), Rev. Geol. Chile, 19, 241–247, https://doi.org/10.5027/andgeoV44n2-a01, 1992.
Muñoz, R. C., Quintana, J., Falvey, M. J., Rutllant, J. A., and Garreaud, R.: Coastal clouds at the eastern margin of the Southeast Pacific: Climatology and trends, J. Climate, 29, 4525–4542, https://doi.org/10.1175/jcli-d-15-0757.1, 2016.
Neal, J. T., Langer, A. M., and Kerr, P. F.: Giant desiccation polygons of Great Basin Playas, Geol. Soc. Am. Bull. 79, 69–90, https://doi.org/10.1130/0016-7606(1968)79[69:GDPOGB]2.0.CO;2, 1968.
Nishiizumi, K., Caffee, M. W., Finkel, R. C., Brimhall, G., and Mote, T.: Remnants of a fossil alluvial fan landscape of Miocene age in the Atacama Desert of northern Chile using cosmogenic nuclide exposure age dating, Earth Planet. Sci. Lett., 237, 499–507, https://doi.org/10.1016/j.epsl.2005.05.032, 2005.
Opel, T., Meyer, H., Wetterich, S., Laepple, T., Dereviagin, A., and Murton, J.: Ice wedges as archives of winter paleoclimate: A Review, Permafr. Periglac. Process., 29, 199–209, https://doi.org/10.1002/ppp.1980, 2018.
Osterloo, M. M., Hamilton, V. E., Bandfield, J. L., Glotch, T. D., Baldridge A. M., Christensen, P. R., Tornabene, L. L., and Anderson, F. S.: Chloride-bearing materials in the Southern Highlands of Mars, Science, 319, 1651–1654, https://doi.org/10.1126/science.115069, 2008.
Pfeiffer, M., Morgan, A., Heimsath, A., Jordan, T., Howard, A., and Amundson, R.: Century scale rainfall in the absolute Atacama Desert: Landscape response and implications for past and future rainfall, Quaternary Sci. Rev., 254, 106797, https://doi.org/10.1016/j.quascirev.2021.106797, 2021.
Placzek, C., Granger, D. E., Matmon, A., Quade, J., and Ryb, U.: Geomorphic process rates in the central Atacama Desert, Chile: Insights from cosmogenic nuclides and implications for the onset of hyperaridity, Am. J. Sci., 314, 1462–1512, https://doi.org/10.2475/10.2014.03, 2014.
Placzek, C. J., Matmon, A., Granger, D. E., Quade, J., and Niedermann, S.: Evidence for active landscape evolution in the hyperarid atacama from multiple terrestrial cosmogenic nuclides, Earth Planet. Sci. Lett., 295, 12–20, https://doi.org/10.1016/j.epsl.2010.03.006, 2010.
Rapin, W., Dromart, G., Clark, B. C., Schieber, J., Kite, E. S., Kah, L. C., Thompson, L. M., Gasnault, O., Lasue, J., Meslin, P.-Y., Gasda, P. J., and Lanza, N. L.: Sustained wet–dry cycling on early Mars, Nature, 620, 299–302, https://doi.org/10.1038/s41586-023-06220-3, 2023.
Rech, J. A., Quade, J., and Hart, W. S.: Isotopic evidence for the source of Ca and s in soil gypsum, anhydrite and calcite in the Atacama Desert, Chile, Geochim. Cosmochim. Acta, 67, 575–586, https://doi.org/10.1016/s0016-7037(02)01175-4, 2003.
Rech, J. A., Currie, B. S., Michalski, G., and Cowan, A. M.: Neogene climate change and uplift in the Atacama Desert, Chile, Geology, 34, 761, https://doi.org/10.1130/g22444.1, 2006.
Rech, J. A., Currie, B. S., Jordan, T. E., Riquelme, R., Lehmann, S. B., Kirk-Lawlor, N. E., Li, S., and Gooley, J. T.: Massive Middle Miocene Gypsic Paleosols in the Atacama Desert and the formation of the Central Andean rain-shadow, Earth Planet. Sci. Lett., 506, 184–194, https://doi.org/10.1016/j.epsl.2018.10.040, 2019.
Reyers, M., Boehm, C., Knarr, L., Shao, Y., and Crewell, S.: Synoptic-to-regional-scale analysis of rainfall in the Atacama Desert (18–26° S) using a long-term simulation with WRF, Mon. Weather Rev., 149, 91–112, https://doi.org/10.1175/mwr-d-20-0038.1, 2021.
Ritter, B., Stuart, F. M., Binnie, S. A., Gerdes, A., Wennrich, V., and Dunai, T. J.: Neogene fluvial landscape evolution in the hyperarid core of the Atacama Desert, Sci. Rep., 8, 13952, https://doi.org/10.1038/s41598-018-32339-9, 2018.
Ritter, B., Wennrich, V., Medialdea, A., Brill, D., King, G., Schneiderwind, S., Niemann, K., Fernández-Galego, E., Diederich, J., Rolf, C., Bao, R., Melles, M., and Dunai, T. J.: Climatic fluctuations in the hyperarid core of the Atacama Desert during the past 215 ka, Sci. Rep., 9, 5270, https://doi.org/10.1038/s41598-019-41743-8, 2019.
Ritter, B., Vogt, A., and Dunai, T. J.: Technical Note: Noble gas extraction procedure and performance of the Cologne Helix MC Plus multi-collector noble gas mass spectrometer for cosmogenic neon isotope analysis, Geochronology, 3, 421–431, https://doi.org/10.5194/gchron-3-421-2021, 2021.
Ritter, B., Diederich-Leicher, J. L., Binnie, S. A., Stuart, F. M., Wennrich, V., Bolten, A., and Dunai, T. J.: Impact of CaSO4-rich soil on Miocene surface preservation and Quaternary sinuous to meandering channel forms in the hyperarid Atacama Desert, Sci. Rep., 12, 17951, https://doi.org/10.1038/s41598-022-22787-9, 2022.
Ritter, B., Mohren, J., Binnie, S. A., Wennrich, V., Dunkl, I., Albert, R., Gerdes, A., LoBue, S., and Dunai, T. J.: Shaping the Huara Intrusive Complex in the Hyperarid Atacama Desert–Erosional Near-Stasis Contrasting High Topographic Gradients, J. Geophys. Res.-Earth Surf., 128, e2022JF006986, https://doi.org/10.1029/2022JF006986, 2023.
Ritterbach, L. and Becker, P.: Temperature and humidity dependent formation of CaSO4 • XH2O (x = 0...2) phases, Glob. Planet. Change, 187, 103132, https://doi.org/10.1016/j.gloplacha.2020.103132, 2020.
Rodriguez-Navarro, C. and Doehne, E.: Salt weathering: influence of evaporation rate, supersaturation and crystallization pattern, Earth Surf. Process. Landf. 24, 191–209, https://doi.org/10.1002/(SICI)1096-9837(199903)24:3<191::AID-ESP942>3.0.CO;2-G, 1999.
Rychliński, T., Jaglarz, P., Uchman, A., and Vainorius, J., Unusually well preserved casts of halite crystals: A case from the Upper Frasnian of northern Lithuania, Sediment. Geol., 308, 44–52, https://doi.org/10.1016/j.sedgeo.2014.05.005, 2014.
Sager, C., Airo, A., Arens, F. L., and Schulze-Makuch, D.: New type of sand wedge polygons in the salt cemented soils of the hyper-arid Atacama Desert, Geomorphology, 373, 107481, https://doi.org/10.1016/j.geomorph.2020.107481, 2021.
Sager, C., Airo, A., Arens, F. L., and Schulze-Makuch, D.: Eolian erosion of polygons in the Atacama Desert as a proxy for hyper-arid environments on Earth and beyond, Sci. Rep., 12, 12394, https://doi.org/10.1038/s41598-022-16404-y, 2022.
Sager, C., Airo, A., Mangelsdorf, K., Arens, F. L., Karger, C., and Schulze-Makuch, D.: Habitability of Polygonal Soils in the Hyper-Arid Atacama Desert After a Simulated Rain Experiment, J. Geophys. Res.-Biogeosci., 128, e2022JG00732, https://doi.org/10.1029/2022JG007328, 2023.
Sanzeni, A., Colleselli, F., Crippa, F., and Merlini, M.: On the swelling behaviour of weak rocks due to gypsum crystallization, Procedia Eng., 158, 128–133, https://doi.org/10.1016/j.proeng.2016.08.417, 2016.
Schiro, M., Ruiz-Agudo, E., and Rodriguez-Navarro, C.: Damage mechanisms of porous materials due to in-pore salt crystallization, PRL, 109, 265503, https://doi.org/10.1103/physrevlett.109.265503, 2012.
Schween, J. H., Hoffmeister, D., and Löhnert, U.: Filling the observational gap in the Atacama Desert with a new network of climate stations, Glob. Planet. Change, 184, 103034, https://doi.org/10.1016/j.gloplacha.2019.103034, 2020.
Shi, E., Wang, A., Li, H., Ogliore, R., and Ling, Z.: Gamma-CaSO4 With Abnormally High Stability From a Hyperarid Region on Earth and From Mars, J. Geophys. Res.-Planets, 127, e2021JE007108, https://doi.org/10.1029/2021JE007108, 2022.
Smith, D. B.: Possible displacive halite in the Permian Upper Evaporite Group of northeast Yorkshire, Sedimentology, 17, 221–232, https://doi.org/10.1111/j.1365-3091.1971.tb00352.x, 1971.
Soare, R. J., Conway, S. J., and Dohm, J. M.: Possible ice-wedge polygons and recent landscape modification by “wet” periglacial processes in and around the Argyre impact basin, Mars, Icarus, 233, 214–228, https://doi.org/10.1016/j.icarus.2014.01.034, 2014.
Starke, J., Ehlers, T. A., and Schaller, M.: Tectonic and climatic controls on the spatial distribution of denudation rates in northern Chile (18° S to 23° S) determined from cosmogenic nuclides, J. Geophys. Res., 122, 1949–1971, https://doi.org/10.1002/2016jf004153, 2017.
Stone, J. O.: Air pressure and cosmogenic isotope production, J. Geophys. Res., 105, 23753–23759, https://doi.org/10.1029/2000jb900181, 2000.
Stuut, J.-B. W. and Lamy, F.: Climate variability at the southern boundaries of the Namib (southwestern Africa) and Atacama (northern Chile) coastal deserts during the last 120,000 yr., Quaternary Res., 62, 301–309, https://doi.org/10.1016/j.yqres.2004.08.001, 2004.
Tang, Y., Gao, J., Liu, C., Chen, X., and Zhao, Y.: Dehydration pathways of gypsum and the rehydration mechanism of soluble anhydrite γ-CaSO4, ACS Omega, 4, 7636–7642, https://doi.org/10.1021/acsomega.8b03476, 2019.
Tucker, R. M.: Giant polygons in the Triassic salt of Cheshire, England. A thermal contraction model for their origin, J. Sediment. Res., 51, 779–786, https://doi.org/10.1306/212F7DA6-2B24-11D7-8648000102C1865D, 1981.
Vaniman, D. T., Martínez, G. M., Rampe, E. B., Bristow, T. F., Blake, D. F., Yen, A. S., Ming, D. W., Rapin, W., Meslin, P.-Y., Morookian, J. M., Downs, R. T., Chipera, S. J., Morris, R. V., Morrison, S. M., Treiman, A. H., Achilles, C. N., Robertson, K., Grotzinger, J. P., Hazen, R. M., Wiens, R. C., and Sumner, D. Y.: Gypsum, bassanite, and anhydrite at Gale Crater, Mars, Am. Min., 103, 1011–1020, https://doi.org/10.2138/am-2018-6346, 2018.
Vicencio Veloso, J. M.: Analysis of an extreme precipitation event in the Atacama Desert on January 2020 and its relationship to humidity advection along the Southeast Pacific, Atmósfera, https://doi.org/10.20937/atm.52911, 2022.
Voigt, C., Klipsch, S., Herwartz, D., Chong, G., and Staubwasser, M.: The spatial distribution of soluble salts in the surface soil of the Atacama Desert and their relationship to hyperaridity, Glob. Planet. Change, 184, 103077, https://doi.org/10.1016/j.gloplacha.2019.103077, 2020.
von Rotz, R., Schlunegger, F., Heller, F., and Villa, I.: Assessing the age of relief growth in the Andes of northern Chile: Magneto-polarity chronologies from Neogene continental sections, Terra Nova, 17, 462–471, https://doi.org/10.1111/j.1365-3121.2005.00634.x, 2005.
Waele, J. D., Carbone, C., Sanna, L., Vattano, M., Galli, E., Sauro, F., and Forti, P.: Secondary minerals from salt caves in the Atacama Desert (Chile): a hyperarid and hypersaline environment with potential analogies to the Martian subsurface, J. Arid Environ., 147, 21–33, https://doi.org/10.1016/j.jaridenv.2017.06.002, 2017.
Wang, F., Michalski, G., Seo, J., and Ge, W.: Geochemical, isotopic, and mineralogical constraints on atmospheric deposition in the hyper-arid Atacama Desert, Chile, Geochim. Cosmochim. Acta, 135, 29–48, https://doi.org/10.1016/j.gca.2014.03.017, 2014.
Wang, F., Michalski, G., Seo, J.-H., Granger, D. E., Lifton, N., and Caffee, M.: Beryllium-10 concentrations in the hyper-arid soils in the Atacama Desert, Chile: Implications for arid soil formation rates and El Niño driven changes in Pliocene precipitation, Geochim. Cosmochim. Acta, 160, 227–242, https://doi.org/10.1016/j.gca.2015.03.008, 2015.
Warren, J. K.: Evaporites: A Geological Compendium, Springer International Publishing, Cham, https://doi.org/10.1007/978-3-319-13512-0, 2016.
Washburn, A. L.: Classification of patterned ground and review of suggested origins, Geol. Soc. Am. Bull., 67, 823–865, https://doi.org/10.1177/0309133312438909, 1956.
Washburn, A. L.: Geocryology. A Survey of Periglacial Processes and Environments. ix + 406 pp., numerous illustrations, London: Edward Arnold, ISBN 0713161191, 1979.
Wehmann, N., Lenting, C., and Jahn, S.: Calcium sulfates in planetary surface environments, Glob. Planet. Change, 230, 104257, https://doi.org/10.1016/j.gloplacha.2023.104257, 2023.
Wells, S. G., McFadden, L. D., Poths, J., and Olinger, C. T.: Cosmogenic 3He surface-exposure dating of stone pavements: Implications for landscape evolution in deserts, Geology, 23, 613–616, https://doi.org/10.1130/0091-7613(1995)023<0613:CHSEDO>2.3.CO;2, 1995.
Wennrich, V., Böhm, C., Brill, D., Carballeira, R., Hoffmeister, D., Jaeschke, A., Kerber, F., Maldonado, A., May, S. M., Olivares, L., Opitz, S., Rethemeyer, J., Reyers, M., Ritter, B., Schween, J. H., Sevinç, F., Steiner, J., Walber-Hellmann, K., and Melles, M.: Late Pleistocene to modern precipitation changes at the Paranal Clay Pan, central Atacama Desert, Glob. Planet. Change, 233, 104349, https://doi.org/10.1016/j.gloplacha.2023.104349, 2024.
Wierzchos, J., Cámara, B., de Los Ríos, A., Davila, A. F., Sánchez Almazo, I. M., Artieda, O., Wierzchos, K., Gómez-Silva, B., McKay, C., and Ascaso, C.: Microbial colonization of Ca-sulfate crusts in the hyperarid core of the Atacama Desert: implications for the search for life on Mars, FEMS Microbiol. Ecol., 73, 1–9, https://doi.org/10.1111/j.1472-4669.2010.00254.x, 2010.
Williams, G. E.: Precambrian permafrost horizons as indicators of Palaeoclimate, Precambrian Res., 32, 233–242, https://doi.org/10.1016/0301-9268(86)90008-2, 1986.
Winkler, E. M. and Singer, P.: Crystallisation pressure of salts in stone and concrete, Geol. Soc. Am. Bull., 83, 3509–3514, https://doi.org/10.1130/0016-7606(1972)83[3509:CPOSIS]2.0.CO;2, 1972.
Zhu, J., Wu, B., Zhao, T., and Li, Y.: Polygons with halite-crusted floors and gypsum-raised rims in western Qaidam Basin and implications for polygonal landforms on Mars, Geomorphology, 443, 108934, https://doi.org/10.1016/j.geomorph.2023.108934, 2023.
Zinelabedin, A., Riedesel, S., Reimann, T., Ritter, B., and Dunai, T. J.: Testing the potential of using coarse-grain feldspars for post-IR IRSL dating of calcium sulphate-wedge growth in the Atacama Desert, Quat. Geochronol., 71, 101341, https://doi.org/10.1016/j.quageo.2022.101341, 2022.
Short summary
In order to interpret the formation processes of subsurface salt wedges and polygonal patterned grounds from the northern Atacama Desert, we present a multi-methodological approach. Due to the high salt content of the wedges, we suggest that their formation is dominated by subsurface salt dynamics requiring moisture. We assume that the climatic conditions during the wedge growth were slightly wetter than today, offering the potential to use the wedges as palaeoclimate archives.
In order to interpret the formation processes of subsurface salt wedges and polygonal patterned...