Articles | Volume 13, issue 3
https://doi.org/10.5194/esurf-13-365-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-13-365-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sub-surface processes and heat fluxes at coarse blocky Murtèl rock glacier (Engadine, eastern Swiss Alps): seasonal ice and convective cooling render rock glaciers climate-robust
Dominik Amschwand
CORRESPONDING AUTHOR
Department of Geosciences, University of Fribourg, Fribourg, Switzerland
now at: Department of Computer Sciences, University of Innsbruck, Innsbruck, Austria
Jonas Wicky
Department of Geosciences, University of Fribourg, Fribourg, Switzerland
Martin Scherler
Department of Geosciences, University of Fribourg, Fribourg, Switzerland
deceased, 4 June 2022
Martin Hoelzle
Department of Geosciences, University of Fribourg, Fribourg, Switzerland
Bernhard Krummenacher
GEOTEST AG, Zollikofen/Bern, Switzerland
Anna Haberkorn
GEOTEST AG, Zollikofen/Bern, Switzerland
Christian Kienholz
GEOTEST AG, Zollikofen/Bern, Switzerland
Hansueli Gubler
Alpug GmbH, Davos, Switzerland
Related authors
Landon J. S. Halloran and Dominik Amschwand
The Cryosphere, 19, 3397–3417, https://doi.org/10.5194/tc-19-3397-2025, https://doi.org/10.5194/tc-19-3397-2025, 2025
Short summary
Short summary
Rock glaciers (RGs) are permafrost landforms occurring in many alpine regions. Gravimetry measures g (acceleration due to gravity). Decreases in water and/or ice content in the ground near a measurement point make g decrease, too. In this first study of its kind, we measured changes in g to calculate subsurface ice melt in a RG. Our approach helps measure and understand invisible underground ice and water processes in rapidly changing permafrost environments.
Dominik Amschwand, Seraina Tschan, Martin Scherler, Martin Hoelzle, Bernhard Krummenacher, Anna Haberkorn, Christian Kienholz, Lukas Aschwanden, and Hansueli Gubler
Hydrol. Earth Syst. Sci., 29, 2219–2253, https://doi.org/10.5194/hess-29-2219-2025, https://doi.org/10.5194/hess-29-2219-2025, 2025
Short summary
Short summary
Meltwater from rock glaciers, frozen landforms of debris and ice, has gained attention in dry mountain regions. We estimated how much ice melts in Murtèl rock glacier (Swiss Alps) based on belowground heat flow measurements and observations of the rising and falling ground-ice table. We found seasonal aggradation and melt of 150–300 mm w.e. (20 %–40 % of the snowpack). The ice (largely sourced from refrozen snowmelt) melts in hot summer periods, infiltrates, and recharges groundwater.
Dominik Amschwand, Martin Scherler, Martin Hoelzle, Bernhard Krummenacher, Anna Haberkorn, Christian Kienholz, and Hansueli Gubler
The Cryosphere, 18, 2103–2139, https://doi.org/10.5194/tc-18-2103-2024, https://doi.org/10.5194/tc-18-2103-2024, 2024
Short summary
Short summary
Rock glaciers are coarse-debris permafrost landforms that are comparatively climate resilient. We estimate the surface energy balance of rock glacier Murtèl (Swiss Alps) based on a large surface and sub-surface sensor array. During the thaw seasons 2021 and 2022, 90 % of the net radiation was exported via turbulent heat fluxes and only 10 % was transmitted towards the ground ice table. However, early snowmelt and droughts make these permafrost landforms vulnerable to climate warming.
Dominik Amschwand, Susan Ivy-Ochs, Marcel Frehner, Olivia Steinemann, Marcus Christl, and Christof Vockenhuber
The Cryosphere, 15, 2057–2081, https://doi.org/10.5194/tc-15-2057-2021, https://doi.org/10.5194/tc-15-2057-2021, 2021
Short summary
Short summary
We reconstruct the Holocene history of the Bleis Marscha rock glacier (eastern Swiss Alps) by determining the surface residence time of boulders via their exposure to cosmic rays. We find that this stack of lobes formed in three phases over the last ~9000 years, controlled by the regional climate. This work adds to our understanding of how these permafrost landforms reacted in the past to climate oscillations and helps to put the current behavior of rock glaciers in a long-term perspective.
Enrico Mattea, Atanu Bhattacharya, Sajid Ghuffar, Julekha Khatun, Martina Barandun, and Martin Hoelzle
EGUsphere, https://doi.org/10.5194/egusphere-2025-4068, https://doi.org/10.5194/egusphere-2025-4068, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Some glaciers flow not steadily but with periodic "pulsations". They cluster in specific regions, and their distribution and processes are still being studied. We use data from different satellites over 50+ years, in order to examine pulsating glaciers in a mountain range of Central Asia. We find that such glaciers are more widespread than thought. We also re-evaluate the work of Soviet researchers who tried to predict the distribution of such glaciers already in 1980 with a mathematical model
Dilara Kim, Enrico Mattea, Mattia Callegari, Tomas Saks, Ruslan Kenzhebayev, Erlan Azisov, Tobias Ullmann, Martin Hoelzle, and Martina Barandun
EGUsphere, https://doi.org/10.5194/egusphere-2025-3978, https://doi.org/10.5194/egusphere-2025-3978, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We investigated how the snowline changed on four glaciers in the Pamir and Tien Shan mountain ranges in Central Asia. For this we developed a new method of combining different types of satellite images. This detailed record of snowlines shows for the first time how glaciers are responding to climate change during the dry season on almost daily scale. Our results help to understand better when and how much meltwater stored in glaciers can be used for drinking water by people living downstream.
Landon J. S. Halloran and Dominik Amschwand
The Cryosphere, 19, 3397–3417, https://doi.org/10.5194/tc-19-3397-2025, https://doi.org/10.5194/tc-19-3397-2025, 2025
Short summary
Short summary
Rock glaciers (RGs) are permafrost landforms occurring in many alpine regions. Gravimetry measures g (acceleration due to gravity). Decreases in water and/or ice content in the ground near a measurement point make g decrease, too. In this first study of its kind, we measured changes in g to calculate subsurface ice melt in a RG. Our approach helps measure and understand invisible underground ice and water processes in rapidly changing permafrost environments.
Marcus Gastaldello, Enrico Mattea, Martin Hoelzle, and Horst Machguth
The Cryosphere, 19, 2983–3008, https://doi.org/10.5194/tc-19-2983-2025, https://doi.org/10.5194/tc-19-2983-2025, 2025
Short summary
Short summary
Inside the highest glaciers of the Alps lies an invaluable archive of data revealing the Earth's historic climate. However, as the atmosphere warms due to climate change, so does the glaciers' internal temperature, threatening the future longevity of these records. Using our customised Python model, validated by on-site measurements, we show how a doubling in surface melt has caused a warming of 1.5 °C in the past 21 years and explore the challenges of modelling in complex mountainous terrain.
Dominik Amschwand, Seraina Tschan, Martin Scherler, Martin Hoelzle, Bernhard Krummenacher, Anna Haberkorn, Christian Kienholz, Lukas Aschwanden, and Hansueli Gubler
Hydrol. Earth Syst. Sci., 29, 2219–2253, https://doi.org/10.5194/hess-29-2219-2025, https://doi.org/10.5194/hess-29-2219-2025, 2025
Short summary
Short summary
Meltwater from rock glaciers, frozen landforms of debris and ice, has gained attention in dry mountain regions. We estimated how much ice melts in Murtèl rock glacier (Swiss Alps) based on belowground heat flow measurements and observations of the rising and falling ground-ice table. We found seasonal aggradation and melt of 150–300 mm w.e. (20 %–40 % of the snowpack). The ice (largely sourced from refrozen snowmelt) melts in hot summer periods, infiltrates, and recharges groundwater.
Enrico Mattea, Etienne Berthier, Amaury Dehecq, Tobias Bolch, Atanu Bhattacharya, Sajid Ghuffar, Martina Barandun, and Martin Hoelzle
The Cryosphere, 19, 219–247, https://doi.org/10.5194/tc-19-219-2025, https://doi.org/10.5194/tc-19-219-2025, 2025
Short summary
Short summary
We reconstruct the evolution of terminus position, ice thickness, and surface flow velocity of the reference Abramov glacier (Kyrgyzstan) from 1968 to present. We describe a front pulsation in the early 2000s and the multi-annual present-day buildup of a new pulsation. Such dynamic instabilities can challenge the representativity of Abramov as a reference glacier. For our work we used satellite‑based optical remote sensing from multiple platforms, including recently declassified archives.
Tamara Mathys, Muslim Azimshoev, Zhoodarbeshim Bektursunov, Christian Hauck, Christin Hilbich, Murataly Duishonakunov, Abdulhamid Kayumov, Nikolay Kassatkin, Vassily Kapitsa, Leo C. P. Martin, Coline Mollaret, Hofiz Navruzshoev, Eric Pohl, Tomas Saks, Intizor Silmonov, Timur Musaev, Ryskul Usubaliev, and Martin Hoelzle
EGUsphere, https://doi.org/10.5194/egusphere-2024-2795, https://doi.org/10.5194/egusphere-2024-2795, 2024
Short summary
Short summary
This study provides a comprehensive geophysical dataset on permafrost in the data-scarce Tien Shan and Pamir mountain regions of Central Asia. It also introduces a novel modeling method to quantify ground ice content across different landforms. The findings indicate that this approach is well-suited for characterizing ice-rich permafrost, which is crucial for evaluating future water availability and assessing risks associated with thawing permafrost.
Dominik Amschwand, Martin Scherler, Martin Hoelzle, Bernhard Krummenacher, Anna Haberkorn, Christian Kienholz, and Hansueli Gubler
The Cryosphere, 18, 2103–2139, https://doi.org/10.5194/tc-18-2103-2024, https://doi.org/10.5194/tc-18-2103-2024, 2024
Short summary
Short summary
Rock glaciers are coarse-debris permafrost landforms that are comparatively climate resilient. We estimate the surface energy balance of rock glacier Murtèl (Swiss Alps) based on a large surface and sub-surface sensor array. During the thaw seasons 2021 and 2022, 90 % of the net radiation was exported via turbulent heat fluxes and only 10 % was transmitted towards the ground ice table. However, early snowmelt and droughts make these permafrost landforms vulnerable to climate warming.
Horst Machguth, Anja Eichler, Margit Schwikowski, Sabina Brütsch, Enrico Mattea, Stanislav Kutuzov, Martin Heule, Ryskul Usubaliev, Sultan Belekov, Vladimir N. Mikhalenko, Martin Hoelzle, and Marlene Kronenberg
The Cryosphere, 18, 1633–1646, https://doi.org/10.5194/tc-18-1633-2024, https://doi.org/10.5194/tc-18-1633-2024, 2024
Short summary
Short summary
In 2018 we drilled an 18 m ice core on the summit of Grigoriev ice cap, located in the Tien Shan mountains of Kyrgyzstan. The core analysis reveals strong melting since the early 2000s. Regardless of this, we find that the structure and temperature of the ice have changed little since the 1980s. The probable cause of this apparent stability is (i) an increase in snowfall and (ii) the fact that meltwater nowadays leaves the glacier and thereby removes so-called latent heat.
Marlene Kronenberg, Ward van Pelt, Horst Machguth, Joel Fiddes, Martin Hoelzle, and Felix Pertziger
The Cryosphere, 16, 5001–5022, https://doi.org/10.5194/tc-16-5001-2022, https://doi.org/10.5194/tc-16-5001-2022, 2022
Short summary
Short summary
The Pamir Alay is located at the edge of regions with anomalous glacier mass changes. Unique long-term in situ data are available for Abramov Glacier, located in the Pamir Alay. In this study, we use this extraordinary data set in combination with reanalysis data and a coupled surface energy balance–multilayer subsurface model to compute and analyse the distributed climatic mass balance and firn evolution from 1968 to 2020.
Martin Hoelzle, Christian Hauck, Tamara Mathys, Jeannette Noetzli, Cécile Pellet, and Martin Scherler
Earth Syst. Sci. Data, 14, 1531–1547, https://doi.org/10.5194/essd-14-1531-2022, https://doi.org/10.5194/essd-14-1531-2022, 2022
Short summary
Short summary
With ongoing climate change, it is crucial to understand the interactions of the individual heat fluxes at the surface and within the subsurface layers, as well as their impacts on the permafrost thermal regime. A unique set of high-altitude meteorological measurements has been analysed to determine the energy balance at three mountain permafrost sites in the Swiss Alps, where data have been collected since the late 1990s in collaboration with the Swiss Permafrost Monitoring Network (PERMOS).
Enrico Mattea, Horst Machguth, Marlene Kronenberg, Ward van Pelt, Manuela Bassi, and Martin Hoelzle
The Cryosphere, 15, 3181–3205, https://doi.org/10.5194/tc-15-3181-2021, https://doi.org/10.5194/tc-15-3181-2021, 2021
Short summary
Short summary
In our study we find that climate change is affecting the high-alpine Colle Gnifetti glacier (Swiss–Italian Alps) with an increase in melt amounts and ice temperatures.
In the near future this trend could threaten the viability of the oldest ice core record in the Alps.
To reach our conclusions, for the first time we used the meteorological data of the highest permanent weather station in Europe (Capanna Margherita, 4560 m), together with an advanced numeric simulation of the glacier.
Dominik Amschwand, Susan Ivy-Ochs, Marcel Frehner, Olivia Steinemann, Marcus Christl, and Christof Vockenhuber
The Cryosphere, 15, 2057–2081, https://doi.org/10.5194/tc-15-2057-2021, https://doi.org/10.5194/tc-15-2057-2021, 2021
Short summary
Short summary
We reconstruct the Holocene history of the Bleis Marscha rock glacier (eastern Swiss Alps) by determining the surface residence time of boulders via their exposure to cosmic rays. We find that this stack of lobes formed in three phases over the last ~9000 years, controlled by the regional climate. This work adds to our understanding of how these permafrost landforms reacted in the past to climate oscillations and helps to put the current behavior of rock glaciers in a long-term perspective.
Cited articles
Aldrich, H. P. and Paynter, H. M.: First Interim Report: Analytical Studies of Freezing and Thawing of Soils (ACFEL Technical Report No. 42), Tech. rep., US Corps of Engineers, Boston (MA), Arctic Construction and Frost Effects Laboratory (ACFEL), http://hdl.handle.net/11681/6526 (last access: 8 April 2025), 1953. a
Amschwand, D., Scherler, M., Hoelzle, M., Krummenacher, B., Tschan, S., Aschwanden, L., and Gubler, H.: Murtèl rock glacier PERMA-XT data set (2020–2023), University of Fribourg/GEOTEST Zollikofen [data set], https://doi.org/10.13093/permos-spec-2023-01, 2023. a
Amschwand, D., Scherler, M., Hoelzle, M., Krummenacher, B., Haberkorn, A., Kienholz, C., and Gubler, H.: Surface heat fluxes at coarse blocky Murtèl rock glacier (Engadine, eastern Swiss Alps), The Cryosphere, 18, 2103–2139, https://doi.org/10.5194/tc-18-2103-2024, 2024. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, aa, ab, ac
Amschwand, D., Tschan, S., Scherler, M., Hoelzle, M., Krummenacher, B., Haberkorn, A., Kienholz, C., Aschwanden, L., and Gubler, H.: Seasonal ice storage changes and meltwater generation at Murtèl rock glacier (Engadine, eastern Swiss Alps): estimates from measurements and energy budgets in the coarse blocky active layer, Hydrol. Earth Syst. Sci., 29, 2219–2253, https://doi.org/10.5194/hess-29-2219-2025, 2025. a
Arenson, L., Hoelzle, M., and Springman, S.: Borehole deformation measurements and internal structure of some rock glaciers in Switzerland, Permafrost Periglac., 13, 117–135, https://doi.org/10.1002/ppp.414, 2002. a
Arenson, L. U., Hauck, C., Hilbich, C., Seward, L., Yamamoto, Y., and Springman, S. M.: Sub-surface heterogeneities in the Murtèl-Corvatsch rock glacier, Switzerland, in: Proceedings of the joint 63rd Canadian Geotechnical Conference and the 6th Canadian Permafrost Conference (GEO2010), 12–15 September 2010, Calgary (Alberta), Canada, Canadian Geotechnical Society, CNC-IPA/NRCan, Calgary, AB, Canada, 1494–1500, https://members.cgs.ca/documents/conference2010/GEO2010/pdfs/GEO2010_199.pdf (last access: 8 April 2025), 2010. a, b
Bächler, E.: Der verwünschte oder verhexte Wald im Brüeltobel, Appenzellerkalender, 209, https://doi.org/10.5169/seals-374836, 1930. a, b
Bernhard, L., Sutter, F., Haeberli, W., and Keller, F.: Processes of snow/permafrost-interactions at a high mountain site, Murtèl/Corvatsch, eastern Swiss Alps, in: Proceedings of the 7th International Conference on Permafrost, 23–27 June 1998, Yellowknife, Northwest Territories, Canada, edited by: Lewkowicz, A. G. and Allard, M., Centre d'Études Nordiques, Université Laval (Québec), Canada, 35–41, https://www.arlis.org/docs/vol1/ICOP/40770716/CD-ROM/Proceedings/PDF001189/007221.pdf (last access: 8 April 2025), 1998. a
Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G., Streletskiy, D. A., Schoeneich, P., Romanovsky, V. E., Lewkowicz, A. G., Abramov, A., Allard, M., Boike, J., Cable, W. L., Christiansen, H. H., Delaloye, R., Diekmann, B., Drozdov, D., Etzelmüller, B., Grosse, G., Guglielmin, M., Ingeman-Nielsen, T., Isaksen, K., Ishikawa, M., Johansson, M., Johannsson, H., Joo, A., Kaverin, D., Kholodov, A., Konstantinov, P., Kröger, T., Lambiel, C., Lanckman, J.-P., Luo, D., Malkova, G., Meiklejohn, I., Moskalenko, N., Oliva, M., Phillips, M., Ramos, M., Sannel, A. B. K., Sergeev, D., Seybold, C., Skryabin, P., Vasiliev, A., Wu, Q., Yoshikawa, K., Zheleznyak, M., and Lantuit, H.: Permafrost is warming at a global scale, Nat. Commun., 10, 264, https://doi.org/10.1038/s41467-018-08240-4, 2019. a
Brighenti, S., Hotaling, S., Finn, D. S., Fountain, A. G., Hayashi, M., Herbst, D., Saros, J. E., Tronstad, L. M., and Millar, C. I.: Rock glaciers and related cold rocky landforms: Overlooked climate refugia for mountain biodiversity, Global Change Biol., 27, 1504–1517, https://doi.org/10.1111/gcb.15510, 2021. a, b
Caltagirone, J. P. and Bories, S.: Solutions and stability criteria of natural convective flow in an inclined porous layer, J. Fluid Mechan., 155, 267–287, https://doi.org/10.1017/S002211208500180X, 1985. a
Conway, H. and Rasmussen, L. A.: Summer temperature profiles within supraglacial debris on Khumbu Glacier, Nepal, in: Debris-covered Glaciers: Proceedings of an International Workshop Held at the University of Washington in Seattle, Washington, USA, 13–15 September 2000, edited by: Fountain, A., Raymond, C. F., and Nakao, M., vol. 264 of IAHS Proc. N. 264, 89–97 pp., 2000. a, b
Côté, J. and Konrad, J.-M.: Thermal conductivity of base-course materials, Can. Geotech. J., 42, 61–78, https://doi.org/10.1139/t04-081, 2005. a
Côté, J., Fillion, M.-H., and Konrad, J.-M.: Intrinsic permeability of materials ranging from sand to rock-fill using natural air convection tests, Can. Geotech. J., 48, 679–690, https://doi.org/10.1139/t10-097, 2011. a, b, c, d
Delaloye, R. and Lambiel, C.: Evidence of winter ascending air circulation throughout talus slopes and rock glaciers situated in the lower belt of alpine discontinuous permafrost (Swiss Alps), Norsk Geogr. Tidsskr., 59, 194–203, https://doi.org/10.1080/00291950510020673, 2005. a, b, c, d
Delaloye, R., Lambiel, C., and Gärtner-Roer, I.: Overview of rock glacier kinematics research in the Swiss Alps, Geographica Helvetica, 65, 135–145, https://doi.org/10.5194/gh-65-135-2010, 2010. a
Esence, T., Bruch, A., Molina, S., Stutz, B., and Fourmigué, J.-F.: A review on experience feedback and numerical modeling of packed-bed thermal energy storage systems, Solar Energy, 153, 628–654, https://doi.org/10.1016/j.solener.2017.03.032, 2017. a, b
Evatt, G. W., Abrahams, I. D., Heil, M., Mayer, C., Kingslake, J., Mitchell, S. L., Fowler, A. C., and Clark, C. D.: Glacial melt under a porous debris layer, J. Glaciol., 61, 825–836, https://doi.org/10.3189/2015JoG14J235, 2015. a, b
Frauenfelder, R. and Kääb, A.: Towards a palaeoclimatic model of rock-glacier formation in the Swiss Alps, Ann. Glaciol., 31, 281–286, https://doi.org/10.3189/172756400781820264, 2000. a
Fujita, K. and Sakai, A.: Modelling runoff from a Himalayan debris-covered glacier, Hydrol. Earth Syst. Sci., 18, 2679–2694, https://doi.org/10.5194/hess-18-2679-2014, 2014. a
Gorbunov, A. P., Marchenko, S. S., and Seversky, E. V.: The thermal environment of blocky materials in the mountains of Central Asia, Permafrost Periglac., 15, 95–98, https://doi.org/10.1002/ppp.478, 2004. a, b
Gottlieb, A. R. and Mankin, J. S.: Evidence of human influence on Northern Hemisphere snow loss, Nature, 625, 293–300, https://doi.org/10.1038/s41586-023-06794-y, 2024. a
Gruber, S. and Hoelzle, M.: The cooling effect of coarse blocks revisited: a modeling study of a purely conductive mechanism, in: Proceedings of the 9th International Conference on Permafrost, 29 June–3 July 2008, Fairbanks, Alaska, edited by: Kane, D. and Hinkel, K., 557–561 pp., Institute of Northern Engineering, University of Alaska, Fairbanks, Alaska, 2008. a
Guodong, C.: A roadbed cooling approach for the construction of Qinghai–Tibet Railway, Cold Reg. Sci. Technol., 42, 169–176, https://doi.org/10.1016/j.coldregions.2005.01.002, 2005. a
Guodong, C., Yuanming, L., Zhizhong, S., and Fan, J.: The `thermal semi-conductor' effect of crushed rocks, Permafrost Periglac., 18, 151–160, https://doi.org/10.1002/ppp.575, 2007. a, b, c, d
Haeberli, W., Hallet, B., Arenson, L., Elconin, R., Humlum, O., Kääb, A., Kaufmann, V., Ladanyi, B., Matsuoka, N., Springman, S., and Mühll, D. V.: Permafrost creep and rock glacier dynamics, Permafrost Periglac., 17, 189–214, https://doi.org/10.1002/ppp.561, 2006. a, b, c
Haeberli, W., Schaub, Y., and Huggel, C.: Increasing risks related to landslides from degrading permafrost into new lakes in de-glaciating mountain ranges, Geomorphology, 293, 405–417, https://doi.org/10.1016/j.geomorph.2016.02.009, 2017. a
Haeberli, W., Arenson, L. U., Wee, J., Hauck, C., and Mölg, N.: Discriminating viscous-creep features (rock glaciers) in mountain permafrost from debris-covered glaciers – a commented test at the Gruben and Yerba Loca sites, Swiss Alps and Chilean Andes, The Cryosphere, 18, 1669–1683, https://doi.org/10.5194/tc-18-1669-2024, 2024. a
Halla, C., Blöthe, J. H., Tapia Baldis, C., Trombotto Liaudat, D., Hilbich, C., Hauck, C., and Schrott, L.: Ice content and interannual water storage changes of an active rock glacier in the dry Andes of Argentina, The Cryosphere, 15, 1187–1213, https://doi.org/10.5194/tc-15-1187-2021, 2021. a
Hanson, S. and Hoelzle, M.: The thermal regime of the active layer at the Murtèl rock glacier based on data from 2002, Permafrost Periglac., 15, 273–282, https://doi.org/10.1002/ppp.499, 2004. a, b, c
Hanson, S. and Hoelzle, M.: Installation of a shallow borehole network and monitoring of the ground thermal regime of a high alpine discontinuous permafrost environment, Eastern Swiss Alps, Norsk Geogr. Tidsskr., 59, 84–93, https://doi.org/10.1080/00291950510020664, 2005. a, b
Harris, S., Cheng, G., Zhao, X., and Yongqin, D.: Nature and dynamics of an active block stream, Kunlun Pass, Qinghai Province, People's Republic of China, Geogr. Ann. A, 80, 123–133, https://doi.org/10.1111/j.0435-3676.1998.00031.x, 1998. a
Harris, S. A. and Pedersen, D. E.: Thermal regimes beneath coarse blocky materials, Permafr. Periglac., 9, 107–120, https://doi.org/10.1002/(SICI)1099-1530(199804/06)9:2<107::AID-PPP277>3.0.CO;2-G, 1998. a, b
Hartl, L., Zieher, T., Bremer, M., Stocker-Waldhuber, M., Zahs, V., Höfle, B., Klug, C., and Cicoira, A.: Multi-sensor monitoring and data integration reveal cyclical destabilization of the Äußeres Hochebenkar rock glacier, Earth Surf. Dynam., 11, 117–147, https://doi.org/10.5194/esurf-11-117-2023, 2023. a
Hauck, C. and Hilbich, C.: Preconditioning of mountain permafrost towards degradation detected by electrical resistivity, Environ. Res. Lett., 19, 064010, https://doi.org/10.1088/1748-9326/ad3c55, 2024. a
Hayashi, M.: Alpine hydrogeology: The critical role of groundwater in sourcing the headwaters of the world, Groundwater, 58, 498–510, https://doi.org/10.1111/gwat.12965, 2020. a
Herz, T.: Das Mikroklima grobblockiger Schutthalden der alpinen Periglazialstufe und seine Auswirkungen auf Energieaustauschprozesse zwischen Atmosphäre und Lithosphäre [The microclimate of coarse debris covers in the periglacial belt of high mountains and its effects on the energy exchange between atmosphere and lithosphere], PhD thesis, Justus-Liebig-Universität Gießen, Gießen, https://doi.org/10.22029/jlupub-9548, 2006. a, b, c, d, e, f, g, h, i, j, k, l, m
Herz, T., King, L., and Gubler, H.: Microclimate within coarse debris of talus slopes in the alpine periglacial belt and its effect on permafrost, in: Proceedings of the 8th International Conference on Permafrost, 21–25 July 2003, Zurich, Switzerland, edited by: Phillips, M., Springman, S. M., and Arenson, L. U., 383–387 pp., Swets & Zeitlinger, Lisse, Zürich, 2003a. a
Herz, T., King, L., and Gubler, H.: Thermal regime of coarse debris layers in the Ritigraben catchment, Matter Valley, Swiss Alps, in: Extended abstracts of the 8th International Conference on Permafrost, 21–25 July 2003, Zurich, Switzerland, edited by: Haeberli, W. and Brandová, D., 61–62 pp., Swets & Zeitlinger, Lisse, Zürich, 2003b. a, b
Hilbich, C., Hauck, C., Hoelzle, M., Scherler, M., Schudel, L., Völksch, I., Vonder Mühll, D., and Mäusbacher, R.: Monitoring mountain permafrost evolution using electrical resistivity tomography: A 7-year study of seasonal, annual, and long-term variations at Schilthorn, Swiss Alps, J. Geophys. Res.-Earth Surface, 113, F01S90, https://doi.org/10.1029/2007JF000799, 2008. a
Hinkel, K. M., Outcalt, S. I., and Nelson, F. E.: Temperature variation and apparent thermal diffusivity in the refreezing active layer, Toolik Lake, Alaska, Permafrost Periglac., 1, 265–274, https://doi.org/10.1002/ppp.3430010306, 1990. a, b
Hock, R., Rasul, G., Adler, C., Cáceres, B., Gruber, S., Hirabayashi, Y., Jackson, M., Kääb, A., Kang, S., Kutuzov, S., Milner, A., Molau, U., Morin, S., Orlove, B., and Steltzer, H.: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.–O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegrìa, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., Chap. 4: High Mountain Areas, 131–202 pp., Cambridge University Press (Cambridge, UK and New York, NY, USA), https://doi.org/10.1017/9781009157964.004, 2022. a
Hoelzle, M. and Gruber, S.: Borehole and ground surface temperatures and their relationship to meteorological conditions in the Swiss Alps, in: Proceedings of the 9th International Conference on Permafrost, June 29–July 3 2008, Fairbanks, Alaska, edited by: Kane, D. and Hinkel, K., 723–728 pp., Institute of Northern Engineering, University of Alaska, Fairbanks, Alaska, ISBN 978-0-9800179-2-2, https://doi.org/10.5167/uzh-2825, 2008. a
Hoelzle, M., Wegmann, M., and Krummenacher, B.: Miniature temperature dataloggers for mapping and monitoring of permafrost in high mountain areas: first experience from the Swiss Alps, Permafrost Periglac., 10, 113–124, https://doi.org/10.1002/(SICI)1099-1530(199904/06)10:2<113::AID-PPP317>3.0.CO;2-A, 1999. a
Hoelzle, M., Mittaz, C., Etzelmüller, B., and Haeberli, W.: Surface energy fluxes and distribution models of permafrost in European mountain areas: an overview of current developments, Permafrost Periglac., 12, 53–68, https://doi.org/10.1002/ppp.385, 2001. a, b
Hoelzle, M., Haeberli, W., and Stocker-Mittaz, C.: Miniature ground temperature data logger measurements 2000–2002 in the Murtèl-Corvatsch area, Eastern Swiss Alps, in: Proceedings of the 8th International Conference on Permafrost, 21–25 July 2003, Zurich, Switzerland, edited by: Phillips, M., Springman, S. M., and Arenson, L. U., 419–424 pp., Swets & Zeitlinger, Lisse, Zürich, 2003. a, b
Hoelzle, M., Hauck, C., Mathys, T., Noetzli, J., Pellet, C., and Scherler, M.: : Energy balance measurements at three PERMOS sites: Corvatsch, Schilthorn, Stockhorn, PERMOS [data set], https://doi.org/10.13093/permos-meteo-2021-01, 2021. a
Hoelzle, M., Hauck, C., Mathys, T., Noetzli, J., Pellet, C., and Scherler, M.: Long-term energy balance measurements at three different mountain permafrost sites in the Swiss Alps, Earth Syst. Sci. Data, 14, 1531–1547, https://doi.org/10.5194/essd-14-1531-2022, 2022. a, b, c, d
Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L., Farinotti, D., Huss, M., Dussaillant, I., Brun, F., and Kääb, A.: Accelerated global glacier mass loss in the early twenty-first century, Nature, 592, 726–731, https://doi.org/10.1038/s41586-021-03436-z, 2021. a
Hukseflux HFP manual: Manual for the Hukseflux HFP01 & HFP03 sensors heat flux plate/heat flux sensor (HFP manual v1721), Tech. rep., Hukseflux Thermal Sensors, Delft, 45 pp., https://www.hukseflux.com/uploads/product-documents/HFP01_HFP03_manual_v2326.pdf (last access: 8 April 2025), 2016. a
Hukseflux WS01 manual: Manual for the Hukseflux WS01 sensor for ultra low wind speeds and boundary layer conductance (WS01 manual v0608), Tech. rep., Hukseflux Thermal Sensors, Delft, 35 pp., https://www.hukseflux.com/uploads/product-documents/TP01_manual_v2028.pdf (last access: 8 April 2025), 2006. a
Humlum, O.: Active layer thermal regime at three rock glaciers in Greenland, Permafrost Periglac., 8, 383–408, https://doi.org/10.1002/(SICI)1099-1530(199710/12)8:4<383::AID-PPP265>3.0.CO;2-V, 1997. a
Isaksen, K., Heggem, E., Bakkehøi, S., Ødegård, R., Eiken, T., Etzelmüller, B., and Sollid, J.: Mountain permafrost and energy balance on Juvvasshøe, southern Norway, in: Proceedings of the 8th International Conference on Permafrost, 21–25 July 2003, Zurich, Switzerland, edited by: Phillips, M., Springman, S., and Arenson, L., 467–472 pp., Swets & Zeitlinger, Lisse, Zürich, 2003. a
Jones, D. B., Harrison, S., Anderson, K., and Whalley, W. B.: Rock glaciers and mountain hydrology: A review, Earth-Sci. Rev., 193, 66–90, https://doi.org/10.1016/j.earscirev.2019.04.001, 2019. a
Jorgenson, M. T., Romanovsky, V., Harden, J., Shur, Y., O’Donnell, J., Schuur, E. A. G., Kanevskiy, M., and Marchenko, S.: Resilience and vulnerability of permafrost to climate change, Can. J. Forest Rese., 40, 1219–1236, https://doi.org/10.1139/X10-060, 2010. a
Juliussen, H. and Humlum, O.: Thermal regime of openwork block fields on the mountains Elgåhogna and Sølen, central-eastern Norway, Permafrost Periglac., 19, 1–18, https://doi.org/10.1002/ppp.607, 2008. a, b, c
Kääb, A., Gudmundsson, G. H., and Hoelzle, M.: Surface deformation of creeping mountain permafrost. Photogrammetric investigations on Murtèl rock glacier, Swiss Alps, in: Proceedings of the 7th International Conference on Permafrost, 23–27 June 1998, Yellowknife, Northwest Territories, Canada, edited by: Lewkowicz, A. G. and Allard, M., Centre d'Études Nordiques, Université Laval (Québec), Canada, 531–537, 1998. a, b
Kane, D. L., Hinkel, K. M., Goering, D. J., Hinzman, L. D., and Outcalt, S. I.: Non-conductive heat transfer associated with frozen soils, Global Planet. Change, 29, 275–292, https://doi.org/10.1016/S0921-8181(01)00095-9, 2001. a, b
Kaviany, M.: Principles of Heat Transfer in Porous Media, Springer New York, 2nd edn., ISBN 9781461242543, https://doi.org/10.1007/978-1-4612-4254-3, 1995. a
Kayastha, R. B., Takeuchi, Y., Nakawo, M., and Ageta, Y.: Practical prediction of ice melting beneath various thickness of debris cover on Khumbu Glacier, Nepal, using a positive degree-day factor, in: Debris-covered Glaciers: Proceedings of an International Workshop Held at the University of Washington in Seattle, Washington, USA, 13–15 September 2000, edited by: Fountain, A., Raymond, C. F., and Nakao, M., vol. 264 of IAHS Proc. N. 264, pp. 71–81, 2000. a
Keller, F. and Gubler, H.: Interaction between snow cover and high mountain permafrost: Murtèl/Corvatsch, Swiss Alps, in: Proceedings of the 6th International Conference on Permafrost, 5–9 July 1993, Beijing, China, edited by: Guodong, C., vol. 1, 332–337 pp., Lanzhou Institute of Glaciology and Geocryology, Chinese Academy of Sciences & Chinese Society of Glaciology and Geocryology, South China University of Technology Press, 332–337, https://www.permafrost.org/conference-proceedings/ (last access: 8 April 2025), 1993. a
Kellerer-Pirklbauer, A. and Kaufmann, V.: About the relationship between rock glacier velocity and climate parameters in central Austria, Aust. J. Earth Sci., 105/2, 94–112, https://ajes.at/images/AJES/archive/Band 105_2/kellerer_kaufmann_ajes_105_2.pdf (last access: 8 April 2025), 2012. a
Kipp & Zonen CGR3 manual: Manual for the Kipp & Zonen CGR 4 pyrgeometer (v1401), Tech. rep., Kipp & Zonen, Delft, 35 pp., https://www.kippzonen.com/Download/38/Manual-CGR4-Pyrgeometer (last access: 8 April 2025), 2014. a
Klein, G., Vitasse, Y., Rixen, C., Marty, C., and Rebetez, M.: Shorter snow cover duration since 1970 in the Swiss Alps due to earlier snowmelt more than to later snow onset, Clim. Change, 139, 637–649, https://doi.org/10.1007/s10584-016-1806-y, 2016. a
Kneisel, C., Hauck, C., and Vonder Mühll, D.: Permafrost below the timberline confirmed and characterized by geoelectrical resistivity measurements, Bever Valley, Eastern Swiss Alps, Permafrost Periglac., 11, 295–304, https://doi.org/10.1002/1099-1530(200012)11:4<295::AID-PPP353>3.0.CO;2-L, 2000. a
Körner, C. and Hiltbrunner, E.: Rapid advance of climatic tree limits in the Eastern Alps explained by on-site temperatures, Reg. Environ. Change, 24, 98, https://doi.org/10.1007/s10113-024-02259-8, 2024. a
Kurylyk, B. L.: Discussion of ‘A simple thaw-freeze algorithm for a multi-layered soil using the Stefan equation’ by Xie and Gough (2013), Permafrost Periglac., 26, 200–206, https://doi.org/10.1002/ppp.1834, 2015. a, b, c
Kurylyk, B. L. and Hayashi, M.: Improved Stefan equation correction factors to accommodate sensible heat storage during soil freezing or thawing, Permafrost Periglac., 27, 189–203, https://doi.org/10.1002/ppp.1865, 2016. a, b, c, d
Lebeau, M. and Konrad, J.-M.: Non-Darcy flow and thermal radiation in convective embankment modeling, Comput, Geotech,, 73, 91–99, https://doi.org/10.1016/j.compgeo.2015.11.016, 2016. a, b, c, d
Luetschg, M., Lehning, M., and Haeberli, W.: A sensitivity study of factors influencing warm/thin permafrost in the Swiss Alps, J, Glaciol,, 54, 696–704, https://doi.org/10.3189/002214308786570881, 2008. a
Marcer, M., Cicoira, A., Cusicanqui, D., Bodin, X., Echelard, T., Obregon, R., and Schoeneich, P.: Rock glaciers throughout the French Alps accelerated and destabilised since 1990 as air temperatures increased, Commun. Earth Environ., 2, 81, https://doi.org/10.1038/s43247-021-00150-6, 2021. a
Marchenko, S., Romanovsky, V., and Gorbunov, A.: Hydrologic and thermal regimes of coarse blocky materials in Tien Shan Mountains, Central Asia, in: Extended abstracts of the 10th International Conference on Permafrost, 25–29 June 2012, Salekhard (Yamal-Nenets Autonomous District), Russia, edited by: Hinkel, K. M. and Melnikov, V. P., vol. 4, 361–362 pp., Fort Dialog-Iset: Ekaterinburg, Russia, 2012. a
Marchenko, S., Jin, H., Hoelzle, M., Lentschke, J., Kasatkin, N., and Saks, T.: Thermal and hydrologic regimes of blocky materials in Tianshan Mountains, Central Asia, in: Proceedings vol. II (Extendend Abstracts) of the 12th International Conference on Permafrost, 16–20 June 2024, Whitehorse (Yukon), Canada, edited by: Beddoe, R. and Karunaratne, K., 455–456 pp., International Permafrost Association, 2024. a
Marchenko, S. S.: A model of permafrost formation and occurrences in the intracontinental mountains, Norsk Geograf. Tidsskr., 55, 230–234, https://doi.org/10.1080/00291950152746577, 2001. a, b
Matiu, M., Crespi, A., Bertoldi, G., Carmagnola, C. M., Marty, C., Morin, S., Schöner, W., Cat Berro, D., Chiogna, G., De Gregorio, L., Kotlarski, S., Majone, B., Resch, G., Terzago, S., Valt, M., Beozzo, W., Cianfarra, P., Gouttevin, I., Marcolini, G., Notarnicola, C., Petitta, M., Scherrer, S. C., Strasser, U., Winkler, M., Zebisch, M., Cicogna, A., Cremonini, R., Debernardi, A., Faletto, M., Gaddo, M., Giovannini, L., Mercalli, L., Soubeyroux, J.-M., Sušnik, A., Trenti, A., Urbani, S., and Weilguni, V.: Observed snow depth trends in the European Alps: 1971 to 2019, The Cryosphere, 15, 1343–1382, https://doi.org/10.5194/tc-15-1343-2021, 2021. a, b
Mendoza López, M., Tapia Baldis, C., Trombotto Liaudat, D., and Sileo, N.: Thermal simulations on periglacial soils of the Central Andes, Argentina, Permafrost Periglac., 34, 296–316, https://doi.org/10.1002/ppp.2189, 2023. a
Mihalcea, C., Mayer, C., Diolaiuti, G., Lambrecht, A., Smiraglia, C., and Tartari, G.: Ice ablation and meteorological conditions on the debris-covered area of Baltoro glacier, Karakoram, Pakistan, Ann. Glaciol., 43, 292–300, https://doi.org/10.3189/172756406781812104, 2006. a
Millar, C. I., Westfall, R. D., and Delany, D. L.: Thermal regimes and snowpack relations of periglacial talus slopes, Sierra Nevada, California, U.S.A., Arct. Antarct. Alp. Res., 46, 483–504, https://doi.org/10.1657/1938-4246-46.2.483, 2014. a, b, c
Millar, C. I., Westfall, R. D., Evenden, A., Holmquist, J. G., Schmidt-Gengenbach, J., Franklin, R. S., Nachlinger, J., and Delany, D. L.: Potential climatic refugia in semi-arid, temperate mountains: Plant and arthropod assemblages associated with rock glaciers, talus slopes, and their forefield wetlands, Sierra Nevada, California, USA, Quaternary Int., 387, 106–121, https://doi.org/10.1016/j.quaint.2013.11.003, 2015. a
Mittaz, C., Hoelzle, M., and Haeberli, W.: First results and interpretation of energy-flux measurements over Alpine permafrost, Ann. Glaciol., 31, 275–280, https://doi.org/10.3189/172756400781820363, 2000. a, b
Morard, S., Delaloye, R., and Lambiel, C.: Pluriannual thermal behavior of low elevation cold talus slopes in western Switzerland, Geogr. Helv., 65, 124–134, https://doi.org/10.5194/gh-65-124-2010, 2010. a, b
Morard, S., Hilbich, C., Mollaret, C., Pellet, C., and Hauck, C.: 20-year permafrost evolution documented through petrophysical joint inversion, thermal and soil moisture data, Environ. Res. Lett., 19, 074074, https://doi.org/10.1088/1748-9326/ad5571, 2024. a
Naguel, C.: Permafrostvorkommen in der Frontpartie und räumliche und zeitliche Repräsentativität von BTS-Messungen: Untersuchungen an zwei Blockgletschem im Oberengadin, Master's thesis, Geographisches Institut der Universität Zürich, 130 pp., 1998. a
Nakawo, M. and Young, G.: Field Experiments to Determine the Effect of a Debris Layer on Ablation of Glacier Ice, Ann. Glaciol., 2, 85–91, https://doi.org/10.3189/172756481794352432, 1981. a
Nakawo, M. and Young, G.: Estimate of Glacier Ablation under a Debris Layer from Surface Temperature and Meteorological Variables, J. Glaciol., 28, 29–34, https://doi.org/10.3189/S002214300001176X, 1982. a
Navarro, G., MacDonell, S., and Valois, R.: A conceptual hydrological model of semiarid Andean headwater systems in Chile, Prog. Phys. Geogr., 47, 668–686, https://doi.org/10.1177/03091333221147649, 2023. a
Nicholson, L. and Benn, D. I.: Properties of natural supraglacial debris in relation to modelling sub-debris ice ablation, Earth Surf. Process. Landf., 38, 490–501, https://doi.org/10.1002/esp.3299, 2013. a
Nield, D. A. and Bejan, A.: Convection in Porous Media, Springer, New York, 5 edn., https://doi.org/10.1007/978-3-319-49562-0, 2017. a, b
Nixon, J. F. and McRoberts, E. C.: A Study of Some Factors Affecting the Thawing of Frozen Soils, Can. Geotech. J., 10, 439–452, https://doi.org/10.1139/t73-037, 1973. a
Noetzli, J. and Pellet, C. (Eds.): PERMOS 2023. Swiss Permafrost Bulletin 2022 (Annual report No. 4 on permafrost observation in the Swiss Alps), Cryospheric Commission of the Swiss Academy of Sciences, https://doi.org/10.13093/permos-bull-2023, 2023. a, b, c
Noetzli, J., Pellet, C., and Staub, B. (Eds.): Permafrost in Switzerland 2014/2015 to 2017/2018, Glaciological Report Permafrost No. 16–19 (PERMOS Report 2019), Fribourg: Cryospheric Commission of the Swiss Academy of Sciences, https://doi.org/10.13093/permos-rep-2019-16-19, 2019. a
Panz, M.: Analyse von Austauschprozessen in der Auftauschicht des Blockgletschers Murtèl, Corvatsch, Oberengadin, Master's thesis, Geographisches Institut der Ruhr-Universität Bochum, 141 pp., 2008. a
Petersen, E., Hock, R., Fochesatto, G. J., and Anderson, L. S.: The significance of convection in supraglacial debris revealed through novel analysis of thermistor profiles, J. Geophys. Res.-Earth Surf., 127, e2021JF006520, https://doi.org/10.1029/2021JF006520, 2022. a
Popescu, R., Onaca, A., Urdea, P., and Vespremeanu-Stroe, A.: Landform Dynamics and Evolution in Romania, chap. Spatial Distribution and Main Characteristics of Alpine Permafrost from Southern Carpathians, Romania, 117–146 pp., Springer International Publishing, Cham, ISBN 978-3-319-32589-7, https://doi.org/10.1007/978-3-319-32589-7_6, 2017a. a
Popescu, R., Vespremeanu-Stroe, A., Onaca, A., Vasile, M., Cruceru, N., and Pop, O.: Low-altitude permafrost research in an overcooled talus slope–rock glacier system in the Romanian Carpathians (Detunata Goală, Apuseni Mountains), Geomorphology, 295, 840–854, https://doi.org/10.1016/j.geomorph.2017.07.029, 2017b. a
Reato, A., Silvina Carol, E., Cottescu, A., and Alfredo Martínez, O.: Hydrological significance of rock glaciers and other periglacial landforms as sustenance of wet meadows in the Patagonian Andes, J. South Am. Earth Sci., 111, 103471, https://doi.org/10.1016/j.jsames.2021.103471, 2021. a
Renette, C., Aalstad, K., Aga, J., Zweigel, R. B., Etzelmüller, B., Lilleøren, K. S., Isaksen, K., and Westermann, S.: Simulating the effect of subsurface drainage on the thermal regime and ground ice in blocky terrain in Norway, Earth Surf. Dynam., 11, 33–50, https://doi.org/10.5194/esurf-11-33-2023, 2023. a, b, c
Rieksts, K., Hoff, I., Scibilia, E., and Côté, J.: Laboratory investigations into convective heat transfer in road construction materials, Can. Geotech. J., 57, 959–973, https://doi.org/10.1139/cgj-2018-0530, 2019. a, b
Rist, A.: Hydrothermal processes within the active layer above alpine permafrost in steep scree slopes and their influence on slope stability, PhD thesis, University of Zurich, Zürich, https://doi.org/10.5167/uzh-163579, 2007. a
Rist, A. and Phillips, M.: First results of investigations on hydrothermal processes within the active layer above alpine permafrost in steep terrain, Norsk Geogr. Tidsskr., 59, 177–183, https://doi.org/10.1080/00291950510020574, 2005. a, b, c
Rist, A., Phillips, M., and Auerswald, K.: Undercooled scree slopes covered with stunted dwarf trees in Switzerland – abiotic factors to characterize the phenomenon, in: Extended Abstracts of the 8th International Conference on Permafrost, 21–25 July 2003, Zurich, Switzerland, edited by: Haeberli, W. and Brandová, D., 135–136 pp., Swets & Zeitlinger, Lisse, Zürich, 2003. a, b
Roer, I., Haeberli, W., Avian, M., Kaufmann, V., Delaloye, R., Lambiel, C., and Kääb, A.: Observations and considerations on destabilizing active rock glaciers in the European Alps, in: Proceedings of the 9th International Conference on Permafrost, 29 June–3 July 2008, Fairbanks, Alaska, edited by: Kane, D. L. and Hinkel, K. M., 1505–1510 pp., Institute of Northern Engineering, University of Alaska, Fairbanks, Alaska, 2008. a
Rounce, D. R. and McKinney, D. C.: Debris thickness of glaciers in the Everest area (Nepal Himalaya) derived from satellite imagery using a nonlinear energy balance model, The Cryosphere, 8, 1317–1329, https://doi.org/10.5194/tc-8-1317-2014, 2014. a
Rowan, A. V., Nicholson, L. I., Quincey, D. J., Gibson, M. J., Irvine-Fynn, T. D., Watson, C. S., Wagnon, P., Rounce, D. R., Thompson, S. S., Porter, P. R., and Glasser, Neil F.: Seasonally stable temperature gradients through supraglacial debris in the Everest region of Nepal, Central Himalaya, J. Glaciol., 67, 170–181, https://doi.org/10.1017/jog.2020.100, 2021. a, b
Ryan, A. J., Pino Muñoz, D., Bernacki, M., and Delbo, M.: Full-Field Modeling of Heat Transfer in Asteroid Regolith: 1. Radiative Thermal Conductivity of Polydisperse Particulates, J. Geophys. Res.-Planets, 125, e2019JE006100, https://doi.org/10.1029/2019JE006100, 2020. a
Růžička, V., Zacharda, M., Němcová, L., Šmilauer, P., and Nekola, J. C.: Periglacial microclimate in low-altitude scree slopes supports relict biodiversity, J. Nat. History, 46, 2145–2157, https://doi.org/10.1080/00222933.2012.707248, 2012. a, b
Sakai, A., Fujita, K., and Kubota, J.: Evaporation and percolation effect on melting at debris-covered Lirung Glacier, Nepal Himalayas, 1996, B. Glaciol. Res., 21, 9–15, 2004. a
Sawada, Y., Ishikawa, M., and Ono, Y.: Thermal regime of sporadic permafrost in a block slope on Mt. Nishi-Nupukaushinupuri, Hokkaido Island, Northern Japan, Geomorphology, 52, 121–130, https://doi.org/10.1016/S0169-555X(02)00252-0, 2003. a, b
Schaffer, N. and MacDonell, S.: Brief communication: A framework to classify glaciers for water resource evaluation and management in the Southern Andes, The Cryosphere, 16, 1779–1791, https://doi.org/10.5194/tc-16-1779-2022, 2022. a, b
Schaffer, N., MacDonell, S., Réveillet, M., Yáñez, E., and Valois, R.: Rock glaciers as a water resource in a changing climate in the semiarid Chilean Andes, Reg. Environ. Change, 19, 1263–1279, https://doi.org/10.1007/s10113-018-01459-3, 2019. a
Scherler, M., Hauck, C., Hoelzle, M., and Salzmann, N.: Modeled sensitivity of two alpine permafrost sites to RCM-based climate scenarios, J. Geophys. Res.-Earth Surf., 118, 780–794, https://doi.org/10.1002/jgrf.20069, 2013. a, b, c
Schneider, S., Daengeli, S., Hauck, C., and Hoelzle, M.: A spatial and temporal analysis of different periglacial materials by using geoelectrical, seismic and borehole temperature data at Murtèl–Corvatsch, Upper Engadin, Swiss Alps, Geogr. Helv., 68, 265–280, https://doi.org/10.5194/gh-68-265-2013, 2013. a, b
Schuepp, P. H.: Tansley review No. 59. Leaf boundary layers, New Phytologist, 477–507 pp., 1993. a
Singh, B. and Kaviany, M.: Effect of solid conductivity on radiative heat transfer in packed beds, Int. J. Heat Mass Tran., 37, 2579–2583, https://doi.org/10.1016/0017-9310(94)90295-x, 1994. a
Steiner, J. F., Kraaijenbrink, P. D. A., and Immerzeel, W. W.: Distributed melt on a debris-covered glacier: Field observations and melt modeling on the Lirung glacier in the Himalaya, Front. Earth Sci., 9, 1–21, https://doi.org/10.3389/feart.2021.678375, 2021. a
Stocker-Mittaz, C., Hoelzle, M., and Haeberli, W.: Modelling alpine permafrost distribution based on energy-balance data: a first step, Permafrost Periglac. Process., 13, 271–282, https://doi.org/10.1002/ppp.426, 2002. a
Stull, R. B.: Static stability–an update, B. Am. Meteorol. Soc., 72, 1521–1529, https://doi.org/10.1175/1520-0477(1991)072<1521:SSU>2.0.CO;2, 1991. a, b
Tenthorey, G. and Gerber, E.: Hydrologie du glacier rocheux de Murtèl (Grisons). Description et interprétation de traçages d'eau, in: Modèles en Géomorphologie – exemples Suisses. Session scientfique de la Société suisse de Géomorphologie. Fribourg, 22/23 juin 1990., edited by Monbaron, M. and Haeberli, W., Vol. 3 of Rapport et recherches, Institut de Géographie Fribourg, 1991. a
Tronstad, L. M., Giersch, J. J., Hotaling, S., Finn, D. S., Zeglin, L., Wilmot, O. J., and Bixby, R. J.: A unique “icy seep” aquatic habitat in the high Teton Range: Potential refuge for biological assemblages imperiled by climate change, The UW National Parks Service Research Station Annual Reports, 39, 64–72, https://doi.org/10.13001/uwnpsrc.2016.5289, 2016. a
Trüssel, M.: Vom Fuchsloch zur Schrattenhöhle (Band 4), chap. Eisiger Wind aus dem Untergrund – das Kühlhäuschen-Inventar in Obwalden, Nidwalden und Seelisberg UR, 980–984 pp., HGT Verlag, Alpnach, 2013. a
Vonder Mühll, D. S.: Drilling in Alpine permafrost, Norsk Geogr. Tidsskr., 50, 17–24, https://doi.org/10.1080/00291959608552348, 1996. a
Vonder Mühll, D. and Haeberli, W.: Thermal characteristics of the permafrost within an active rock glacier (Murtèl/Corvatsch, Grisons, Swiss Alps), J. Glaciol., 36, 151–158, https://doi.org/10.3189/S0022143000009382, 1990. a, b, c, d
Vortmeyer, D.: Wärmestrahlung in dispersen Feststoffsystemen [Heat radiation in packed solids], Chemie Ingenieur Technik, 51, 839–851, https://doi.org/10.1002/cite.330510904, 1979. a
Wagner, T., Pauritsch, M., Mayaud, C., Kellerer-Pirklbauer, A., Thalheim, F., and Winkler, G.: Controlling factors of microclimate in blocky surface layers of two nearby relict rock glaciers (Niedere Tauern Range, Austria), Geogr. Ann. A, 101, 310–333, https://doi.org/10.1080/04353676.2019.1670950, 2019. a, b
Wagner, T., Kainz, S., Helfricht, K., Fischer, A., Avian, M., Krainer, K., and Winkler, G.: Assessment of liquid and solid water storage in rock glaciers versus glacier ice in the Austrian Alps, Sci. Total Environ., 800, 149593, https://doi.org/10.1016/j.scitotenv.2021.149593, 2021. a
Walker, B., Holling, C. S., Carpenter, S. R., and Kinzig, A.: Resilience, adaptability and transformability in social–ecological systems, Ecol. Soc., 9, 5, http://www.ecologyandsociety.org/vol9/iss2/art5/ (last access: 8 April 2025), 2004. a
Weber, S. and Cicoira, A.: Thermal diffusivity of permafrost in the Swiss Alps determined from borehole temperature data, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-2652, 2024. a
Wicky, J.: Air convection in coarse blocky permafrost: A numerical modelling approach to improve the understanding of the ground thermal regime, PhD thesis, University of Fribourg, Switzerland, https://doi.org/10.51363/unifr.sth.2022.006, 2022. a
Wicky, J. and Hauck, C.: Numerical modelling of convective heat transport by air flow in permafrost talus slopes, The Cryosphere, 11, 1311–1325, https://doi.org/10.5194/tc-11-1311-2017, 2017. a, b
Wicky, J., Hilbich, C., Delaloye, R., and Hauck, C.: Modeling the link between air convection and the occurrence of short‐term permafrost in a low‐altitude cold talus slope, Permafrost Periglac., 35, 202–217, https://doi.org/10.1002/ppp.2224, 2024. a
Woo, M.-K. and Xia, Z.: Effects of hydrology on the thermal conditions of the active layer: Paper presented at the 10th Northern Res. Basin Symposium (Svalbard, Norway – 28 Aug./3 Sept. 1994), Hydrol. Res. (Nordic Hydrology), 27, 129–142, https://doi.org/10.2166/nh.1996.0024, 1996. a
Yoshikawa, K., Schorghofer, N., and Klasner, F.: Permafrost and seasonal frost thermal dynamics over fifty years on tropical Maunakea volcano, Hawai‘i, Arct. Antarct. Alp. Res., 55, 2186485, https://doi.org/10.1080/15230430.2023.2186485, 2023. a
Zegers, G., Hayashi, M., and Pérez-Illanes, R.: Improved permafrost modeling in mountain environments by including air convection in a hydrological model, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-2575, 2024. a, b, c
Short summary
Rock glaciers are comparatively climate-robust permafrost landforms. We estimated the energy budget of the seasonally thawing active layer (AL) of Murtèl rock glacier (Swiss Alps) based on a novel sub-surface sensor array. In the coarse blocky AL, heat is transferred by thermal radiation and air convection. The ground heat flux is largely spent on melting seasonal ice in the AL. Convective cooling and the seasonal ice turnover make rock glaciers climate-robust and shield the permafrost beneath.
Rock glaciers are comparatively climate-robust permafrost landforms. We estimated the energy...