Chen, Y.: Dataset for Figs. 1–2 of the study “On the testing of grain shape corrections to bedload transport equations with grain-resolved numerical simulations”, Zenodo [data set],
https://doi.org/10.5281/zenodo.18282256, 2026.
a
COMSOL AB: COMSOL Multiphysics
® [software], v.6.3, Stockholm, Sweden,
https://www.comsol.com (last access: 17 January 2026), 2024a.
a,
b
COMSOL AB: CFD Module User's Guide, v.6.3, Stockholm, Sweden,
https://doc.comsol.com/6.3/doc/com.comsol.help.corr/corr_ug_fluidflow.09.009.html (last access: 17 January 2026), 2024b. a
Cui, X., Li, J., Chan, A., and Chapman, D.: A 2D DEM-LBM study on soil behaviour due to locally injected fluid, Particuology, 10, 242–252,
https://doi.org/10.1016/j.partic.2011.10.002, 2012.
a
Deal, E., Venditti, J. G., Benavides, S. J., Bradley, R., Zhang, Q., Kamrin, K., and Perron, J. T.: Grain shape effects in bed load sediment transport, Nature, 613, 298–302,
https://doi.org/10.1038/s41586-022-05564-6, 2023.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k
Feng, Z. G.: A correlation of the drag force coefficient on a sphere with interface slip at low and intermediate Reynolds Numbers, Journal of Dispersion Science and Technology, 31, 968–974,
https://doi.org/10.1080/01932690903224110, 2010.
a,
b
Fukumoto, Y., Yang, H., Hosoyamada, T., and Ohtsuka, S.: 2-D coupled fluid-particle numerical analysis of seepage failure of saturated granular soils around an embedded sheet pile with no macroscopic assumptions, Computers and Geotechnics, 136, 104234,
https://doi.org/10.1016/j.compgeo.2021.104234, 2021.
a
Jiang, F., Chen, H. L. X., and Tsuji, T.: A coupled LBM-DEM method for simulating the multiphase fluid-solid interaction problem, Journal of Computational Physics, 454, 110963,
https://doi.org/10.1016/j.jcp.2022.110963, 2022.
a
Meyer-Peter, E. and Müller, R.: Formulas for bedload transport, in: Proceedings of the 2nd Meeting of the International Associ
ation for Hydraulic Structures Research, 39–64 pp., IAHR, Stockholm,
https://repository.tudelft.nl/record/uuid:4fda9b61-be28-4703-ab06-43cdc2a21bd7 (last access: 17 January 2026), 1948.
a,
b
Pähtz, T. and Durán, O.: Universal friction law at granular solid-gas transition explains scaling of sediment transport load with excess fluid shear stress, Physical Review Fluids, 3, 104302,
https://doi.org/10.1103/PhysRevFluids.3.104302, 2018.
a,
b
Pähtz, T., Clark, A. H., Valyrakis, M., and Durán, O.: The Physics of Sediment Transport Initiation, Cessation, and Entrainment Across Aeolian and Fluvial Environments, Reviews of Geophysics, 58, e2019RG000679,
https://doi.org/10.1029/2019RG000679, 2020.
a
Tao, S., Zhang, H., and Guo, Z.: Drag correlation for micro spherical particles at finite Reynolds and Knudsen numbers by lattice Boltzmann simulations, Journal of Aerosol Science, 103, 105–116,
https://doi.org/10.1016/j.jaerosci.2016.10.006, 2017.
a
Tao, Z., Fang, W., Li, H., Huang, Y., Xu, T., Wu, H., and Li, M.: Hydrophobicity induced drag reduction: Perspectives from the slip length, Journal of Applied Physics, 133, 054701,
https://doi.org/10.1063/5.0141310, 2023.
a
Zhang, Q., Deal, E., Perron, J. T., Venditti, J. G., Benavides, S. J., Rushlow, M., and Kamrin, K.: Discrete simulations of fluid-driven transport of naturally shaped sediment particles, Journal of Geophysical Research: Earth Surface, 130, e2024JF007937,
https://doi.org/10.1029/2024JF007937, 2025.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k,
l,
m,
n,
o,
p,
q,
r,
s,
t,
u,
v,
w,
x,
y,
z,
aa,
ab,
ac,
ad