Journal cover Journal topic
Earth Surface Dynamics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.928 IF 3.928
  • IF 5-year value: 3.864 IF 5-year
    3.864
  • CiteScore value: 6.2 CiteScore
    6.2
  • SNIP value: 1.469 SNIP 1.469
  • IPP value: 4.21 IPP 4.21
  • SJR value: 1.666 SJR 1.666
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 21 Scimago H
    index 21
  • h5-index value: 23 h5-index 23
Volume 4, issue 2
Earth Surf. Dynam., 4, 445–460, 2016
https://doi.org/10.5194/esurf-4-445-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Frontiers in geomorphometry

Earth Surf. Dynam., 4, 445–460, 2016
https://doi.org/10.5194/esurf-4-445-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Review article 30 May 2016

Review article | 30 May 2016

An introduction to learning algorithms and potential applications in geomorphometry and Earth surface dynamics

Andrew Valentine and Lara Kalnins

Related subject area

Cross-cutting themes: Quantitative and statistical methods in Earth surface dynamics
Identifying sediment transport mechanisms from grain size–shape distributions, applied to aeolian sediments
Johannes Albert van Hateren, Unze van Buuren, Sebastiaan Martinus Arens, Ronald Theodorus van Balen, and Maarten Arnoud Prins
Earth Surf. Dynam., 8, 527–553, https://doi.org/10.5194/esurf-8-527-2020,https://doi.org/10.5194/esurf-8-527-2020, 2020
Short summary
Determining the optimal grid resolution for topographic analysis on an airborne lidar dataset
Taylor Smith, Aljoscha Rheinwalt, and Bodo Bookhagen
Earth Surf. Dynam., 7, 475–489, https://doi.org/10.5194/esurf-7-475-2019,https://doi.org/10.5194/esurf-7-475-2019, 2019
Short summary
Systematic identification of external influences in multi-year microseismic recordings using convolutional neural networks
Matthias Meyer, Samuel Weber, Jan Beutel, and Lothar Thiele
Earth Surf. Dynam., 7, 171–190, https://doi.org/10.5194/esurf-7-171-2019,https://doi.org/10.5194/esurf-7-171-2019, 2019
Short summary
Earth's surface mass transport derived from GRACE, evaluated by GPS, ICESat, hydrological modeling and altimetry satellite orbits
Christian Gruber, Sergei Rudenko, Andreas Groh, Dimitrios Ampatzidis, and Elisa Fagiolini
Earth Surf. Dynam., 6, 1203–1218, https://doi.org/10.5194/esurf-6-1203-2018,https://doi.org/10.5194/esurf-6-1203-2018, 2018
Short summary
The R package “eseis” – a software toolbox for environmental seismology
Michael Dietze
Earth Surf. Dynam., 6, 669–686, https://doi.org/10.5194/esurf-6-669-2018,https://doi.org/10.5194/esurf-6-669-2018, 2018
Short summary

Cited articles

Baeza, C. and Corominas, J.: Assessment of shallow landslide susceptibility by means of multivariate statistical techniques, Earth Surf. Proc. Land., 26, 1251–1263, 2001.
Bayes, T.: An essay towards solving a problem in the doctrine of chances, Philos. T. R. Soc. A, 53, 370–418, 1763.
Beechie, T. and Imaki, H.: Predicting natural channel patterns based on landscape and geomorphic controls in the Columbia River basin, USA, Water Resour. Res., 50, 39–57, 2014.
Belluco, E., Camuffo, M., Ferrari, S., Modenese, L., Silvestri, S., Marani, A., and Marani, M.: Mapping salt-marsh vegetation by multispectral and hyperspectral remote sensing, Remote Sens. Environ., 105, 54–67, 2006.
Bhattacharya, B., Price, R., and Solomatine, D.: Machine learning approach to modeling sediment transport, J.Hydraul. Eng.-ASCE, 133, 440–450, 2007.
Publications Copernicus
Download
Short summary
Learning algorithms are powerful tools for understanding and working with large data sets, particularly in situations where any underlying physical models may be complex and poorly understood. Such situations are common in geomorphology. We provide an accessible overview of the various approaches that fall under the umbrella of "learning algorithms", discuss some potential applications within geomorphometry and/or geomorphology, and offer advice on practical considerations.
Learning algorithms are powerful tools for understanding and working with large data sets,...
Citation