Journal cover Journal topic
Earth Surface Dynamics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.928 IF 3.928
  • IF 5-year value: 3.864 IF 5-year
    3.864
  • CiteScore value: 6.2 CiteScore
    6.2
  • SNIP value: 1.469 SNIP 1.469
  • IPP value: 4.21 IPP 4.21
  • SJR value: 1.666 SJR 1.666
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 21 Scimago H
    index 21
  • h5-index value: 23 h5-index 23
ESurf | Articles | Volume 6, issue 1
Earth Surf. Dynam., 6, 217–237, 2018
https://doi.org/10.5194/esurf-6-217-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Earth Surf. Dynam., 6, 217–237, 2018
https://doi.org/10.5194/esurf-6-217-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 21 Mar 2018

Research article | 21 Mar 2018

Colluvial deposits as a possible weathering reservoir in uplifting mountains

Sébastien Carretier et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Sebastien Carretier on behalf of the Authors (09 Jan 2018)  Author's response    Manuscript
ED: Publish subject to technical corrections (10 Jan 2018) by Robert Hilton
ED: Publish subject to technical corrections (07 Feb 2018) by A. Joshua West(Editor)
AR by Sebastien Carretier on behalf of the Authors (07 Feb 2018)  Author's response    Manuscript
Publications Copernicus
Download
Short summary
The role of mountain uplift and associated silicate weathering in the global climate over geological times is controversial. Previous soil column models suggest that weathering falls at a high denudation rate. We present the results of a 3-D model that couples erosion and weathering, a CO2 consumer during mountain uplift. Our model suggests that the weathering of temporarily stocked colluvium may contribute significantly to the mountain weathering outflux at high denudation rates.
The role of mountain uplift and associated silicate weathering in the global climate over...
Citation