Articles | Volume 6, issue 1
https://doi.org/10.5194/esurf-6-217-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-6-217-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Colluvial deposits as a possible weathering reservoir in uplifting mountains
Sébastien Carretier
CORRESPONDING AUTHOR
GET, Université de Toulouse, IRD, CNRS, UPS, (Toulouse), France
Yves Goddéris
GET, Université de Toulouse, IRD, CNRS, UPS, (Toulouse), France
Javier Martinez
Department of Geology, FCFM, University of Chile, Santiago, Chile
Martin Reich
Department of Geology, FCFM, University of Chile, Santiago, Chile
Andean Geothermal Center of Excellence (CEGA), FCFM, University of Chile, Santiago, Chile
Pierre Martinod
GET, Université de Toulouse, IRD, CNRS, UPS, (Toulouse), France
Department of Geology, FCFM, University of Chile, Santiago, Chile
Related authors
Violeta Tolorza, Christian H. Mohr, Mauricio Zambrano-Bigiarini, Benjamín Sotomayor, Dagoberto Poblete-Caballero, Sebastien Carretier, Mauricio Galleguillos, and Oscar Seguel
Earth Surf. Dynam., 12, 841–861, https://doi.org/10.5194/esurf-12-841-2024, https://doi.org/10.5194/esurf-12-841-2024, 2024
Short summary
Short summary
We calculated disturbances and landscape-lowering rates across various timescales in a ~ 406 km2 catchment in the Chilean Coastal Range. Intensive management of exotic tree plantations involves short rotational cycles (planting and harvesting by replanting clear-cuts) lasting 9–25 years, dense forestry road networks (increasing connectivity), and a recent increase in wildfires. Concurrently, persistent drought conditions and the high water demand of fast-growing trees reduce water availability.
Rémi Bossis, Vincent Regard, Sébastien Carretier, and Sandrine Choy
EGUsphere, https://doi.org/10.5194/egusphere-2023-3020, https://doi.org/10.5194/egusphere-2023-3020, 2024
Short summary
Short summary
The erosion of rocky coasts occurs episodically through wave action and landslides, constituting a major natural hazard. Documenting the factors that control the coastal retreat rate over millennia is fundamental to evidencing any change in time. However, the known rates to date are essentially representative of the last few decades. Here, we present a new method using the concentration of an isotope, 10Be in sediment eroded from the cliff to quantify its retreat rate averaged over millennia.
Vincent Regard, Rafael Almar, Marcan Graffin, Sébastien Carretier, Edward Anthony, Roshanka Ranasinghe, and Pierre Maffre
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-165, https://doi.org/10.5194/nhess-2023-165, 2023
Publication in NHESS not foreseen
Short summary
Short summary
The erosion of sandy beaches affects human activities and ecosystems. Research has mainly focused on sea level and wave changes, and while localized sediment research is abundant, the global effect of reduced fluvial sediment supply remains unexplored. This study presents a global sediment model that demonstrates the significant impact of river dams on beach erosion worldwide. Sediment can travel long distances via wave-induced transport, often away from river outlets.
Sébastien Carretier, Vincent Regard, Youssouf Abdelhafiz, and Bastien Plazolles
Geosci. Model Dev., 16, 6741–6755, https://doi.org/10.5194/gmd-16-6741-2023, https://doi.org/10.5194/gmd-16-6741-2023, 2023
Short summary
Short summary
We present the development of a code to simulate simultaneously the dynamics of landscapes over geological time and the evolution of the concentration of cosmogenic isotopes in grains throughout their transport from the slopes to the river outlets. This new model makes it possible to study the relationship between the detrital signal of cosmogenic isotope concentration measured in sediment and the erosion--deposition processes in watersheds.
Rémi Bossis, Vincent Regard, and Sébastien Carretier
Earth Surf. Dynam., 11, 529–545, https://doi.org/10.5194/esurf-11-529-2023, https://doi.org/10.5194/esurf-11-529-2023, 2023
Short summary
Short summary
This study presents a method to calculate the volume of rock eroded by the sea on volcanic islands, by reconstructing their pre-erosion shape and size. The method has been applied on Corvo Island (Azores). We show that before the island was eroded, it was roughly 8 km wide and 1 km high. The island has lost more than 6 km3 of rock and 80 % of its surface. We also show that the erosion of sea cliffs is mainly due to the moderate and most frequent waves.
Margaux Mouchené, Peter van der Beek, Sébastien Carretier, and Frédéric Mouthereau
Earth Surf. Dynam., 5, 125–143, https://doi.org/10.5194/esurf-5-125-2017, https://doi.org/10.5194/esurf-5-125-2017, 2017
Short summary
Short summary
The Lannemezan megafan (northern Pyrenean foreland) was abandoned during the Quaternary and subsequently incised. We use numerical models to explore possible scenarios for the evolution of this megafan. We show that autogenic processes are sufficient to explain its evolution. Climate may have played a second-order role; in contrast base-level change, tectonic activity and flexural isostatic rebound do not appear to have influenced its evolution.
Sébastien Carretier, Pierre Martinod, Martin Reich, and Yves Godderis
Earth Surf. Dynam., 4, 237–251, https://doi.org/10.5194/esurf-4-237-2016, https://doi.org/10.5194/esurf-4-237-2016, 2016
Short summary
Short summary
We introduce moving clasts (grains, minerals, cobbles) in a landscape evolution model.
This coupling has many potential applications, such as sediment provenance or the tracing of weathered material. It fills a gap between long-term landscape dynamics, which are difficult to tackle, and sediment clast populations studied in the field.
Pierre Maffre, Yves Goddéris, Guillaume Le Hir, Élise Nardin, Anta-Clarisse Sarr, and Yannick Donnadieu
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-220, https://doi.org/10.5194/gmd-2024-220, 2024
Preprint under review for GMD
Short summary
Short summary
A new version (v7) of the numerical model GEOCLIM is presented here. GEOCLIM models the evolution of ocean and atmosphere chemical composition on multi-million years timescale, including carbon and oxygen cycles, CO2 and climate. GEOCLIM is associated to a climate model, and a new procedure to link the climate model to GEOCLIM is presented here. GEOCLIM is applied here to investigate the evolution of ocean oxygenation following Earth's orbital parameter variations, around 94 million years ago.
Nick R. Hayes, Daniel J. Lunt, Yves Goddéris, Richard D. Pancost, and Heather L. Buss
EGUsphere, https://doi.org/10.5194/egusphere-2024-2811, https://doi.org/10.5194/egusphere-2024-2811, 2024
Short summary
Short summary
The breakdown of volcanic rocks by water helps balance the climate of the earth by sequestering atmospheric CO2 . The rate of CO2 sequestration is referred to as "weatherability". Our modelling study finds that continental position strongly impacts CO2 concentrations, that runoff strongly controls weatherability, that changes in weatherability may explain long term trends in atmospheric CO2 concentrations, and that even relatively localised changes in weatherability may have global impacts.
Dongyu Zheng, Andrew S. Merdith, Yves Goddéris, Yannick Donnadieu, Khushboo Gurung, and Benjamin J. W. Mills
Geosci. Model Dev., 17, 5413–5429, https://doi.org/10.5194/gmd-17-5413-2024, https://doi.org/10.5194/gmd-17-5413-2024, 2024
Short summary
Short summary
This study uses a deep learning method to upscale the time resolution of paleoclimate simulations to 1 million years. This improved resolution allows a climate-biogeochemical model to more accurately predict climate shifts. The method may be critical in developing new fully continuous methods that are able to be applied over a moving continental surface in deep time with high resolution at reasonable computational expense.
Violeta Tolorza, Christian H. Mohr, Mauricio Zambrano-Bigiarini, Benjamín Sotomayor, Dagoberto Poblete-Caballero, Sebastien Carretier, Mauricio Galleguillos, and Oscar Seguel
Earth Surf. Dynam., 12, 841–861, https://doi.org/10.5194/esurf-12-841-2024, https://doi.org/10.5194/esurf-12-841-2024, 2024
Short summary
Short summary
We calculated disturbances and landscape-lowering rates across various timescales in a ~ 406 km2 catchment in the Chilean Coastal Range. Intensive management of exotic tree plantations involves short rotational cycles (planting and harvesting by replanting clear-cuts) lasting 9–25 years, dense forestry road networks (increasing connectivity), and a recent increase in wildfires. Concurrently, persistent drought conditions and the high water demand of fast-growing trees reduce water availability.
Rémi Bossis, Vincent Regard, Sébastien Carretier, and Sandrine Choy
EGUsphere, https://doi.org/10.5194/egusphere-2023-3020, https://doi.org/10.5194/egusphere-2023-3020, 2024
Short summary
Short summary
The erosion of rocky coasts occurs episodically through wave action and landslides, constituting a major natural hazard. Documenting the factors that control the coastal retreat rate over millennia is fundamental to evidencing any change in time. However, the known rates to date are essentially representative of the last few decades. Here, we present a new method using the concentration of an isotope, 10Be in sediment eroded from the cliff to quantify its retreat rate averaged over millennia.
Vincent Regard, Rafael Almar, Marcan Graffin, Sébastien Carretier, Edward Anthony, Roshanka Ranasinghe, and Pierre Maffre
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-165, https://doi.org/10.5194/nhess-2023-165, 2023
Publication in NHESS not foreseen
Short summary
Short summary
The erosion of sandy beaches affects human activities and ecosystems. Research has mainly focused on sea level and wave changes, and while localized sediment research is abundant, the global effect of reduced fluvial sediment supply remains unexplored. This study presents a global sediment model that demonstrates the significant impact of river dams on beach erosion worldwide. Sediment can travel long distances via wave-induced transport, often away from river outlets.
Sébastien Carretier, Vincent Regard, Youssouf Abdelhafiz, and Bastien Plazolles
Geosci. Model Dev., 16, 6741–6755, https://doi.org/10.5194/gmd-16-6741-2023, https://doi.org/10.5194/gmd-16-6741-2023, 2023
Short summary
Short summary
We present the development of a code to simulate simultaneously the dynamics of landscapes over geological time and the evolution of the concentration of cosmogenic isotopes in grains throughout their transport from the slopes to the river outlets. This new model makes it possible to study the relationship between the detrital signal of cosmogenic isotope concentration measured in sediment and the erosion--deposition processes in watersheds.
Rémi Bossis, Vincent Regard, and Sébastien Carretier
Earth Surf. Dynam., 11, 529–545, https://doi.org/10.5194/esurf-11-529-2023, https://doi.org/10.5194/esurf-11-529-2023, 2023
Short summary
Short summary
This study presents a method to calculate the volume of rock eroded by the sea on volcanic islands, by reconstructing their pre-erosion shape and size. The method has been applied on Corvo Island (Azores). We show that before the island was eroded, it was roughly 8 km wide and 1 km high. The island has lost more than 6 km3 of rock and 80 % of its surface. We also show that the erosion of sea cliffs is mainly due to the moderate and most frequent waves.
Jon D. Richey, Isabel P. Montañez, Yves Goddéris, Cindy V. Looy, Neil P. Griffis, and William A. DiMichele
Clim. Past, 16, 1759–1775, https://doi.org/10.5194/cp-16-1759-2020, https://doi.org/10.5194/cp-16-1759-2020, 2020
Short summary
Short summary
Our 40 Myr CO2 reconstruction substantially refines existing late Paleozoic CO2 estimates, provides the best resolved pre-Cenozoic CO2 record, and indicates a close temporal relationship to changes in marine and terrestrial ecosystems. The GEOCLIM model used in our study allows for insight into the relative influences of uplift of the Central Pangean Mountains, intensifying aridity, and increasing mafic-to-granite ratio of outcropping rocks on changes in pCO2 through the late Paleozoic.
Margaux Mouchené, Peter van der Beek, Sébastien Carretier, and Frédéric Mouthereau
Earth Surf. Dynam., 5, 125–143, https://doi.org/10.5194/esurf-5-125-2017, https://doi.org/10.5194/esurf-5-125-2017, 2017
Short summary
Short summary
The Lannemezan megafan (northern Pyrenean foreland) was abandoned during the Quaternary and subsequently incised. We use numerical models to explore possible scenarios for the evolution of this megafan. We show that autogenic processes are sufficient to explain its evolution. Climate may have played a second-order role; in contrast base-level change, tectonic activity and flexural isostatic rebound do not appear to have influenced its evolution.
Sébastien Carretier, Pierre Martinod, Martin Reich, and Yves Godderis
Earth Surf. Dynam., 4, 237–251, https://doi.org/10.5194/esurf-4-237-2016, https://doi.org/10.5194/esurf-4-237-2016, 2016
Short summary
Short summary
We introduce moving clasts (grains, minerals, cobbles) in a landscape evolution model.
This coupling has many potential applications, such as sediment provenance or the tracing of weathered material. It fills a gap between long-term landscape dynamics, which are difficult to tackle, and sediment clast populations studied in the field.
N. Vigier and Y. Goddéris
Clim. Past, 11, 635–645, https://doi.org/10.5194/cp-11-635-2015, https://doi.org/10.5194/cp-11-635-2015, 2015
Short summary
Short summary
We develop here a new approach that couples the carbon and lithium cycles for reconstructing the Cenozoic Li isotope record. We show that this record does not provide persuasive, unique evidence for Cenozoic change in erosional forcing as it could, alternatively, be consistent with climatic control on soil production rates. The Li storage in continental secondary phases plays a key role, in particular, during the Early Cenozoic.
Y. Goddéris, S. L. Brantley, L. M. François, J. Schott, D. Pollard, M. Déqué, and M. Dury
Biogeosciences, 10, 135–148, https://doi.org/10.5194/bg-10-135-2013, https://doi.org/10.5194/bg-10-135-2013, 2013
Related subject area
Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Post-fire evolution of ravel transport regimes in the Diablo Range, CA
Landscape response to tectonic deformation and cyclic climate change since ca. 800 ka in the southern central Andes
The Aare main overdeepening on the northern margin of the European Alps: basins, riegels, and slot canyons
A simple model for faceted topographies at normal faults based on an extended stream-power law
Testing floc settling velocity models in rivers and freshwater wetlands
River suspended-sand flux computation with uncertainty estimation using water samples and high-resolution ADCP measurements
Barchan swarm dynamics from a Two-Flank Agent-Based Model
A landslide runout model for sediment transport, landscape evolution, and hazard assessment applications
Tracking slow-moving landslides with PlanetScope data: new perspectives on the satellite's perspective
Topographic metrics for unveiling fault segmentation and tectono-geomorphic evolution with insights into the impact of inherited topography, Ulsan Fault Zone, South Korea
Acceleration of coastal-retreat rates for high-Arctic rock cliffs on Brøggerhalvøya, Svalbard, over the past decade
The impact of bedrock meander cutoffs on 50 kyr scale incision rates, San Juan River, Utah
How water, temperature, and seismicity control the preconditioning of massive rock slope failure (Hochvogel)
Large structure simulation for landscape evolution models
Terrace formation linked to outburst floods at the Diexi palaeo-landslide dam, upper Minjiang River, eastern Tibetan Plateau
Width evolution of channel belts as a random walk
Pliocene shorelines and the epeirogenic motion of continental margins: a target dataset for dynamic topography models
Decadal-scale decay of landslide-derived fluvial suspended sediment after Typhoon Morakot
Role of the forcing sources in morphodynamic modelling of an embayed beach
Equilibrium distance from long-range dune interactions
Geomorphic imprint of high mountain floods: Insight from the 2022 hydrological extreme across the Upper Indus terrain in NW Himalayas
A machine learning approach to the geomorphometric detection of ribbed moraines in Norway
Stream hydrology controls on ice cliff evolution and survival on debris-covered glaciers
Time-varying drainage basin development and erosion on volcanic edifices
Geomorphic risk maps for river migration using probabilistic modeling – a framework
Evolution of submarine canyons and hanging-wall fans: insights from geomorphic experiments and morphodynamic models
Riverine sediment response to deforestation in the Amazon basin
Physical modeling of ice-sheet-induced salt movements using the example of northern Germany
Geometric constraints on tributary fluvial network junction angles
A new dunetracking tool to support input parameter selection and uncertainty analyses using a Monte Carlo approach
An evaluation of flow-routing algorithms for calculating contributing area on regular grids
Downstream rounding rate of pebbles in the Himalaya
Automatic detection of instream large wood in videos using deep learning
Examination of Analytical Shear Stress Predictions for Coastal Dune Evolution
A physics-based model for fluvial valley width
Implications for the resilience of modern coastal systems derived from mesoscale barrier dynamics at Fire Island, New York
Quantifying the migration rate of drainage divides from high-resolution topographic data
Long-term monitoring (1953–2019) of geomorphologically active sections of Little Ice Age lateral moraines in the context of changing meteorological conditions
Coevolving edge rounding and shape of glacial erratics: the case of Shap granite, UK
Dimensionless argument: a narrow grain size range near 2 mm plays a special role in river sediment transport and morphodynamics
Path length and sediment transport estimation from DEMs of difference: a signal processing approach
A numerical model for duricrust formation by water table fluctuations
Influence of cohesive clay on wave–current ripple dynamics captured in a 3D phase diagram
Statistical characterization of erosion and sediment transport mechanics in shallow tidal environments – Part 1: Erosion dynamics
Statistical characterization of erosion and sediment transport mechanics in shallow tidal environments – Part 2: Suspended sediment dynamics
Geomorphological and hydrological controls on sediment export in earthquake-affected catchments in the Nepal Himalaya
Optimization of passive acoustic bedload monitoring in rivers by signal inversion
Stochastic properties of coastal flooding events – Part 2: Probabilistic analysis
Field monitoring of pore water pressure in fully and partly saturated debris flows at Ohya landslide scar, Japan
Analysis of autogenic bifurcation processes resulting in river avulsion
Hayden L. Jacobson, Danica L. Roth, Gabriel Walton, Margaret Zimmer, and Kerri Johnson
Earth Surf. Dynam., 12, 1415–1446, https://doi.org/10.5194/esurf-12-1415-2024, https://doi.org/10.5194/esurf-12-1415-2024, 2024
Short summary
Short summary
Loose grains travel farther after a fire because no vegetation is left to stop them. This matters since loose grains at the base of a slope can turn into a debris flow if it rains. To find if grass growing back after a fire had different impacts on grains of different sizes on slopes of different steepness, we dropped thousands of natural grains and measured how far they went. Large grains went farther 7 months after the fire than 11 months after, and small grain movement didn’t change much.
Elizabeth N. Orr, Taylor F. Schildgen, Stefanie Tofelde, Hella Wittmann, and Ricardo N. Alonso
Earth Surf. Dynam., 12, 1391–1413, https://doi.org/10.5194/esurf-12-1391-2024, https://doi.org/10.5194/esurf-12-1391-2024, 2024
Short summary
Short summary
Fluvial terraces and alluvial fans in the Toro Basin, NW Argentina, record river evolution and global climate cycles over time. Landform dating reveals lower-frequency climate cycles (100 kyr) preserved downstream and higher-frequency cycles (21/40 kyr) upstream, supporting theoretical predications that longer rivers filter out higher-frequency climate signals. This finding improves our understanding of the spatial distribution of sedimentary paleoclimate records within landscapes.
Fritz Schlunegger, Edi Kissling, Dimitri Tibo Bandou, Guilhem Amin Douillet, David Mair, Urs Marti, Regina Reber, Patrick Schläfli, and Michael Alfred Schwenk
Earth Surf. Dynam., 12, 1371–1389, https://doi.org/10.5194/esurf-12-1371-2024, https://doi.org/10.5194/esurf-12-1371-2024, 2024
Short summary
Short summary
Overdeepenings are bedrock depressions filled with sediment. We combine the results of a gravity survey with drilling data to explore the morphology of such a depression beneath the city of Bern. We find that the target overdeepening comprises two basins >200 m deep. They are separated by a bedrock riegel that itself is cut by narrow canyons up to 150 m deep. We postulate that these structures formed underneath a glacier, where erosion by subglacial meltwater caused the formation of the canyons.
Stefan Hergarten
Earth Surf. Dynam., 12, 1315–1327, https://doi.org/10.5194/esurf-12-1315-2024, https://doi.org/10.5194/esurf-12-1315-2024, 2024
Short summary
Short summary
Faceted topographies are impressive footprints of active tectonics in geomorphology. This paper investigates the evolution of faceted topographies at normal faults and their interaction with a river network theoretically and numerically. As a main result beyond several relations for the geometry of facets, the horizontal displacement associated with normal faults is crucial for the dissection of initially polygonal facets into triangular facets bounded by almost parallel rivers.
Justin A. Nghiem, Gen K. Li, Joshua P. Harringmeyer, Gerard Salter, Cédric G. Fichot, Luca Cortese, and Michael P. Lamb
Earth Surf. Dynam., 12, 1267–1294, https://doi.org/10.5194/esurf-12-1267-2024, https://doi.org/10.5194/esurf-12-1267-2024, 2024
Short summary
Short summary
Fine sediment grains in freshwater can cohere into faster-settling particles called flocs, but floc settling velocity theory has not been fully validated. Combining three data sources in novel ways in the Wax Lake Delta, we verified a semi-empirical model relying on turbulence and geochemical factors. For a physics-based model, we showed that the representative grain diameter within flocs relies on floc structure and that heterogeneous flow paths inside flocs increase floc settling velocity.
Jessica Marggraf, Guillaume Dramais, Jérôme Le Coz, Blaise Calmel, Benoît Camenen, David J. Topping, William Santini, Gilles Pierrefeu, and François Lauters
Earth Surf. Dynam., 12, 1243–1266, https://doi.org/10.5194/esurf-12-1243-2024, https://doi.org/10.5194/esurf-12-1243-2024, 2024
Short summary
Short summary
Suspended-sand fluxes in rivers vary with time and space, complicating their measurement. The proposed method captures the vertical and lateral variations of suspended-sand concentration throughout a river cross-section. It merges water samples taken at various positions throughout the cross-section with high-resolution acoustic velocity measurements. This is the first method that includes a fully applicable uncertainty estimation; it can easily be applied to any other study sites.
Dominic T. Robson and Andreas C. W. Baas
Earth Surf. Dynam., 12, 1205–1226, https://doi.org/10.5194/esurf-12-1205-2024, https://doi.org/10.5194/esurf-12-1205-2024, 2024
Short summary
Short summary
Barchans are fast-moving sand dunes which form large populations (swarms) on Earth and Mars. We show that a small range of model parameters produces swarms in which dune size does not vary downwind – something that is observed in nature but not when using earlier models. We also show how the shape of dunes and the spatial patterns they form are affected by wind direction. This work furthers our understanding of the interplay between environmental drivers, dune interactions, and swarm properties.
Jeffrey Keck, Erkan Istanbulluoglu, Benjamin Campforts, Gregory Tucker, and Alexander Horner-Devine
Earth Surf. Dynam., 12, 1165–1191, https://doi.org/10.5194/esurf-12-1165-2024, https://doi.org/10.5194/esurf-12-1165-2024, 2024
Short summary
Short summary
MassWastingRunout (MWR) is a new landslide runout model designed for sediment transport, landscape evolution, and hazard assessment applications. MWR is written in Python and includes a calibration utility that automatically determines best-fit parameters for a site and empirical probability density functions of each parameter for probabilistic model implementation. MWR and Jupyter Notebook tutorials are available as part of the Landlab package at https://github.com/landlab/landlab.
Ariane Mueting and Bodo Bookhagen
Earth Surf. Dynam., 12, 1121–1143, https://doi.org/10.5194/esurf-12-1121-2024, https://doi.org/10.5194/esurf-12-1121-2024, 2024
Short summary
Short summary
This study investigates the use of optical PlanetScope data for offset tracking of the Earth's surface movement. We found that co-registration accuracy is locally degraded when outdated elevation models are used for orthorectification. To mitigate this bias, we propose to only correlate scenes acquired from common perspectives or base orthorectification on more up-to-date elevation models generated from PlanetScope data alone. This enables a more detailed analysis of landslide dynamics.
Cho-Hee Lee, Yeong Bae Seong, John Weber, Sangmin Ha, Dong-Eun Kim, and Byung Yong Yu
Earth Surf. Dynam., 12, 1091–1120, https://doi.org/10.5194/esurf-12-1091-2024, https://doi.org/10.5194/esurf-12-1091-2024, 2024
Short summary
Short summary
Topographic metrics were used to understand changes due to tectonic activity. We evaluated the relative tectonic activity along the Ulsan Fault Zone (UFZ), one of the most active fault zones in South Korea. We divided the UFZ into five segments, based on the spatial variation in activity. We modeled the landscape evolution of the study area and interpreted tectono-geomorphic history during which the northern part of the UFZ experienced asymmetric uplift, while the southern part did not.
Juditha Aga, Livia Piermattei, Luc Girod, Kristoffer Aalstad, Trond Eiken, Andreas Kääb, and Sebastian Westermann
Earth Surf. Dynam., 12, 1049–1070, https://doi.org/10.5194/esurf-12-1049-2024, https://doi.org/10.5194/esurf-12-1049-2024, 2024
Short summary
Short summary
Coastal rock cliffs on Svalbard are considered to be fairly stable; however, long-term trends in coastal-retreat rates remain unknown. This study examines changes in the coastline position along Brøggerhalvøya, Svalbard, using aerial images from 1970, 1990, 2010, and 2021. Our analysis shows that coastal-retreat rates accelerate during the period 2010–2021, which coincides with increasing storminess and retreating sea ice.
Aaron T. Steelquist, Gustav B. Seixas, Mary L. Gillam, Sourav Saha, Seulgi Moon, and George E. Hilley
Earth Surf. Dynam., 12, 1071–1089, https://doi.org/10.5194/esurf-12-1071-2024, https://doi.org/10.5194/esurf-12-1071-2024, 2024
Short summary
Short summary
The rates at which rivers erode their bed can be used to interpret the geologic history of a region. However, these rates depend significantly on the time window over which you measure. We use multiple dating methods to determine an incision rate for the San Juan River and compare it to regional rates with longer timescales. We demonstrate how specific geologic events, such as cutoffs of bedrock meander bends, are likely to preserve material we can date but also bias the rates we measure.
Johannes Leinauer, Michael Dietze, Sibylle Knapp, Riccardo Scandroglio, Maximilian Jokel, and Michael Krautblatter
Earth Surf. Dynam., 12, 1027–1048, https://doi.org/10.5194/esurf-12-1027-2024, https://doi.org/10.5194/esurf-12-1027-2024, 2024
Short summary
Short summary
Massive rock slope failures are a significant alpine hazard and change the Earth's surface. Therefore, we must understand what controls the preparation of such events. By correlating 4 years of slope displacements with meteorological and seismic data, we found that water from rain and snowmelt is the most important driver. Our approach is applicable to similar sites and indicates where future climatic changes, e.g. in rain intensity and frequency, may alter the preparation of slope failure.
Julien Coatléven and Benoit Chauveau
Earth Surf. Dynam., 12, 995–1026, https://doi.org/10.5194/esurf-12-995-2024, https://doi.org/10.5194/esurf-12-995-2024, 2024
Short summary
Short summary
The aim of this paper is to explain how to incorporate classical water flow routines into landscape evolution models while keeping numerical errors under control. The key idea is to adapt filtering strategies to eliminate anomalous numerical errors and mesh dependencies, as confirmed by convergence tests with analytic solutions. The emergence of complex geomorphic structures is now driven exclusively by nonlinear heterogeneous physical processes rather than by random numerical artifacts.
Jingjuan Li, John D. Jansen, Xuanmei Fan, Zhiyong Ding, Shugang Kang, and Marco Lovati
Earth Surf. Dynam., 12, 953–971, https://doi.org/10.5194/esurf-12-953-2024, https://doi.org/10.5194/esurf-12-953-2024, 2024
Short summary
Short summary
In this study, we investigated the geomorphology, sedimentology, and chronology of Tuanjie (seven terraces) and Taiping (three terraces) terraces in Diexi, eastern Tibetan Plateau. Results highlight that two damming and three outburst events occurred in the area during the late Pleistocene, and the outburst floods have been a major factor in the formation of tectonically active mountainous river terraces. Tectonic activity and climatic changes play a minor role.
Jens Martin Turowski, Fergus McNab, Aaron Bufe, and Stefanie Tofelde
EGUsphere, https://doi.org/10.5194/egusphere-2024-2342, https://doi.org/10.5194/egusphere-2024-2342, 2024
Short summary
Short summary
Channel belts comprise the area that is affected by a river due to lateral migration and floods. As a landform, they affect local water resources, flood hazard, and often host unique ecological communities. Here, we develop a model describing the evolution of channel belt area over time. The model connects the behaviour of the river to the evolution of the channel belt over a timescale of centuries. A comparison to selected data from experiments and real river systems is favourable.
Andrew Hollyday, Maureen E. Raymo, Jacqueline Austermann, Fred Richards, Mark Hoggard, and Alessio Rovere
Earth Surf. Dynam., 12, 883–905, https://doi.org/10.5194/esurf-12-883-2024, https://doi.org/10.5194/esurf-12-883-2024, 2024
Short summary
Short summary
Sea level was significantly higher during the Pliocene epoch, around 3 million years ago. The present-day elevations of shorelines that formed in the past provide a data constraint on the extent of ice sheet melt and the global sea level response under warm Pliocene conditions. In this study, we identify 10 escarpments that formed from wave-cut erosion during Pliocene times and compare their elevations with model predictions of solid Earth deformation processes to estimate past sea level.
Gregory A. Ruetenik, Ken L. Ferrier, and Odin Marc
Earth Surf. Dynam., 12, 863–881, https://doi.org/10.5194/esurf-12-863-2024, https://doi.org/10.5194/esurf-12-863-2024, 2024
Short summary
Short summary
Fluvial sediment fluxes increased dramatically in Taiwan during Typhoon Morakot in 2009, which produced some of the heaviest landsliding on record. We analyzed fluvial discharge and suspended sediment concentration data at 87 gauging stations across Taiwan to quantify fluvial sediment responses since Morakot. In basins heavily impacted by landsliding, rating curve coefficients sharply increased during Morakot and then declined exponentially with a characteristic decay time of <10 years.
Nil Carrion-Bertran, Albert Falqués, Francesca Ribas, Daniel Calvete, Rinse de Swart, Ruth Durán, Candela Marco-Peretó, Marta Marcos, Angel Amores, Tim Toomey, Àngels Fernández-Mora, and Jorge Guillén
Earth Surf. Dynam., 12, 819–839, https://doi.org/10.5194/esurf-12-819-2024, https://doi.org/10.5194/esurf-12-819-2024, 2024
Short summary
Short summary
The sensitivity to the wave and sea-level forcing sources in predicting a 6-month embayed beach evolution is assessed using two different morphodynamic models. After a successful model calibration using in situ data, other sources are applied. The wave source choice is critical: hindcast data provide wrong results due to an angle bias, whilst the correct dynamics are recovered with the wave conditions from an offshore buoy. The use of different sea-level sources gives no significant differences.
Jean Vérité, Clément Narteau, Olivier Rozier, Jeanne Alkalla, Laurie Barrier, and Sylvain Courrech du Pont
EGUsphere, https://doi.org/10.5194/egusphere-2024-1634, https://doi.org/10.5194/egusphere-2024-1634, 2024
Short summary
Short summary
Using a numerical model in 2D, we study how two identical dunes interact with each other when exposed to reversing winds. Depending on the distance between the dunes, they either repel or attract each other until they reach an equilibrium distance, which is controlled by the wind strength, wind reversal frequency and dune size. This process is controlled by the modification of wind flow over dunes of various shape, influencing the sediment transport downstream.
Abhishek Kashyap, Kristen Cook, and Mukunda Dev Behera
EGUsphere, https://doi.org/10.5194/egusphere-2024-1618, https://doi.org/10.5194/egusphere-2024-1618, 2024
Short summary
Short summary
High-mountain floods exhibit a significant geomorphic hazard, often triggered by rapid snowmelt, extreme precipitation, glacial lake outbursts, and natural failures of dams. Such high-magnitude floods can have catastrophic impacts on downstream communities, ecosystems, and infrastructure. These floods demonstrate the significance of understanding the complex interaction of climatic, hydrological, and geological forces in high mountain regions.
Thomas J. Barnes, Thomas V. Schuler, Simon Filhol, and Karianne S. Lilleøren
Earth Surf. Dynam., 12, 801–818, https://doi.org/10.5194/esurf-12-801-2024, https://doi.org/10.5194/esurf-12-801-2024, 2024
Short summary
Short summary
In this paper, we use machine learning to automatically outline landforms based on their characteristics. We test several methods to identify the most accurate and then proceed to develop the most accurate to improve its accuracy further. We manage to outline landforms with 65 %–75 % accuracy, at a resolution of 10 m, thanks to high-quality/high-resolution elevation data. We find that it is possible to run this method at a country scale to quickly produce landform inventories for future studies.
Eric Petersen, Regine Hock, and Michael G. Loso
Earth Surf. Dynam., 12, 727–745, https://doi.org/10.5194/esurf-12-727-2024, https://doi.org/10.5194/esurf-12-727-2024, 2024
Short summary
Short summary
Ice cliffs are melt hot spots that increase melt rates on debris-covered glaciers which otherwise see a reduction in melt rates. In this study, we show how surface runoff streams contribute to the generation, evolution, and survival of ice cliffs by carving into the glacier and transporting rocky debris. On Kennicott Glacier, Alaska, 33 % of ice cliffs are actively influenced by streams, while nearly half are within 10 m of streams.
Daniel O'Hara, Liran Goren, Roos M. J. van Wees, Benjamin Campforts, Pablo Grosse, Pierre Lahitte, Gabor Kereszturi, and Matthieu Kervyn
Earth Surf. Dynam., 12, 709–726, https://doi.org/10.5194/esurf-12-709-2024, https://doi.org/10.5194/esurf-12-709-2024, 2024
Short summary
Short summary
Understanding how volcanic edifices develop drainage basins remains unexplored in landscape evolution. Using digital evolution models of volcanoes with varying ages, we quantify the geometries of their edifices and associated drainage basins through time. We find that these metrics correlate with edifice age and are thus useful indicators of a volcano’s history. We then develop a generalized model for how volcano basins develop and compare our results to basin evolution in other settings.
Brayden Noh, Omar Wani, Kieran B. J. Dunne, and Michael P. Lamb
Earth Surf. Dynam., 12, 691–708, https://doi.org/10.5194/esurf-12-691-2024, https://doi.org/10.5194/esurf-12-691-2024, 2024
Short summary
Short summary
In this paper, we propose a framework for generating risk maps that provide the probabilities of erosion due to river migration. This framework uses concepts from probability theory to learn the river migration model's parameter values from satellite data while taking into account parameter uncertainty. Our analysis shows that such geomorphic risk estimation is more reliable than models that do not explicitly consider various sources of variability and uncertainty.
Steven Y. J. Lai, David Amblas, Aaron Micallef, and Hervé Capart
Earth Surf. Dynam., 12, 621–640, https://doi.org/10.5194/esurf-12-621-2024, https://doi.org/10.5194/esurf-12-621-2024, 2024
Short summary
Short summary
This study explores the creation of submarine canyons and hanging-wall fans on active faults, which can be defined by gravity-dominated breaching and underflow-dominated diffusion processes. The study reveals the self-similarity in canyon–fan long profiles, uncovers Hack’s scaling relationship and proposes a formula to estimate fan volume using canyon length. This is validated by global data from source-to-sink systems, providing insights into deep-water sedimentary processes.
Anuska Narayanan, Sagy Cohen, and John R. Gardner
Earth Surf. Dynam., 12, 581–599, https://doi.org/10.5194/esurf-12-581-2024, https://doi.org/10.5194/esurf-12-581-2024, 2024
Short summary
Short summary
This study investigates the profound impact of deforestation in the Amazon on sediment dynamics. Novel remote sensing data and statistical analyses reveal significant changes, especially in heavily deforested regions, with rapid effects within a year. In less disturbed areas, a 1- to 2-year lag occurs, influenced by natural sediment shifts and human activities. These findings highlight the need to understand the consequences of human activity for our planet's future.
Jacob Hardt, Tim P. Dooley, and Michael R. Hudec
Earth Surf. Dynam., 12, 559–579, https://doi.org/10.5194/esurf-12-559-2024, https://doi.org/10.5194/esurf-12-559-2024, 2024
Short summary
Short summary
We investigate the reaction of salt structures on ice sheet transgressions. We used a series of sandbox models that enabled us to experiment with scaled-down versions of salt bodies from northern Germany. The strongest reactions occurred when large salt pillows were partly covered by the ice load. Subsurface salt structures may play an important role in the energy transition, e.g., as energy storage. Thus, it is important to understand all processes that affect their stability.
Jon D. Pelletier, Robert G. Hayes, Olivia Hoch, Brendan Fenerty, and Luke A. McGuire
EGUsphere, https://doi.org/10.5194/egusphere-2024-1153, https://doi.org/10.5194/egusphere-2024-1153, 2024
Short summary
Short summary
On the gently sloping landscapes next to mountain fronts, junction angles tend to be lower (more acute), while in bedrock landscapes where the initial landscape or tectonic forcing is likely more spatially variable, junction angles tend to be larger (more obtuse). We demonstrate this using an analysis of ~20 million junction angles for the U.S.A., augmented by analyses of the Loess Plateau, China, and synthetic landscapes.
Julius Reich and Axel Winterscheid
EGUsphere, https://doi.org/10.5194/egusphere-2024-579, https://doi.org/10.5194/egusphere-2024-579, 2024
Short summary
Short summary
Analysing the geometry and the dynamics of riverine bedforms (so-called dunetracking) is important for various fields of application and contributes to a sound and efficient river and sediment management. We developed a new tool, which enables a robust estimation of bedform characteristics and with which comprehensive sensitivity analyses can be carried out. Using a test dataset, we show that the selection of input parameters of dunetracking tools can have a significant impact on the results.
Alexander B. Prescott, Jon D. Pelletier, Satya Chataut, and Sriram Ananthanarayan
EGUsphere, https://doi.org/10.5194/egusphere-2024-1138, https://doi.org/10.5194/egusphere-2024-1138, 2024
Short summary
Short summary
Many Earth surface processes are controlled by the spatial pattern of surface water flow. We review commonly used methods for predicting such spatial patterns in digital landform models and document the pros and cons of commonly used methods. We propose a new method that is designed to minimize those limitations and show that it works well in a variety of test cases.
Prakash Pokhrel, Mikael Attal, Hugh D. Sinclair, Simon M. Mudd, and Mark Naylor
Earth Surf. Dynam., 12, 515–536, https://doi.org/10.5194/esurf-12-515-2024, https://doi.org/10.5194/esurf-12-515-2024, 2024
Short summary
Short summary
Pebbles become increasingly rounded during downstream transport in rivers due to abrasion. This study quantifies pebble roundness along the length of two Himalayan rivers. We demonstrate that roundness increases with downstream distance and that the rates are dependent on rock type. We apply this to reconstructing travel distances and hence the size of ancient Himalaya. Results show that the ancient river network was larger than the modern one, indicating that there has been river capture.
Janbert Aarnink, Tom Beucler, Marceline Vuaridel, and Virginia Ruiz-Villanueva
EGUsphere, https://doi.org/10.5194/egusphere-2024-792, https://doi.org/10.5194/egusphere-2024-792, 2024
Short summary
Short summary
This study presents a novel CNN approach for detecting instream large wood in rivers, addressing the need for flexible monitoring methods that can be used on a variety of data sources. Leveraging a database of 15,228 fully labeled images, our model achieved a 67 % weighted mean average precision. Fine-tuning parameters and sampling techniques offer potential for further performance enhancement of more than 10 % in certain cases, promising valuable insights for ecosystem management.
Orie Cecil, Nicholas Cohn, Matthew Farthing, Sourav Dutta, and Andrew Trautz
EGUsphere, https://doi.org/10.5194/egusphere-2024-855, https://doi.org/10.5194/egusphere-2024-855, 2024
Short summary
Short summary
Using computational fluid dynamics, we analyze the error trends of an analytical shear stress distribution model used to drive aeolian transport for coastal dunes which are an important line of defense against storm related flooding hazards. We find that compared to numerical simulations, the analytical model results in a net overprediction of the landward migration rate. Additionally, two data-driven approaches are proposed for reducing the error while maintaining computational efficiency.
Jens Martin Turowski, Aaron Bufe, and Stefanie Tofelde
Earth Surf. Dynam., 12, 493–514, https://doi.org/10.5194/esurf-12-493-2024, https://doi.org/10.5194/esurf-12-493-2024, 2024
Short summary
Short summary
Fluvial valleys are ubiquitous landforms, and understanding their formation and evolution affects a wide range of disciplines from archaeology and geology to fish biology. Here, we develop a model to predict the width of fluvial valleys for a wide range of geographic conditions. In the model, fluvial valley width is controlled by the two competing factors of lateral channel mobility and uplift. The model complies with available data and yields a broad range of quantitative predictions.
Daniel J. Ciarletta, Jennifer L. Miselis, Julie C. Bernier, and Arnell S. Forde
Earth Surf. Dynam., 12, 449–475, https://doi.org/10.5194/esurf-12-449-2024, https://doi.org/10.5194/esurf-12-449-2024, 2024
Short summary
Short summary
We reconstructed the evolution of Fire Island, a barrier island in New York, USA, to identify drivers of landscape change. Results reveal Fire Island was once divided into multiple inlet-separated islands with distinct features. Later, inlets closed, and Fire Island’s landscape became more uniform as human activities intensified. The island is now less mobile and less likely to resist and recover from storm impacts and sea level rise. This vulnerability may exist for other stabilized barriers.
Chao Zhou, Xibin Tan, Yiduo Liu, and Feng Shi
Earth Surf. Dynam., 12, 433–448, https://doi.org/10.5194/esurf-12-433-2024, https://doi.org/10.5194/esurf-12-433-2024, 2024
Short summary
Short summary
The drainage-divide stability provides new insights into both the river network evolution and the tectonic and/or climatic changes. Several methods have been proposed to determine the direction of drainage-divide migration. However, how to quantify the migration rate of drainage divides remains challenging. In this paper, we propose a new method to calculate the migration rate of drainage divides from high-resolution topographic data.
Moritz Altmann, Madlene Pfeiffer, Florian Haas, Jakob Rom, Fabian Fleischer, Tobias Heckmann, Livia Piermattei, Michael Wimmer, Lukas Braun, Manuel Stark, Sarah Betz-Nutz, and Michael Becht
Earth Surf. Dynam., 12, 399–431, https://doi.org/10.5194/esurf-12-399-2024, https://doi.org/10.5194/esurf-12-399-2024, 2024
Short summary
Short summary
We show a long-term erosion monitoring of several sections on Little Ice Age lateral moraines with derived sediment yield from historical and current digital elevation modelling (DEM)-based differences. The first study period shows a clearly higher range of variability of sediment yield within the sites than the later periods. In most cases, a decreasing trend of geomorphic activity was observed.
Paul A. Carling
Earth Surf. Dynam., 12, 381–397, https://doi.org/10.5194/esurf-12-381-2024, https://doi.org/10.5194/esurf-12-381-2024, 2024
Short summary
Short summary
Edge rounding in Shap granite glacial erratics is an irregular function of distance from the source outcrop in northern England, UK. Block shape is conservative, evolving according to block fracture mechanics – stochastic and silver ratio models – towards either of two attractor states. Progressive reduction in size occurs for blocks transported at the sole of the ice mass where the blocks are subject to compressive and tensile forces of the ice acting against a bedrock or till surface.
Gary Parker, Chenge An, Michael P. Lamb, Marcelo H. Garcia, Elizabeth H. Dingle, and Jeremy G. Venditti
Earth Surf. Dynam., 12, 367–380, https://doi.org/10.5194/esurf-12-367-2024, https://doi.org/10.5194/esurf-12-367-2024, 2024
Short summary
Short summary
River morphology has traditionally been divided by the size 2 mm. We use dimensionless arguments to show that particles in the 1–5 mm range (i) are the finest range not easily suspended by alluvial flood flows, (ii) are transported preferentially over coarser gravel, and (iii), within limits, are also transported preferentially over sand. We show how fluid viscosity mediates the special status of sediment in this range.
Lindsay Marie Capito, Enrico Pandrin, Walter Bertoldi, Nicola Surian, and Simone Bizzi
Earth Surf. Dynam., 12, 321–345, https://doi.org/10.5194/esurf-12-321-2024, https://doi.org/10.5194/esurf-12-321-2024, 2024
Short summary
Short summary
We propose that the pattern of erosion and deposition from repeat topographic surveys can be a proxy for path length in gravel-bed rivers. With laboratory and field data, we applied tools from signal processing to quantify this periodicity and used these path length estimates to calculate sediment transport using the morphological method. Our results highlight the potential to expand the use of the morphological method using only remotely sensed data as well as its limitations.
Caroline Fenske, Jean Braun, François Guillocheau, and Cécile Robin
EGUsphere, https://doi.org/10.5194/egusphere-2024-160, https://doi.org/10.5194/egusphere-2024-160, 2024
Short summary
Short summary
We have developed a new numerical model to represent the formation of ferricretes which are iron-rich, hard layers found in soils and at the surface of the Earth. We assume that the formation mechanism implies variations in the height of the water table and that the hardening rate is proportional to precipitation. The model allows us to quantify the potential feedbacks they generate on the surface topography and the thickness of the regolith/soil layer.
Xuxu Wu, Jonathan Malarkey, Roberto Fernández, Jaco H. Baas, Ellen Pollard, and Daniel R. Parsons
Earth Surf. Dynam., 12, 231–247, https://doi.org/10.5194/esurf-12-231-2024, https://doi.org/10.5194/esurf-12-231-2024, 2024
Short summary
Short summary
The seabed changes from flat to rippled in response to the frictional influence of waves and currents. This experimental study has shown that the speed of this change, the size of ripples that result and even whether ripples appear also depend on the amount of sticky mud present. This new classification on the basis of initial mud content should lead to improvements in models of seabed change in present environments by engineers and the interpretation of past environments by geologists.
Andrea D'Alpaos, Davide Tognin, Laura Tommasini, Luigi D'Alpaos, Andrea Rinaldo, and Luca Carniello
Earth Surf. Dynam., 12, 181–199, https://doi.org/10.5194/esurf-12-181-2024, https://doi.org/10.5194/esurf-12-181-2024, 2024
Short summary
Short summary
Sediment erosion induced by wind waves is one of the main drivers of the morphological evolution of shallow tidal environments. However, a reliable description of erosion events for the long-term morphodynamic modelling of tidal systems is still lacking. By statistically characterizing sediment erosion dynamics in the Venice Lagoon over the last 4 centuries, we set up a novel framework for a synthetic, yet reliable, description of erosion events in tidal systems.
Davide Tognin, Andrea D'Alpaos, Luigi D'Alpaos, Andrea Rinaldo, and Luca Carniello
Earth Surf. Dynam., 12, 201–218, https://doi.org/10.5194/esurf-12-201-2024, https://doi.org/10.5194/esurf-12-201-2024, 2024
Short summary
Short summary
Reliable quantification of sediment transport processes is necessary to understand the fate of shallow tidal environments. Here we present a framework for the description of suspended sediment dynamics to quantify deposition in the long-term modelling of shallow tidal systems. This characterization, together with that of erosion events, allows one to set up synthetic, yet reliable, models for the long-term evolution of tidal landscapes.
Emma L. S. Graf, Hugh D. Sinclair, Mikaël Attal, Boris Gailleton, Basanta Raj Adhikari, and Bishnu Raj Baral
Earth Surf. Dynam., 12, 135–161, https://doi.org/10.5194/esurf-12-135-2024, https://doi.org/10.5194/esurf-12-135-2024, 2024
Short summary
Short summary
Using satellite images, we show that, unlike other examples of earthquake-affected rivers, the rivers of central Nepal experienced little increase in sedimentation following the 2015 Gorkha earthquake. Instead, a catastrophic flood occurred in 2021 that buried towns and agricultural land under up to 10 m of sediment. We show that intense storms remobilised glacial sediment from high elevations causing much a greater impact than flushing of earthquake-induced landslides.
Mohamad Nasr, Adele Johannot, Thomas Geay, Sebastien Zanker, Jules Le Guern, and Alain Recking
Earth Surf. Dynam., 12, 117–134, https://doi.org/10.5194/esurf-12-117-2024, https://doi.org/10.5194/esurf-12-117-2024, 2024
Short summary
Short summary
Hydrophones are used to monitor sediment transport in the river by listening to the acoustic noise generated by particle impacts on the riverbed. However, this acoustic noise is modified by the river flow and can cause misleading information about sediment transport. This article proposes a model that corrects the measured acoustic signal. Testing the model showed that the corrected signal is better correlated with bedload flux in the river.
Byungho Kang, Rusty A. Feagin, Thomas Huff, and Orencio Durán Vinent
Earth Surf. Dynam., 12, 105–115, https://doi.org/10.5194/esurf-12-105-2024, https://doi.org/10.5194/esurf-12-105-2024, 2024
Short summary
Short summary
We provide a detailed characterization of the frequency, intensity and duration of flooding events at a site along the Texas coast. Our analysis demonstrates the suitability of relatively simple wave run-up models to estimate the frequency and intensity of coastal flooding. Our results validate and expand a probabilistic model of coastal flooding driven by wave run-up that can then be used in coastal risk management in response to sea level rise.
Shunsuke Oya, Fumitoshi Imaizumi, and Shoki Takayama
Earth Surf. Dynam., 12, 67–86, https://doi.org/10.5194/esurf-12-67-2024, https://doi.org/10.5194/esurf-12-67-2024, 2024
Short summary
Short summary
The monitoring of pore water pressure in fully and partly saturated debris flows was performed at Ohya landslide scar, central Japan. The pore water pressure in some partly saturated flows greatly exceeded the hydrostatic pressure. The depth gradient of the pore water pressure in the lower part of the flow was generally higher than the upper part of the flow. We conclude that excess pore water pressure is present in many debris flow surges and is an important mechanism in debris flow behavior.
Gabriele Barile, Marco Redolfi, and Marco Tubino
Earth Surf. Dynam., 12, 87–103, https://doi.org/10.5194/esurf-12-87-2024, https://doi.org/10.5194/esurf-12-87-2024, 2024
Short summary
Short summary
River bifurcations often show the closure of one branch (avulsion), whose causes are still poorly understood. Our model shows that when one branch stops transporting sediments, the other considerably erodes and captures much more flow, resulting in a self-sustaining process. This phenomenon intensifies when increasing the length of the branches, eventually leading to branch closure. This work may help to understand when avulsions occur and thus to design sustainable river restoration projects.
Cited articles
Anderson, S., Anderson, R., and Tucker, G.: Landscape scale linkages in critical zone
evolution, CR Geosci., 344, 586–596, 2012. a
Berner, R.: 3GEOCARB-II – A Revised Model Of Atmospheric CO2 Over Phanerozoic
Time, Am. J. Sci., 294, 56–91, https://doi.org/10.2475/ajs.294.1.56, 1994. a
Berner, R., Lasaga, A., and Garrels, R.: The carbonate-silicate geochemical cycle
and its effect on atmospheric carbon-dioxide over the past 100 million years, Am. J. Sci., 283, 641–683, https://doi.org/10.2475/ajs.283.7.641, 1983. a
von Blanckenburg, F., Bouchez, J., Ibarra, D., and Maher, K.: Stable runoff and
weathering fluxes into the oceans over Quaternary climate cycles, Nat. Geosci., 8, 538–U146, https://doi.org/10.1038/NGEO2452, 2015. a
Bluth, G. and Kump, L.: Lithologic and climatologic controls of river chemistry,
Geochim. Cosmochim. Ac., 58, 2341–2359, https://doi.org/10.1016/0016-7037(94)90015-9, 1994. a
Bookhagen, B. and Burbank, D.: Topography, relief, and TRMM-derived rainfall variations along the
Himalaya, Geophys. Res. Lett., 33, L08405, https://doi.org/10.1029/2006GL026037, 2006. a
Bookhagen, B. and Strecker, M. R.: Orographic barriers, high-resolution TRMM rainfall,
and relief variations along the eastern Andes, Geophys. Res. Lett., 35, L06403, https://doi.org/10.1029/2007GL032011, 2008. a
Bouchez, J. and Gaillardet, J.: How accurate are rivers as gauges of chemical
denudation of the Earth surface?, Geology, 42, 171–174, https://doi.org/10.1130/G34934.1, 2014. a
Bouchez, J., Gaillardet, J., Lupker, M., Louvat, P., France-Lanord, C., Maurice, L., Armijos, E., and Moquet, J.-S.: Floodplains of large rivers: Weathering reactors or simple silos?, Chem. Geol., 332, 166–184, https://doi.org/10.1016/j.chemgeo.2012.09.032, 2012. a, b, c
Brady, P. V.: The effect of silicate weathering on global temperature and atmospheric CO2, J. Geophys. Res., 96, 18101–18106, 1991. a
Brocard, G. and van der Beek, P.: Influence of incision rate, rock strength
and bedload supply on bedrock river gradients and valley-flat widths:
Field-based evidence and calibrations from western Alpine rivers (SE France),
in: Tectonics, Climate and Landscape Evolution, edited by: Willett, S. D.,
Hovius, N., Brandon, M. T., and Fisher, D., Geol. Soc. Am. Spec.
Publ., 101–126, 2006. a
Buss, H. L., Lara, M. C., Moore, O. W., Kurtz, A. C., Schulz, M. S., and White, A. F.: Lithological influences on contemporary and long-term regolith weathering at the Luquillo Critical Zone Observatory, Geochim. Cosmochim. Ac., 196, 224–251, https://doi.org/10.1016/j.gca.2016.09.038, 2017. a
Calmels, D., Galy, A., Hovius, N., Bickle, M., West, A. J., Chen, M.-C., and Chapman, H.: Contribution of deep groundwater to the weathering budget in a rapidly eroding mountain belt, Taiwan, Earth Planet. Sc. Lett., 303, 48–58, https://doi.org/10.1016/j.epsl.2010.12.032, 2011. a, b, c, d
Carretier, S., Poisson, B., Vassallo, R., Pepin, E., and Farías, M.:
Tectonic interpretation of erosion rates at different spatial scales in
an uplifting block, J. Geophys. Res., 114, F02003, https://doi.org/10.1029/2008JF001080, 2009. a
Carretier, S., Martinod, P., Reich, M., and Goddéris, Y.: Modelling
sediment clasts transport during landscape evolution, Earth Surf. Dynam., 4,
237–251, https://doi.org/10.5194/esurf-4-237-2016, 2016. a, b, c, d
Caves, J. K., Jost, A. B., Lau, K. V., and Maher, K.: Cenozoic carbon cycle imbalances and a variable weathering feedback, Earth Planet. Sc. Lett., 450, 152–163, https://doi.org/10.1016/j.epsl.2016.06.035, 2016. a
Cohen, S., Willgoose, G., and Hancock, G.: Soil-landscape response to mid and late Quaternary climate fluctuations based on numerical simulations, Quaternary Res., 79, 452–457, https://doi.org/10.1016/j.yqres.2013.01.001, 2013. a
Colberg, J. S. and Anders, A. M.: Numerical modeling of spatially-variable precipitation and passive margin escarpment evolution, Geomorphology, 207, 203–212, https://doi.org/10.1016/j.geomorph.2013.11.006, 2014. a
Davy, P. and Lague, D.: The erosion/transport equation of landscape evolution models revisited, J. Geophys. Res., 114, F03007, https://doi.org/10.1029/2008JF001146, 2009. a, b
Dessert, C., Dupré, B., Gaillardet, J., François, L., and Allègre, C.: Basalt weathering laws and the impact of basalt weathering on the global carbon cycle, Chem. Geol., 202, 257–273, 2003. a
Dixon, J. and von Blanckenburg, F.: Soils as pacemakers and limiters of global silicate weathering, CR Geosci., 344, 597–609, https://doi.org/10.1016/j.crte.2012.10.012, 2012. a, b, c
Dixon, J., Heimsath, A., and Amundson, R.: The critical role of climate and saprolite weathering in landscape evolution, Earth Surf. Proc. Land., 34, 1507–1521, https://doi.org/10.1002/esp.1836, 2009a. a, b, c, d
Dixon, J., Heimsath, A., Kaste, J., and Amundson, R.: Climate-driven processes of hillslope weathering, Geology, 37, 975–978, https://doi.org/10.1130/G30045A.1, 2009b. a, b, c, d
Donnadieu, Y., Goddéris, Y., Pierrehumbert, R., Dromart, G., Fluteau, F., and Jacob, R.: A GEOCLIM simulation of climatic and biogeochemical consequences
of Pangea breakup, Geochem. Geophy. Geosy., 7, Q11019, https://doi.org/10.1029/2006GC001278, 2006. a
Dosseto, A., Bourdon, B., Gaillardet, J., Maurice-Bourgoin, L., and Allègre, C.: Weathering and transport of sediments in the Bolivian Andes: Time constraints from uranium-series isotopes, Earth Planet. Sc. Lett., 248, 759–771, 2006. a
Dosseto, A., Turner, S., and Chappell, J.: The evolution of weathering profiles through time: new insights from uranium-series isotopes., Earth Planet. Sc. Lett., 274, 359–371, 2008. a
Drever, J.: The effect of land plants on weathering rates of silicate minerals, Geochim. Cosmochim. Ac., 58, 2325–2332, https://doi.org/10.1016/0016-7037(94)90013-2, 1994. a
Dupré, B., Dessert, C., Oliva, P., Goddéris, Y., Viers, J.,
François, L., Millot, R., and Gaillardet, J.: Rivers, chemical weathering
and Earth's climate, Compt. R. Acad. Sci., 335, 1141–1160, 2003. a
Emberson, R., Hovius, N., Galy, A., and Marc, O.: Chemical weathering in active mountain belts controlled by stochastic bedrock landsliding, Nat. Geosci., 9, 42, https://doi.org/10.1038/NGEO2600, 2016a. a, b, c, d
Fletcher, R., Buss, H., and Brantley, S.: A spheroidal weathering model coupling porewater chemistry to soil thicknesses during steady-state denudation, Earth Planet. Sc. Lett., 244, 444–457, https://doi.org/10.1016/j.epsl.2006.01.055, 2006. a
France-Lanord, C. and Derry, L. A.: Organic carbon burial forcing of the carbon cycle from Himalaya erosion, Nature, 390, 65–67, 1997. a
François, L. and Walker, J.: Modeling the phanerozoic carbon-cycle and climate – constraints from the Sr-87–Sr-86 isotopic ratio of seawater, Am. J. Sci., 292, 81–135, https://doi.org/10.2475/ajs.292.2.81, 1992. a
Gabet, E. J.: A theoretical model coupling chemical weathering and physical erosion in landslide-dominated landscapes, Earth Planet. Sc. Lett., 264, 259–265, https://doi.org/10.1016/j.epsl.2007.09.028, 2007. a
Gaillardet, J., Dupré, B., Louvat, P., and Allègre, C.: Global silicate weathering and CO2 consumption rates deduced from the chemistry of the large rivers, Chem. Geol., 159, 3–30, 1999. a
Galy, V., Peucker-Ehrenbrink, B., and Eglinton, T.: Global carbon export from the terrestrial biosphere controlled by erosion, Nature, 521, 204, https://doi.org/10.1038/nature14400, 2015. a
Giachetta, E., Molin, P., Scotti, V. N., and Faccenna, C.: Plio-Quaternary uplift of the Iberian Chain (central-eastern Spain) from landscape evolution experiments and river profile modeling, Geomorphology, 246, 48–67, https://doi.org/10.1016/j.geomorph.2015.06.005, 2015. a
Gibbs, M., Bluth, G., Fawcett, P., and Kump, L.: Global chemical erosion over the last 250 my: Variations due to changes in paleogeography, paleoclimate, and paleogeology, Am. J. Sci., 299, 611–651, https://doi.org/10.2475/ajs.299.7-9.611, 1999. a
Gilbert, G.: Report on the Geology of the Henry Mountains U. S. Geographical
and Geological Survey of the Rocky Mountain Region Washington D.C, Tech.
rep., 1877. a
Goddéris, Y., Francois, L., Probst, A., Schott, J., Moncoulon, D., Labat, D., and Viville, D.: Modelling weathering processes at
the catchment scale: The WITCH numerical model, Geochim. Cosmochim. Ac., 1128–1147, https://doi.org/10.1016/j.gca.2005.11.018, 2006. a
Goddéris, Y., Donnadieu, Y., Le Hir, G., Lefebvre, V., and Nardin, E.: The role of palaeogeography in the Phanerozoic history of atmospheric CO2 and climate, Earth-Sci. Rev., 128, 122–138, https://doi.org/10.1016/j.earscirev.2013.11.004, 2014. a
Heimsath, A. M., Dietrich, W. E., Nishiizumi, K., and Finkel, R. C.: The soil production function and landscape equilibrium, Nature, 388, 358–361, 1997. a
Heimsath, A., Dietrich, W., Nishiizumi, K., and Finkel, R.: Stochastic processes of soil production and transport: Erosion rates, topographic variation and cosmogenic nuclides in the Oregon Coast Range, Earth Surf. Proc. Land., 26, 531–552, https://doi.org/10.1002/esp.209, 2001. a
Heimsath, A. M., DiBiase, R., and Whipple, K.: Soil production limits and the
transition to bedrock-dominated landscapes, Nat. Geosci., 5, 1–4, https://doi.org/10.1038/NGEO1380, 2012. a, b
Ibarra, D. E., Caves, J. K., Moon, S., Thomas, D. L., Hartmann, J., Chamberlain, C. P., and Maher, K.: Differential weathering of basaltic and granitic catchments from concentration-discharge relationships, Geochim. Cosmochim. Ac., 190, 265–293, https://doi.org/10.1016/j.gca.2016.07.006, 2016. a
Kent, D. V. and Muttoni, G.: Modulation of Late Cretaceous and Cenozoic climate by variable drawdown of atmospheric pCO2 from weathering of basaltic provinces on continents drifting through the equatorial humid belt, Clim. Past, 9, 525–546, https://doi.org/10.5194/cp-9-525-2013, 2013. a
Labat, D., Goddéris, Y., Probst, J., and Guyot, J.: Evidence for global runoff increase related to climate warming, Adv. Water Resour., 27, 631–642, 2004. a
Lague, D.: The stream power river incision model: evidence, theory and beyond, Earth Surf. Proc. Land., 39, 38–61, https://doi.org/10.1002/esp.3462, 2014. a
Larsen, I., Almond, P., Eger, A., Stone, J., Montgomery, D., and Malcolm, B.: Rapid Soil Production and Weathering in the Southern Alps, New Zealand, Science, 343, 637–640, https://doi.org/10.1126/Science.1244908, 2014. a, b, c
Le Hir, G., Donnadieu, Y., Goddéris, Y., Meyer-Berthaud, B., Ramstein, G., and Blakey, R. C.: The climate change caused by the land plant invasion in the Devonian, Earth Planet. Sc. Lett., 310, 203–212, https://doi.org/10.1016/j.epsl.2011.08.042, 2011. a
Lupker, M., France-Lanord, C., Galy, V., Lave, J., Gaillardet, J.,
Gajurel, A., Guilmette, C., Rahman, M., Singh, S., and Sinha, R.: Predominant
floodplain over mountain weathering of Himalayan sediments (Ganga basin),
Geochem. Cosmochem. Ac., 84, 410–432, https://doi.org/10.1016/j.gca.2012.02.001, 2012. a, b
Maher, K.: The dependence of chemical weathering rates on fluid residence time, Earth Planet. Sc. Lett., 294, 101–110, https://doi.org/10.1016/j.epsl.2010.03.010, 2010. a, b, c, d
Maher, K., Steefel, C. I., White, A. F., and Stonestrom, D. A.: The role of
reaction affinity and secondary minerals in regulating chemical weathering
rates at the Santa Cruz Soil Chronosequence, California, Geochim. Cosmochim.
Ac., 73, 2804–2831, https://doi.org/10.1016/j.gca.2009.01.030, 2009. a, b, c
Manabe, S., Wetherald, R., Milly, P., Delworth, T., and Stouffer, R.:
Century-scale change in water availability: CO2-quadrupling
experiment, Climatic Change, 64, 59–76,
https://doi.org/10.1023/B:CLIM.0000024674.37725.ca, 2004. a
Marshall, H., Walker, J., and Kuhn, W.: Long-term climate change and the
geochemical cycle of carbon, J. Geophys. Res.-Atmos., 93, 791–801,
https://doi.org/10.1029/JD093iD01p00791, 1988. a
Millot, R., Gaillardet, J., Dupre, B., and Allègre, C.: The global control
of silicate weathering rates and the coupling with physical erosion: new
insights from rivers of the Canadian Shield, EPSL, 196, 83–98, 2002. a
Moquet, J.-S., Guyot, J.-L., Crave, A., Viers, J., Filizola, N.,
Martinez, J.-M., Oliveira, T. C., Hidalgo Sanchez, L. S., Lagane, C.,
Lavado Casimiro, W. S., Noriega, L., and Pombosa, R.: Amazon River dissolved
load: temporal dynamics and annual budget from the Andes to the ocean,
Environ. Sci. Pollut. R., 23, 11405–11429, https://doi.org/10.1007/s11356-015-5503-6,
2016. a, b, c
Mouchené, M., van der Beek, P., Carretier, S., and Mouthereau, F.:
Autogenic versus allogenic controls on the evolution of a coupled fluvial
megafan–mountainous catchment system: numerical modelling and comparison
with the Lannemezan megafan system (northern Pyrenees, France), Earth Surf.
Dynam., 5, 125–143, https://doi.org/10.5194/esurf-5-125-2017, 2017. a
Mudd, S. and Yoo, K.: Reservoir theory for studying the geochemical evolution
of soils, J. Geophys. Res., 115, F03030, https://doi.org/10.1029/2009JF001591, 2010. a
Murray, A. B. and Paola, C.: Properties of a cellular braided-stream model, Earth Surf. Proc. Land., 22, 1001–1025, 1997. a
Navarre-Sitchler, A., Steefel, C. I., Sak, P. B., and Brantley, S. L.: A reactive-transport model for weathering rind formation on basalt, Geochim. Cosmochim. Ac., 75, 7644–7667, https://doi.org/10.1016/j.gca.2011.09.033, 2011. a, b
Nicholas, A.: Morphodynamic diversity of the world's largest rivers, Geology, 41, 475–478, https://doi.org/10.1130/G34016.1, 2013. a
Nicholas, A. and Quine, T.: Modeling alluvial landform change in the absence
of external environmental forcing, Geology, 35, 527–530,
https://doi.org/10.1130/G23377A.1, 2007. a
Norton, K. P., Molnar, P., and Schlunegger, F.: The role of climate-driven
chemical weathering on soil production, Geomorphology, 204, 510–517,
https://doi.org/10.1016/j.geomorph.2013.08.030, 2014. a
Oelkers, E., Schott, J., and Devidal, J.: The effect of aluminium, pH, and
chemical affinity on the rates of aluminosilicate dissulution reactions,
Geochim. Cosmochim. Ac., 58, 2011–2024, https://doi.org/10.1016/0016-7037(94)90281-X,
1994. a, b
Oelkers, E. H., Gislason, S. R., Eiriksdottir, E. S., Jones, M.,
Pearce, C. R., and Jeandel, C.: The role of riverine particulate material on
the global cycles of the elements, Appl. Geochem., 26, S365–S369,
https://doi.org/10.1016/j.apgeochem.2011.03.062, 2011. a
Oliva, P., Viers, J., and Dupré, B.: Chemical weathering in granitic
environments, Chem. Geol., 202, 225–256, 2003. a
Raymo, M., Ruddiman, W., and Froelich, P.: Influence of late Cenozoic
mountain building on ocean geochemical cycles, Geology, 14, 649–653, 1988. a
Rempe, D. and Dietrich, B.: A bottom-up control on fresh-bedrock topography
under landscapes, P. Natl. Acad. Sci. USA, 111, 6576–6581,
https://doi.org/10.1073/pnas.1404763111, 2014. a, b, c
Riebe, C., Kirchner, J., and Finkel, R.: Erosional and climatic effects on
long-term chemical weathering rates in granitic landscapes spanning diverse
climate regimes, Earth Planet. Sc. Lett., 224, 547–562, 2004. a
Roering, J. J., Kirchner, J. W., and Dietrich, W. E.: Evidence for nonlinear,
diffusive sediment transport on hillslopes and implications for landscape
morphology, Water Resour. Res., 35, 853–870, 1999.
Schoonejans, J., Vanacker, V., Opfergelt, S., Ameijeiras-Marino, Y., and
Christl, M.: Kinetically limited weathering at low denudation rates in
semiarid climatic conditions, J. Geophys. Res.-Earth, 121, 336–350,
https://doi.org/10.1002/2015JF003626, 2016. a
Schopka, H. H. and Derry, L. A.: Chemical weathering fluxes from volcanic islands and the importance of groundwater: The Hawaiian example, Earth Planet. Sc. Lett., 339, 67–78, https://doi.org/10.1016/j.epsl.2012.05.028, 2012.
a, b, c
Strudley, M., Murray, A., and Haff, P.: Emergence of pediments, tors, and piedmont junctions from a bedrock weathering-regolith thickness feedback, Geology, 34, 805–808, https://doi.org/10.1130/G22482.1, 2006. a, b
Tucker, G. and Whipple, K.: Topographic outcomes predicted by stream erosion models: Sensitivity analysis and intermodel comparison, J. Geophys. Res., 107-B9, 2179, https://doi.org/10.1029/2001JB000162, 2002. a
Vanwalleghem, T., Stockmann, U., Minasny, B., and McBratney, A.: A quantitative model for integrating landscape evolution and soil formation, J. Geophys. Res.-Earth, 118, 331–347, https://doi.org/10.1029/2011JF002296, 2013. a, b, c
Vazquez, M., Ramirez, S., Morata, D., Reich, M., Braun, J.-J., and Carretier, S.: Regolith production and chemical weathering of granitic rocks in central Chile, Chem. Geol., 446, 87–98, https://doi.org/10.1016/j.chemgeo.2016.09.023, 2016. a
Walker, J., Hays, P., and Kasting, J.: A negative feedback mechanism for the
long-term stabilization of Earth's surface temperature, J. Geophys. Res., 86,
9776–9782, 1981. a
Whipple, K. X. and Tucker, G. E.: Dynamics of the stream-power incision model: implication for heigth limits of mountain ranges, landscape response timescales, and research needs, J. Geophys. Res., 104, 17661–17674, 1999. a
White, A. and Brantley, S.: The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field?, Chem. Geol., 202, 479–506, https://doi.org/10.1016/j.chemgeo.2003.03.001, 2003. a, b, c
White, A., Schulz, M., Vivit, D., Blum, A., Stonestrom, D., and Anderson, S.: Chemical weathering of a marine terrace chronosequence, Santa Cruz, California. I: Interpreting rates and controls based on soil concentration-depth profiles, Geochim. Cosmochim. Ac., 72, 36–68, 2008. a
Willenbring, J. and von Blanckenburg, F.: Long-term stability of global erosion rates and weathering during late-Cenozoic cooling, Nature, 465, 211–214, https://doi.org/10.1038/nature09044, 2010. a
Short summary
The role of mountain uplift and associated silicate weathering in the global climate over geological times is controversial. Previous soil column models suggest that weathering falls at a high denudation rate. We present the results of a 3-D model that couples erosion and weathering, a CO2 consumer during mountain uplift. Our model suggests that the weathering of temporarily stocked colluvium may contribute significantly to the mountain weathering outflux at high denudation rates.
The role of mountain uplift and associated silicate weathering in the global climate over...