Articles | Volume 6, issue 4
https://doi.org/10.5194/esurf-6-829-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-6-829-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effect of changing vegetation and precipitation on denudation – Part 1: Predicted vegetation composition and cover over the last 21 thousand years along the Coastal Cordillera of Chile
Christian Werner
CORRESPONDING AUTHOR
Senckenberg Biodiversity and Climate Research Centre (BiK-F),
Senckenberganlage 25, 60325 Frankfurt, Germany
Manuel Schmid
Department of Geosciences, University of Tuebingen, Wilhelmstrasse
56, 72074 Tuebingen, Germany
Todd A. Ehlers
Department of Geosciences, University of Tuebingen, Wilhelmstrasse
56, 72074 Tuebingen, Germany
Juan Pablo Fuentes-Espoz
Department of Silviculture and Nature Conservation, University of
Chile, Av. Santa Rosa 11315, La Pintana, Santiago RM, Chile
Jörg Steinkamp
Senckenberg Biodiversity and Climate Research Centre (BiK-F),
Senckenberganlage 25, 60325 Frankfurt, Germany
Matthew Forrest
Senckenberg Biodiversity and Climate Research Centre (BiK-F),
Senckenberganlage 25, 60325 Frankfurt, Germany
Johan Liakka
Nansen Environmental and Remote Sensing Center, Bjerknes Centre for
Climate Research, Thormøhlens gate 47, 5006 Bergen, Norway
Antonio Maldonado
Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Raúl
Bitrán 1305, La Serena, Chile
Thomas Hickler
Senckenberg Biodiversity and Climate Research Centre (BiK-F),
Senckenberganlage 25, 60325 Frankfurt, Germany
Department of Physical Geography, Geosciences, Goethe University,
Altenhoeferallee 1, 60438 Frankfurt/Main, Germany
Related authors
Manuel Schmid, Todd A. Ehlers, Christian Werner, Thomas Hickler, and Juan-Pablo Fuentes-Espoz
Earth Surf. Dynam., 6, 859–881, https://doi.org/10.5194/esurf-6-859-2018, https://doi.org/10.5194/esurf-6-859-2018, 2018
Short summary
Short summary
We present a numerical modeling study into the interactions between transient climate and vegetation cover with hillslope and fluvial processes. We use a state-of-the-art landscape evolution model library (Landlab) and design model experiments to investigate the effect of climate change and the associated changes in surface vegetation cover on main basin metrics. This paper is a companion paper to Part 1 (this journal), which investigates the effect of climate change on surface vegetation cover.
C. Werner, K. Reiser, M. Dannenmann, L. B. Hutley, J. Jacobeit, and K. Butterbach-Bahl
Biogeosciences, 11, 6047–6065, https://doi.org/10.5194/bg-11-6047-2014, https://doi.org/10.5194/bg-11-6047-2014, 2014
Short summary
Short summary
Atmospheric loss of N from savanna soil was dominated by N2 emissions (82-99% of total N loss to atmosphere). Nitric oxide emissions significantly contributed at 50% WFPS; high temperatures and N2O emissions were negligible. Based on a simple upscale approach we estimated annual loss of N to the atmosphere at 7.5kg yr-1. N2O emission was low for most samples, but high for a small subset of cores at 75% WFPS (due to short periods where such conditions occur this has little effect on totals).
N. Gharahi Ghehi, C. Werner, K. Hufkens, R. Kiese, E. Van Ranst, D. Nsabimana, G. Wallin, L. Klemedtsson, K. Butterbach-Bahl, and P. Boeckx
Biogeosciences Discuss., https://doi.org/10.5194/bgd-10-1483-2013, https://doi.org/10.5194/bgd-10-1483-2013, 2013
Revised manuscript not accepted
Christoph Glotzbach and Todd A. Ehlers
Geochronology, 6, 697–717, https://doi.org/10.5194/gchron-6-697-2024, https://doi.org/10.5194/gchron-6-697-2024, 2024
Short summary
Short summary
The (U–Th–Sm) / He dating method helps understand the cooling history of rocks. Synthetic modelling experiments were conducted to explore factors affecting in situ vs. whole-grain (U–Th) / He dates. In situ dates are often 30 % older than whole-grain dates, whereas very rapid cooling makes helium loss negligible, resulting in similar whole-grain and in situ dates. In addition, in situ data can reveal cooling histories even from a single grain by measuring helium distributions.
Matthew Forrest, Jessica Hetzer, Maik Billing, Simon P. K. Bowring, Eric Kosczor, Luke Oberhagemann, Oliver Perkins, Dan Warren, Fátima Arrogante-Funes, Kirsten Thonicke, and Thomas Hickler
Biogeosciences, 21, 5539–5560, https://doi.org/10.5194/bg-21-5539-2024, https://doi.org/10.5194/bg-21-5539-2024, 2024
Short summary
Short summary
Climate change is causing an increase in extreme wildfires in Europe, but drivers of fire are not well understood, especially across different land cover types. We used statistical models with satellite data, climate data, and socioeconomic data to determine what affects burning in cropland and non-cropland areas of Europe. We found different drivers of burning in cropland burning vs. non-cropland to the point that some variables, e.g. population density, had the complete opposite effects.
Mateus Dantas de Paula, Tatiana Reichert, Laynara Lugli, Erica McGale, Kerstin Pierick, João Paulo Darela-Filho, Liam Langan, Jürgen Homeier, Anja Rammig, and Thomas Hickler
EGUsphere, https://doi.org/10.5194/egusphere-2024-3259, https://doi.org/10.5194/egusphere-2024-3259, 2024
Short summary
Short summary
This study explores how plant roots, with different forms and functions, rely on fungal partnerships for nutrient uptake. This relationship was integrated into a vegetation model and was tested in a tropical forest in Ecuador. The model accurately predicted root traits and showed that without fungi, biomass decreased by up to 80 %. The findings highlight the critical role of fungi in ecosystem processes and suggest that root-fungal interactions should be considered in vegetation models.
Blessing Kavhu, Matthew Forrest, and Thomas Hickler
EGUsphere, https://doi.org/10.5194/egusphere-2024-3595, https://doi.org/10.5194/egusphere-2024-3595, 2024
Short summary
Short summary
We developed a model to predict global wildfire patterns by examining weather, vegetation, and human activities. This tool helps forecast seasonal fire risks across diverse regions and focuses on seasonal changes, unlike existing models. Its simplicity makes it valuable for climate and fire management planning, as well as for use in global climate studies, helping communities better prepare for and adapt to rising wildfire threats.
Mirjam Schaller, Daniel Peifer, Alexander B. Neely, Thomas Bernard, Christoph Glotzbach, Alexander R. Beer, and Todd A. Ehlers
EGUsphere, https://doi.org/10.5194/egusphere-2024-2729, https://doi.org/10.5194/egusphere-2024-2729, 2024
Short summary
Short summary
This study reports chemical weathering, physical erosion, and total denudation rates from river load data in the Swabian Alb, Southwest Germany. Tributaries to the Neckar River draining to the North show higher rates than tributaries draining to the South into the Danube River causing a retreat of the Swabian Alb escarpment. Observations are discussed in the light of lithology, climate, and topography. The data are further compared to other rates over space and time as well as to global data.
Mateus Dantas de Paula, Matthew Forrest, David Warlind, João Paulo Darela Filho, Katrin Fleischer, Anja Rammig, and Thomas Hickler
EGUsphere, https://doi.org/10.5194/egusphere-2024-2592, https://doi.org/10.5194/egusphere-2024-2592, 2024
Short summary
Short summary
Our study maps global nitrogen (N) and phosphorus (P) availability and how they’ve changed from 1901 to 2018. We found that tropical regions are mostly P-limited, while temperate and boreal areas face N limitations. Over time, P limitation has increased, especially in the tropics, while N limitation has decreased. These shifts are key to understanding global plant growth and carbon storage, highlighting the importance of including P dynamics in ecosystem models.
Friedrich J. Bohn, Ana Bastos, Romina Martin, Anja Rammig, Niak Sian Koh, Giles B. Sioen, Bram Buscher, Louise Carver, Fabrice DeClerck, Moritz Drupp, Robert Fletcher, Matthew Forrest, Alexandros Gasparatos, Alex Godoy-Faúndez, Gregor Hagedorn, Martin Hänsel, Jessica Hetzer, Thomas Hickler, Cornelia B. Krug, Stasja Koot, Xiuzhen Li, Amy Luers, Shelby Matevich, H. Damon Matthews, Ina C. Meier, Awaz Mohamed, Sungmin O, David Obura, Ben Orlove, Rene Orth, Laura Pereira, Markus Reichstein, Lerato Thakholi, Peter Verburg, and Yuki Yoshida
EGUsphere, https://doi.org/10.5194/egusphere-2024-2551, https://doi.org/10.5194/egusphere-2024-2551, 2024
Short summary
Short summary
An interdisciplinary collaboration of 35 international researchers from 34 institutions highlighting nine recent findings in biosphere research. Within these themes, they discuss issues arising from climate change and other anthropogenic stressors, and highlight the co-benefits of nature-based solutions and ecosystem services. They discuss recent findings in the context of global trade and international policy frameworks, and highlight lessons for local implementation of nature-based solutions.
Luke Oberhagemann, Maik Billing, Werner von Bloh, Markus Drüke, Matthew Forrest, Simon P. K. Bowring, Jessica Hetzer, Jaime Ribalaygua Batalla, and Kirsten Thonicke
EGUsphere, https://doi.org/10.5194/egusphere-2024-1914, https://doi.org/10.5194/egusphere-2024-1914, 2024
Short summary
Short summary
Under climate change, the conditions for wildfires to form are becoming more frequent in many parts of the world. To help predict how wildfires will change in future, global fire models are being developed. We analyze and further develop one such model, SPITFIRE. Our work identifies and corrects sources of substantial bias in the model that are important to the global fire modelling field. With this analysis and these developments, we help to provide a crucial platform for future developments.
Martin Thurner, Kailiang Yu, Stefano Manzoni, Anatoly Prokushkin, Melanie A. Thurner, Zhiqiang Wang, and Thomas Hickler
EGUsphere, https://doi.org/10.5194/egusphere-2024-1794, https://doi.org/10.5194/egusphere-2024-1794, 2024
Short summary
Short summary
Nitrogen concentrations in tree tissues (leaves, branches, stems, and roots) control photosynthesis, growth and respiration, and thus influence vegetation carbon uptake. Our novel database allows us to identify the controls of tree tissue nitrogen concentrations in boreal and temperate forests, such as tree age/size, species and climate. Changes therein will affect tissue N concentrations and thus also vegetation carbon uptake.
Ryan Vella, Matthew Forrest, Andrea Pozzer, Alexandra P. Tsimpidi, Thomas Hickler, Jos Lelieveld, and Holger Tost
EGUsphere, https://doi.org/10.5194/egusphere-2024-2014, https://doi.org/10.5194/egusphere-2024-2014, 2024
Short summary
Short summary
This study examines how land cover changes influence biogenic volatile organic compound (BVOC) emissions and atmospheric states. Using a coupled chemistry-climate/vegetation model, we compare present-day land cover (deforested for crops and grazing) with natural vegetation, and an extreme reforestation scenario. We find that vegetation changes significantly impact global BVOC emissions and organic aerosols but have a relatively small effect on total aerosols, clouds, and radiative effects.
Dana A. Lapides, W. Jesse Hahm, Matthew Forrest, Daniella M. Rempe, Thomas Hickler, and David N. Dralle
Biogeosciences, 21, 1801–1826, https://doi.org/10.5194/bg-21-1801-2024, https://doi.org/10.5194/bg-21-1801-2024, 2024
Short summary
Short summary
Water stored in weathered bedrock is rarely incorporated into vegetation and Earth system models despite increasing recognition of its importance. Here, we add a weathered bedrock component to a widely used vegetation model. Using a case study of two sites in California and model runs across the United States, we show that more accurately representing subsurface water storage and hydrology increases summer plant water use so that it better matches patterns in distributed data products.
Katja Frieler, Jan Volkholz, Stefan Lange, Jacob Schewe, Matthias Mengel, María del Rocío Rivas López, Christian Otto, Christopher P. O. Reyer, Dirk Nikolaus Karger, Johanna T. Malle, Simon Treu, Christoph Menz, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Yannick Rousseau, Reg A. Watson, Charles Stock, Xiao Liu, Ryan Heneghan, Derek Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Tingting Wang, Fubao Sun, Inga J. Sauer, Johannes Koch, Inne Vanderkelen, Jonas Jägermeyr, Christoph Müller, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Jida Wang, Fangfang Yao, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, and Michel Bechtold
Geosci. Model Dev., 17, 1–51, https://doi.org/10.5194/gmd-17-1-2024, https://doi.org/10.5194/gmd-17-1-2024, 2024
Short summary
Short summary
Our paper provides an overview of all observational climate-related and socioeconomic forcing data used as input for the impact model evaluation and impact attribution experiments within the third round of the Inter-Sectoral Impact Model Intercomparison Project. The experiments are designed to test our understanding of observed changes in natural and human systems and to quantify to what degree these changes have already been induced by climate change.
Ignacio A. Jara, Orlando Astudillo, Pablo Salinas, Limbert Torrez-Rodriguez, Nicolás Lampe, and Antonio Maldonado
Clim. Past Discuss., https://doi.org/10.5194/cp-2023-97, https://doi.org/10.5194/cp-2023-97, 2024
Manuscript not accepted for further review
Short summary
Short summary
We conducted a regional model experiment that simulates a century of December-January-February (DJF) precipitation change in the South American Altiplano. Despite that we forced our modelling runs with conditions that produced humid DJF seasons today, our simulations show continuous reductions in precipitation over the Altiplano, suggesting that the climate drivers of modern-time humid seasons might not be the same that caused the extended humid periods observed in Holocene records.
Daniel Boateng, Sebastian G. Mutz, Armelle Ballian, Maud J. M. Meijers, Katharina Methner, Svetlana Botsyun, Andreas Mulch, and Todd A. Ehlers
Earth Syst. Dynam., 14, 1183–1210, https://doi.org/10.5194/esd-14-1183-2023, https://doi.org/10.5194/esd-14-1183-2023, 2023
Short summary
Short summary
We present model-based topographic sensitivity experiments that provide valuable constraints for interpreting past proxies and records of climate and tectonic processes. The study uses a climate model to quantify the response of regional climate and oxygen isotopic composition of precipitation to diachronous surface uplift scenarios across the European Alps. The results suggest that isotopic signal changes can be measured in geologic archives using stable isotope paleoaltimetry.
Hemanti Sharma and Todd A. Ehlers
Earth Surf. Dynam., 11, 1161–1181, https://doi.org/10.5194/esurf-11-1161-2023, https://doi.org/10.5194/esurf-11-1161-2023, 2023
Short summary
Short summary
Seasonality in precipitation (P) and vegetation (V) influences catchment erosion (E), although which factor plays the dominant role is unclear. In this study, we performed a sensitivity analysis of E to P–V seasonality through numerical modeling. Our results suggest that P variations strongly influence seasonal variations in E, while the effect of seasonal V variations is secondary but significant. This is more pronounced in moderate and least pronounced in extreme environmental settings.
Ryan Vella, Andrea Pozzer, Matthew Forrest, Jos Lelieveld, Thomas Hickler, and Holger Tost
Biogeosciences, 20, 4391–4412, https://doi.org/10.5194/bg-20-4391-2023, https://doi.org/10.5194/bg-20-4391-2023, 2023
Short summary
Short summary
We investigated the effect of the El Niño–Southern Oscillation (ENSO) on biogenic volatile organic compound (BVOC) emissions from plants. ENSO events can cause a significant increase in these emissions, which have a long-term impact on the Earth's atmosphere. Persistent ENSO conditions can cause long-term changes in vegetation, resulting in even higher BVOC emissions. We link ENSO-induced emission anomalies with driving atmospheric and vegetational variables.
Ryan Vella, Matthew Forrest, Jos Lelieveld, and Holger Tost
Geosci. Model Dev., 16, 885–906, https://doi.org/10.5194/gmd-16-885-2023, https://doi.org/10.5194/gmd-16-885-2023, 2023
Short summary
Short summary
Biogenic volatile organic compounds (BVOCs) are released by vegetation and have a major impact on atmospheric chemistry and aerosol formation. Non-interacting vegetation constrains the majority of numerical models used to estimate global BVOC emissions, and thus, the effects of changing vegetation on emissions are not addressed. In this work, we replace the offline vegetation with dynamic vegetation states by linking a chemistry–climate model with a global dynamic vegetation model.
Hemanti Sharma, Sebastian G. Mutz, and Todd A. Ehlers
Earth Surf. Dynam., 10, 997–1015, https://doi.org/10.5194/esurf-10-997-2022, https://doi.org/10.5194/esurf-10-997-2022, 2022
Short summary
Short summary
We estimate global changes in frost cracking intensity (FCI) using process-based models for four time slices in the late Cenozoic ranging from the Pliocene (∼ 3 Ma) to pre-industrial (∼ 1850 CE, PI). For all time slices, results indicate that FCI was most prevalent in middle to high latitudes and high-elevation lower-latitude areas such as Tibet. Larger deviations (relative to PI) were observed in colder (LGM) and warmer climates (Pliocene) due to differences in temperature and glaciation.
Astrid Oetting, Emma C. Smith, Jan Erik Arndt, Boris Dorschel, Reinhard Drews, Todd A. Ehlers, Christoph Gaedicke, Coen Hofstede, Johann P. Klages, Gerhard Kuhn, Astrid Lambrecht, Andreas Läufer, Christoph Mayer, Ralf Tiedemann, Frank Wilhelms, and Olaf Eisen
The Cryosphere, 16, 2051–2066, https://doi.org/10.5194/tc-16-2051-2022, https://doi.org/10.5194/tc-16-2051-2022, 2022
Short summary
Short summary
This study combines a variety of geophysical measurements in front of and beneath the Ekström Ice Shelf in order to identify and interpret geomorphological evidences of past ice sheet flow, extent and retreat.
The maximal extent of grounded ice in this region was 11 km away from the continental shelf break.
The thickness of palaeo-ice on the calving front around the LGM was estimated to be at least 305 to 320 m.
We provide essential boundary conditions for palaeo-ice-sheet models.
Andrea Madella, Christoph Glotzbach, and Todd A. Ehlers
Geochronology, 4, 177–190, https://doi.org/10.5194/gchron-4-177-2022, https://doi.org/10.5194/gchron-4-177-2022, 2022
Short summary
Short summary
Cooling ages date the time at which minerals cross a certain isotherm on the way up to Earth's surface. Such ages can be measured from bedrock material and river sand. If spatial variations in bedrock ages are known in a river catchment, the spatial distribution of erosion can be inferred from the distribution of the ages measured from the river sand grains. Here we develop a new tool to help such analyses, with particular emphasis on quantifying uncertainties due to sample size.
Mirjam Schaller and Todd A. Ehlers
Earth Surf. Dynam., 10, 131–150, https://doi.org/10.5194/esurf-10-131-2022, https://doi.org/10.5194/esurf-10-131-2022, 2022
Short summary
Short summary
Soil production, chemical weathering, and physical erosion rates from the large climate and vegetation gradient of the Chilean Coastal Cordillera (26 to 38° S) are investigated. Rates are generally lowest in the sparsely vegetated and arid north, increase southward toward the Mediterranean climate, and then decrease slightly, or possible stay the same, further south in the temperate humid zone. This trend is compared with global data from similar soil-mantled hillslopes in granitic lithologies.
Emilija Krsnik, Katharina Methner, Marion Campani, Svetlana Botsyun, Sebastian G. Mutz, Todd A. Ehlers, Oliver Kempf, Jens Fiebig, Fritz Schlunegger, and Andreas Mulch
Solid Earth, 12, 2615–2631, https://doi.org/10.5194/se-12-2615-2021, https://doi.org/10.5194/se-12-2615-2021, 2021
Short summary
Short summary
Here we present new surface elevation constraints for the middle Miocene Central Alps based on stable and clumped isotope geochemical analyses. Our reconstructed paleoelevation estimate is supported by isotope-enabled paleoclimate simulations and indicates that the Miocene Central Alps were characterized by a heterogeneous and spatially transient topography with high elevations locally exceeding 4000 m.
Kirstin Übernickel, Jaime Pizarro-Araya, Susila Bhagavathula, Leandro Paulino, and Todd A. Ehlers
Biogeosciences, 18, 5573–5594, https://doi.org/10.5194/bg-18-5573-2021, https://doi.org/10.5194/bg-18-5573-2021, 2021
Short summary
Short summary
Animal burrowing is important because it impacts the physical and chemical evolution of Earth’s surface. However, most studies are species specific, and compilations of animal community effects are missing. We present an inventory of the currently known 390 burrowing species for all of Chile along its climate gradient. We observed increasing amounts of excavated material from an area with dry conditions along a gradient towards more humid conditions.
Sean D. Willett, Frédéric Herman, Matthew Fox, Nadja Stalder, Todd A. Ehlers, Ruohong Jiao, and Rong Yang
Earth Surf. Dynam., 9, 1153–1221, https://doi.org/10.5194/esurf-9-1153-2021, https://doi.org/10.5194/esurf-9-1153-2021, 2021
Short summary
Short summary
The cooling climate of the last few million years leading into the ice ages has been linked to increasing erosion rates by glaciers. One of the ways to measure this is through mineral cooling ages. In this paper, we investigate potential bias in these data and the methods used to analyse them. We find that the data are not themselves biased but that appropriate methods must be used. Past studies have used appropriate methods and are sound in methodology.
Hemanti Sharma, Todd A. Ehlers, Christoph Glotzbach, Manuel Schmid, and Katja Tielbörger
Earth Surf. Dynam., 9, 1045–1072, https://doi.org/10.5194/esurf-9-1045-2021, https://doi.org/10.5194/esurf-9-1045-2021, 2021
Short summary
Short summary
We study effects of variable climate–vegetation with different uplift rates on erosion–sedimentation using a landscape evolution modeling approach. Results suggest that regardless of uplift rates, transients in precipitation–vegetation lead to transients in erosion rates in the same direction of change. Vegetation-dependent erosion and sedimentation are influenced by Milankovitch timescale changes in climate, but these transients are superimposed upon tectonically driven uplift rates.
Solmaz Mohadjer, Sebastian G. Mutz, Matthew Kemp, Sophie J. Gill, Anatoly Ischuk, and Todd A. Ehlers
Geosci. Commun., 4, 281–295, https://doi.org/10.5194/gc-4-281-2021, https://doi.org/10.5194/gc-4-281-2021, 2021
Short summary
Short summary
Lack of access to science-based natural hazards information impedes the effectiveness of school-based disaster risk reduction education. To address this challenge, we created and classroom tested a series of earthquake education videos that were co-taught by school teachers and Earth scientists in the UK and Tajikistan. Comparison of the results reveals significant differences between students' views on the Earth's interior and why and where earthquakes occur.
Angelica Feurdean, Roxana Grindean, Gabriela Florescu, Ioan Tanţău, Eva M. Niedermeyer, Andrei-Cosmin Diaconu, Simon M. Hutchinson, Anne Brigitte Nielsen, Tiberiu Sava, Andrei Panait, Mihaly Braun, and Thomas Hickler
Biogeosciences, 18, 1081–1103, https://doi.org/10.5194/bg-18-1081-2021, https://doi.org/10.5194/bg-18-1081-2021, 2021
Short summary
Short summary
Here we used multi-proxy analyses from Lake Oltina (Romania) and quantitatively examine the past 6000 years of the forest steppe in the lower Danube Plain, one of the oldest areas of human occupation in southeastern Europe. We found the greatest tree cover between 6000 and 2500 cal yr BP. Forest loss was under way by 2500 yr BP, falling to ~20 % tree cover linked to clearance for agriculture. The weak signs of forest recovery over the past 2500 years highlight recurring anthropogenic pressure.
Mirjam Schaller, Igor Dal Bo, Todd A. Ehlers, Anja Klotzsche, Reinhard Drews, Juan Pablo Fuentes Espoz, and Jan van der Kruk
SOIL, 6, 629–647, https://doi.org/10.5194/soil-6-629-2020, https://doi.org/10.5194/soil-6-629-2020, 2020
Short summary
Short summary
In this study geophysical observations from ground-penetrating radar with pedolith physical and geochemical properties from pedons excavated in four study areas of the climate and ecological gradient in the Chilean Coastal Cordillera are combined. Findings suggest that profiles with ground-penetrating radar along hillslopes can be used to infer lateral thickness variations in pedolith horizons and to some degree physical and chemical variations with depth.
Øyvind Seland, Mats Bentsen, Dirk Olivié, Thomas Toniazzo, Ada Gjermundsen, Lise Seland Graff, Jens Boldingh Debernard, Alok Kumar Gupta, Yan-Chun He, Alf Kirkevåg, Jörg Schwinger, Jerry Tjiputra, Kjetil Schanke Aas, Ingo Bethke, Yuanchao Fan, Jan Griesfeller, Alf Grini, Chuncheng Guo, Mehmet Ilicak, Inger Helene Hafsahl Karset, Oskar Landgren, Johan Liakka, Kine Onsum Moseid, Aleksi Nummelin, Clemens Spensberger, Hui Tang, Zhongshi Zhang, Christoph Heinze, Trond Iversen, and Michael Schulz
Geosci. Model Dev., 13, 6165–6200, https://doi.org/10.5194/gmd-13-6165-2020, https://doi.org/10.5194/gmd-13-6165-2020, 2020
Short summary
Short summary
The second version of the coupled Norwegian Earth System Model (NorESM2) is presented and evaluated. The temperature and precipitation patterns has improved compared to NorESM1. The model reaches present-day warming levels to within 0.2 °C of observed temperature but with a delayed warming during the late 20th century. Under the four scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), the warming in the period of 2090–2099 compared to 1850–1879 reaches 1.3, 2.2, 3.1, and 3.9 K.
Práxedes Muñoz, Lorena Rebolledo, Laurent Dezileau, Antonio Maldonado, Christoph Mayr, Paola Cárdenas, Carina B. Lange, Katherine Lalangui, Gloria Sanchez, Marco Salamanca, Karen Araya, Ignacio Jara, Gabriel Easton, and Marcel Ramos
Biogeosciences, 17, 5763–5785, https://doi.org/10.5194/bg-17-5763-2020, https://doi.org/10.5194/bg-17-5763-2020, 2020
Short summary
Short summary
We analyze marine sedimentary records to study temporal changes in oxygen and productivity in marine waters of central Chile. We observed increasing oxygenation and decreasing productivity from 6000 kyr ago to the modern era that seem to respond to El Niño–Southern Oscillation activity. In the past centuries, deoxygenation and higher productivity are re-established, mainly in the northern zones of Chile and Peru. Meanwhile, in north-central Chile the deoxygenation trend is maintained.
Clemens Schannwell, Reinhard Drews, Todd A. Ehlers, Olaf Eisen, Christoph Mayer, Mika Malinen, Emma C. Smith, and Hannes Eisermann
The Cryosphere, 14, 3917–3934, https://doi.org/10.5194/tc-14-3917-2020, https://doi.org/10.5194/tc-14-3917-2020, 2020
Short summary
Short summary
To reduce uncertainties associated with sea level rise projections, an accurate representation of ice flow is paramount. Most ice sheet models rely on simplified versions of the underlying ice flow equations. Due to the high computational costs, ice sheet models based on the complete ice flow equations have been restricted to < 1000 years. Here, we present a new model setup that extends the applicability of such models by an order of magnitude, permitting simulations of 40 000 years.
Thomas A. M. Pugh, Tim Rademacher, Sarah L. Shafer, Jörg Steinkamp, Jonathan Barichivich, Brian Beckage, Vanessa Haverd, Anna Harper, Jens Heinke, Kazuya Nishina, Anja Rammig, Hisashi Sato, Almut Arneth, Stijn Hantson, Thomas Hickler, Markus Kautz, Benjamin Quesada, Benjamin Smith, and Kirsten Thonicke
Biogeosciences, 17, 3961–3989, https://doi.org/10.5194/bg-17-3961-2020, https://doi.org/10.5194/bg-17-3961-2020, 2020
Short summary
Short summary
The length of time that carbon remains in forest biomass is one of the largest uncertainties in the global carbon cycle. Estimates from six contemporary models found this time to range from 12.2 to 23.5 years for the global mean for 1985–2014. Future projections do not give consistent results, but 13 model-based hypotheses are identified, along with recommendations for pragmatic steps to test them using existing and novel observations, which would help to reduce large current uncertainty.
Stijn Hantson, Douglas I. Kelley, Almut Arneth, Sandy P. Harrison, Sally Archibald, Dominique Bachelet, Matthew Forrest, Thomas Hickler, Gitta Lasslop, Fang Li, Stephane Mangeon, Joe R. Melton, Lars Nieradzik, Sam S. Rabin, I. Colin Prentice, Tim Sheehan, Stephen Sitch, Lina Teckentrup, Apostolos Voulgarakis, and Chao Yue
Geosci. Model Dev., 13, 3299–3318, https://doi.org/10.5194/gmd-13-3299-2020, https://doi.org/10.5194/gmd-13-3299-2020, 2020
Short summary
Short summary
Global fire–vegetation models are widely used, but there has been limited evaluation of how well they represent various aspects of fire regimes. Here we perform a systematic evaluation of simulations made by nine FireMIP models in order to quantify their ability to reproduce a range of fire and vegetation benchmarks. While some FireMIP models are better at representing certain aspects of the fire regime, no model clearly outperforms all other models across the full range of variables assessed.
Matthew Forrest, Holger Tost, Jos Lelieveld, and Thomas Hickler
Geosci. Model Dev., 13, 1285–1309, https://doi.org/10.5194/gmd-13-1285-2020, https://doi.org/10.5194/gmd-13-1285-2020, 2020
Short summary
Short summary
We have integrated the LPJ-GUESS dynamic global vegetation model into the EMAC atmospheric chemistry-enabled GCM (general circulation model). This combined framework will enable the investigation of many land–atmosphere interactions and feedbacks with state-of-the-art simulation models. Initial results show that using the climate produced by EMAC together with LPJ-GUESS produces an acceptable representation of the global vegetation.
Angelica Feurdean, Boris Vannière, Walter Finsinger, Dan Warren, Simon C. Connor, Matthew Forrest, Johan Liakka, Andrei Panait, Christian Werner, Maja Andrič, Premysl Bobek, Vachel A. Carter, Basil Davis, Andrei-Cosmin Diaconu, Elisabeth Dietze, Ingo Feeser, Gabriela Florescu, Mariusz Gałka, Thomas Giesecke, Susanne Jahns, Eva Jamrichová, Katarzyna Kajukało, Jed Kaplan, Monika Karpińska-Kołaczek, Piotr Kołaczek, Petr Kuneš, Dimitry Kupriyanov, Mariusz Lamentowicz, Carsten Lemmen, Enikö K. Magyari, Katarzyna Marcisz, Elena Marinova, Aidin Niamir, Elena Novenko, Milena Obremska, Anna Pędziszewska, Mirjam Pfeiffer, Anneli Poska, Manfred Rösch, Michal Słowiński, Miglė Stančikaitė, Marta Szal, Joanna Święta-Musznicka, Ioan Tanţău, Martin Theuerkauf, Spassimir Tonkov, Orsolya Valkó, Jüri Vassiljev, Siim Veski, Ildiko Vincze, Agnieszka Wacnik, Julian Wiethold, and Thomas Hickler
Biogeosciences, 17, 1213–1230, https://doi.org/10.5194/bg-17-1213-2020, https://doi.org/10.5194/bg-17-1213-2020, 2020
Short summary
Short summary
Our study covers the full Holocene (the past 11 500 years) climate variability and vegetation composition and provides a test on how vegetation and climate interact to determine fire hazard. An important implication of this test is that percentage of tree cover can be used as a predictor of the probability of fire occurrence. Biomass burned is highest at ~ 45 % tree cover in temperate forests and at ~ 60–65 % tree cover in needleleaf-dominated forests.
Marco Pfeiffer, José Padarian, Rodrigo Osorio, Nelson Bustamante, Guillermo Federico Olmedo, Mario Guevara, Felipe Aburto, Francisco Albornoz, Monica Antilén, Elías Araya, Eduardo Arellano, Maialen Barret, Juan Barrera, Pascal Boeckx, Margarita Briceño, Sally Bunning, Lea Cabrol, Manuel Casanova, Pablo Cornejo, Fabio Corradini, Gustavo Curaqueo, Sebastian Doetterl, Paola Duran, Mauricio Escudey, Angelina Espinoza, Samuel Francke, Juan Pablo Fuentes, Marcel Fuentes, Gonzalo Gajardo, Rafael García, Audrey Gallaud, Mauricio Galleguillos, Andrés Gomez, Marcela Hidalgo, Jorge Ivelic-Sáez, Lwando Mashalaba, Francisco Matus, Francisco Meza, Maria de la Luz Mora, Jorge Mora, Cristina Muñoz, Pablo Norambuena, Carolina Olivera, Carlos Ovalle, Marcelo Panichini, Aníbal Pauchard, Jorge F. Pérez-Quezada, Sergio Radic, José Ramirez, Nicolás Riveras, Germán Ruiz, Osvaldo Salazar, Iván Salgado, Oscar Seguel, Maria Sepúlveda, Carlos Sierra, Yasna Tapia, Francisco Tapia, Balfredo Toledo, José Miguel Torrico, Susana Valle, Ronald Vargas, Michael Wolff, and Erick Zagal
Earth Syst. Sci. Data, 12, 457–468, https://doi.org/10.5194/essd-12-457-2020, https://doi.org/10.5194/essd-12-457-2020, 2020
Short summary
Short summary
The CHLSOC database is the biggest soil organic carbon (SOC) database that has been compiled for Chile yet, comprising 13 612 data points. This database is the product of the compilation of numerous sources including unpublished and difficult-to-access data, allowing us to fill numerous spatial gaps where no SOC estimates were publicly available before. The values of SOC compiled in CHLSOC have a wide range, reflecting the variety of ecosystems that exists in Chile.
Clemens Schannwell, Reinhard Drews, Todd A. Ehlers, Olaf Eisen, Christoph Mayer, and Fabien Gillet-Chaulet
The Cryosphere, 13, 2673–2691, https://doi.org/10.5194/tc-13-2673-2019, https://doi.org/10.5194/tc-13-2673-2019, 2019
Short summary
Short summary
Ice rises are important ice-sheet features that archive the ice sheet's history in their internal structure. Here we use a 3-D numerical ice-sheet model to simulate mechanisms that lead to changes in the geometry of the internal structure. We find that changes in snowfall result in much larger and faster changes than similar changes in ice-shelf geometry. This result is integral to fully unlocking the potential of ice rises as ice-dynamic archives and potential ice-core drilling sites.
Fang Li, Maria Val Martin, Meinrat O. Andreae, Almut Arneth, Stijn Hantson, Johannes W. Kaiser, Gitta Lasslop, Chao Yue, Dominique Bachelet, Matthew Forrest, Erik Kluzek, Xiaohong Liu, Stephane Mangeon, Joe R. Melton, Daniel S. Ward, Anton Darmenov, Thomas Hickler, Charles Ichoku, Brian I. Magi, Stephen Sitch, Guido R. van der Werf, Christine Wiedinmyer, and Sam S. Rabin
Atmos. Chem. Phys., 19, 12545–12567, https://doi.org/10.5194/acp-19-12545-2019, https://doi.org/10.5194/acp-19-12545-2019, 2019
Short summary
Short summary
Fire emissions are critical for atmospheric composition, climate, carbon cycle, and air quality. We provide the first global multi-model fire emission reconstructions for 1700–2012, including carbon and 33 species of trace gases and aerosols, based on the nine state-of-the-art global fire models that participated in FireMIP. We also provide information on the recent status and limitations of the model-based reconstructions and identify the main uncertainty sources in their long-term changes.
Lina Teckentrup, Sandy P. Harrison, Stijn Hantson, Angelika Heil, Joe R. Melton, Matthew Forrest, Fang Li, Chao Yue, Almut Arneth, Thomas Hickler, Stephen Sitch, and Gitta Lasslop
Biogeosciences, 16, 3883–3910, https://doi.org/10.5194/bg-16-3883-2019, https://doi.org/10.5194/bg-16-3883-2019, 2019
Short summary
Short summary
This study compares simulated burned area of seven global vegetation models provided by the Fire Model Intercomparison Project (FireMIP) since 1900. We investigate the influence of five forcing factors: atmospheric CO2, population density, land–use change, lightning and climate.
We find that the anthropogenic factors lead to the largest spread between models. Trends due to climate are mostly not significant but climate strongly influences the inter-annual variability of burned area.
Sebastian G. Mutz and Todd A. Ehlers
Earth Surf. Dynam., 7, 663–679, https://doi.org/10.5194/esurf-7-663-2019, https://doi.org/10.5194/esurf-7-663-2019, 2019
Short summary
Short summary
We apply machine learning techniques to quantify and explain differences between recent palaeoclimates with regards to factors that are important in shaping the Earth's surface. We find that changes in ice cover, near-surface air temperature and rainfall duration create the most distinct differences. We also identify regions particularly prone to changes in rainfall and temperature-controlled erosion, which will help with the interpretation of erosion rates and geological archives.
Lorenz Michel, Christoph Glotzbach, Sarah Falkowski, Byron A. Adams, and Todd A. Ehlers
Earth Surf. Dynam., 7, 275–299, https://doi.org/10.5194/esurf-7-275-2019, https://doi.org/10.5194/esurf-7-275-2019, 2019
Short summary
Short summary
Mountain-building processes are often investigated by assuming a steady state, meaning the balance between opposing forces, like mass influx and mass outflux. This work shows that the Olympic Mountains are in flux steady state on long timescales (i.e., 14 Myr), but the flux steady state could be disturbed on shorter timescales, especially by the Plio–Pleistocene glaciation. The contribution highlights the temporally nonsteady evolution of mountain ranges.
Matthias Forkel, Niels Andela, Sandy P. Harrison, Gitta Lasslop, Margreet van Marle, Emilio Chuvieco, Wouter Dorigo, Matthew Forrest, Stijn Hantson, Angelika Heil, Fang Li, Joe Melton, Stephen Sitch, Chao Yue, and Almut Arneth
Biogeosciences, 16, 57–76, https://doi.org/10.5194/bg-16-57-2019, https://doi.org/10.5194/bg-16-57-2019, 2019
Short summary
Short summary
Weather, humans, and vegetation control the occurrence of fires. In this study we find that global fire–vegetation models underestimate the strong increase of burned area with higher previous-season plant productivity in comparison to satellite-derived relationships.
Matthias Nettesheim, Todd A. Ehlers, David M. Whipp, and Alexander Koptev
Solid Earth, 9, 1207–1224, https://doi.org/10.5194/se-9-1207-2018, https://doi.org/10.5194/se-9-1207-2018, 2018
Short summary
Short summary
In this modeling study, we investigate rock uplift at plate corners (syntaxes). These are characterized by a unique bent geometry at subduction zones and exhibit some of the world's highest rock uplift rates. We find that the style of deformation changes above the plate's bent section and that active subduction is necessary to generate an isolated region of rapid uplift. Strong erosion there localizes uplift on even smaller scales, suggesting both tectonic and surface processes are important.
Manuel Schmid, Todd A. Ehlers, Christian Werner, Thomas Hickler, and Juan-Pablo Fuentes-Espoz
Earth Surf. Dynam., 6, 859–881, https://doi.org/10.5194/esurf-6-859-2018, https://doi.org/10.5194/esurf-6-859-2018, 2018
Short summary
Short summary
We present a numerical modeling study into the interactions between transient climate and vegetation cover with hillslope and fluvial processes. We use a state-of-the-art landscape evolution model library (Landlab) and design model experiments to investigate the effect of climate change and the associated changes in surface vegetation cover on main basin metrics. This paper is a companion paper to Part 1 (this journal), which investigates the effect of climate change on surface vegetation cover.
Byron A. Adams and Todd A. Ehlers
Earth Surf. Dynam., 6, 595–610, https://doi.org/10.5194/esurf-6-595-2018, https://doi.org/10.5194/esurf-6-595-2018, 2018
Short summary
Short summary
Where alpine glaciers were active in the past, they have created scenic landscapes that are likely in the process of morphing back into a form that it more stable with today's climate regime and tectonic forces. By looking at older erosion rates from before the time of large alpine glaciers and erosion rates since deglaciation in the Olympic Mountains (USA), we find that the topography and erosion rates have not drastically changed despite the impressive glacial valleys that have been carved.
Johan Liakka and Marcus Lofverstrom
Clim. Past, 14, 887–900, https://doi.org/10.5194/cp-14-887-2018, https://doi.org/10.5194/cp-14-887-2018, 2018
Short summary
Short summary
This study highlights the counterintuitive result that continental ice sheets can also induce a warming, in particular in the Arctic region. The warming is explained by an increased northward heat transport, resulting from interactions between the atmospheric circulation and ice sheet topography. There is thus an important feedback between ice sheets and temperature, which can help to explain the differences in ice distribution between the Last Glacial Maximum and earlier glacial periods.
Michelle E. Gilmore, Nadine McQuarrie, Paul R. Eizenhöfer, and Todd A. Ehlers
Solid Earth, 9, 599–627, https://doi.org/10.5194/se-9-599-2018, https://doi.org/10.5194/se-9-599-2018, 2018
Short summary
Short summary
We examine the Himalayan Mountains of Bhutan by integrating balanced geologic cross sections with cooling ages from a suite of mineral systems. Interpretations of cooling ages are intrinsically linked to both the motion along faults as well as the location and magnitude of erosion. In this study, we use flexural and thermal kinematic models to understand the sensitivity of predicted cooling ages to changes in fault kinematics, geometry, and topography.
Marcus Lofverstrom and Johan Liakka
The Cryosphere, 12, 1499–1510, https://doi.org/10.5194/tc-12-1499-2018, https://doi.org/10.5194/tc-12-1499-2018, 2018
Sebastian G. Mutz, Todd A. Ehlers, Martin Werner, Gerrit Lohmann, Christian Stepanek, and Jingmin Li
Earth Surf. Dynam., 6, 271–301, https://doi.org/10.5194/esurf-6-271-2018, https://doi.org/10.5194/esurf-6-271-2018, 2018
Short summary
Short summary
We use a climate model and statistics to provide an overview of regional climates from different times in the late Cenozoic. We focus on tectonically active mountain ranges in particular. Our results highlight significant changes in climates throughout the late Cenozoic, which should be taken into consideration when interpreting erosion rates. We also document the differences between model- and proxy-based estimates for late Cenozoic climate change in South America and Tibet.
Katja Frieler, Stefan Lange, Franziska Piontek, Christopher P. O. Reyer, Jacob Schewe, Lila Warszawski, Fang Zhao, Louise Chini, Sebastien Denvil, Kerry Emanuel, Tobias Geiger, Kate Halladay, George Hurtt, Matthias Mengel, Daisuke Murakami, Sebastian Ostberg, Alexander Popp, Riccardo Riva, Miodrag Stevanovic, Tatsuo Suzuki, Jan Volkholz, Eleanor Burke, Philippe Ciais, Kristie Ebi, Tyler D. Eddy, Joshua Elliott, Eric Galbraith, Simon N. Gosling, Fred Hattermann, Thomas Hickler, Jochen Hinkel, Christian Hof, Veronika Huber, Jonas Jägermeyr, Valentina Krysanova, Rafael Marcé, Hannes Müller Schmied, Ioanna Mouratiadou, Don Pierson, Derek P. Tittensor, Robert Vautard, Michelle van Vliet, Matthias F. Biber, Richard A. Betts, Benjamin Leon Bodirsky, Delphine Deryng, Steve Frolking, Chris D. Jones, Heike K. Lotze, Hermann Lotze-Campen, Ritvik Sahajpal, Kirsten Thonicke, Hanqin Tian, and Yoshiki Yamagata
Geosci. Model Dev., 10, 4321–4345, https://doi.org/10.5194/gmd-10-4321-2017, https://doi.org/10.5194/gmd-10-4321-2017, 2017
Short summary
Short summary
This paper describes the simulation scenario design for the next phase of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), which is designed to facilitate a contribution to the scientific basis for the IPCC Special Report on the impacts of 1.5 °C global warming. ISIMIP brings together over 80 climate-impact models, covering impacts on hydrology, biomes, forests, heat-related mortality, permafrost, tropical cyclones, fisheries, agiculture, energy, and coastal infrastructure.
Heiko Paeth, Christian Steger, Jingmin Li, Sebastian G. Mutz, and Todd A. Ehlers
Clim. Past Discuss., https://doi.org/10.5194/cp-2017-111, https://doi.org/10.5194/cp-2017-111, 2017
Manuscript not accepted for further review
Short summary
Short summary
We use a high-resolution regional climate model to investigate various episodes of distinct climate states over the Tibetan Plateau region during the Cenozoic rise of the Plateau and Quaternary glacial/interglacial cycles. The simulated changes are in good agreement with available paleo-climatic reconstructions from proxy data. It is shown that in some regions of the Tibetan Plateau the climate anomalies during the Quaternary have been as strong as the changes occurring during the uplift period.
Michael Dietze, Solmaz Mohadjer, Jens M. Turowski, Todd A. Ehlers, and Niels Hovius
Earth Surf. Dynam., 5, 653–668, https://doi.org/10.5194/esurf-5-653-2017, https://doi.org/10.5194/esurf-5-653-2017, 2017
Short summary
Short summary
We use a seismometer network to detect and locate rockfalls, a key process shaping steep mountain landscapes. When tested against laser scan surveys, all seismically detected events could be located with an average deviation of 81 m. Seismic monitoring provides insight to the dynamics of individual rockfalls, which can be as small as 0.0053 m3. Thus, seismic methods provide unprecedented temporal, spatial and kinematic details about this important process.
Margreet J. E. van Marle, Silvia Kloster, Brian I. Magi, Jennifer R. Marlon, Anne-Laure Daniau, Robert D. Field, Almut Arneth, Matthew Forrest, Stijn Hantson, Natalie M. Kehrwald, Wolfgang Knorr, Gitta Lasslop, Fang Li, Stéphane Mangeon, Chao Yue, Johannes W. Kaiser, and Guido R. van der Werf
Geosci. Model Dev., 10, 3329–3357, https://doi.org/10.5194/gmd-10-3329-2017, https://doi.org/10.5194/gmd-10-3329-2017, 2017
Short summary
Short summary
Fire emission estimates are a key input dataset for climate models. We have merged satellite information with proxy datasets and fire models to reconstruct fire emissions since 1750 AD. Our dataset indicates that, on a global scale, fire emissions were relatively constant over time. Since roughly 1950, declining emissions from savannas were approximately balanced by increased emissions from tropical deforestation zones.
Sam S. Rabin, Joe R. Melton, Gitta Lasslop, Dominique Bachelet, Matthew Forrest, Stijn Hantson, Jed O. Kaplan, Fang Li, Stéphane Mangeon, Daniel S. Ward, Chao Yue, Vivek K. Arora, Thomas Hickler, Silvia Kloster, Wolfgang Knorr, Lars Nieradzik, Allan Spessa, Gerd A. Folberth, Tim Sheehan, Apostolos Voulgarakis, Douglas I. Kelley, I. Colin Prentice, Stephen Sitch, Sandy Harrison, and Almut Arneth
Geosci. Model Dev., 10, 1175–1197, https://doi.org/10.5194/gmd-10-1175-2017, https://doi.org/10.5194/gmd-10-1175-2017, 2017
Short summary
Short summary
Global vegetation models are important tools for understanding how the Earth system will change in the future, and fire is a critical process to include. A number of different methods have been developed to represent vegetation burning. This paper describes the protocol for the first systematic comparison of global fire models, which will allow the community to explore various drivers and evaluate what mechanisms are important for improving performance. It also includes equations for all models.
Stijn Hantson, Almut Arneth, Sandy P. Harrison, Douglas I. Kelley, I. Colin Prentice, Sam S. Rabin, Sally Archibald, Florent Mouillot, Steve R. Arnold, Paulo Artaxo, Dominique Bachelet, Philippe Ciais, Matthew Forrest, Pierre Friedlingstein, Thomas Hickler, Jed O. Kaplan, Silvia Kloster, Wolfgang Knorr, Gitta Lasslop, Fang Li, Stephane Mangeon, Joe R. Melton, Andrea Meyn, Stephen Sitch, Allan Spessa, Guido R. van der Werf, Apostolos Voulgarakis, and Chao Yue
Biogeosciences, 13, 3359–3375, https://doi.org/10.5194/bg-13-3359-2016, https://doi.org/10.5194/bg-13-3359-2016, 2016
Short summary
Short summary
Our ability to predict the magnitude and geographic pattern of past and future fire impacts rests on our ability to model fire regimes. A large variety of models exist, and it is unclear which type of model or degree of complexity is required to model fire adequately at regional to global scales. In this paper we summarize the current state of the art in fire-regime modelling and model evaluation, and outline what lessons may be learned from the Fire Model Intercomparison Project – FireMIP.
Johan Liakka, Marcus Löfverström, and Florence Colleoni
Clim. Past, 12, 1225–1241, https://doi.org/10.5194/cp-12-1225-2016, https://doi.org/10.5194/cp-12-1225-2016, 2016
Short summary
Short summary
The present study explains why Scandinavia was ice-covered 20 000 years ago, while Siberia was mostly ice free. The authors show that the ice-sheet extent in Eurasia was to a large extent controlled by atmospheric circulation changes due to the ice sheet in North America. As the North American ice sheet becomes larger, it induces a cooling in Europe and a warming in Siberia: this climatic pattern forces the Eurasian ice sheet to migrate westward until it is centered over Scandinavia.
S. G. A. Flantua, H. Hooghiemstra, M. Vuille, H. Behling, J. F. Carson, W. D. Gosling, I. Hoyos, M. P. Ledru, E. Montoya, F. Mayle, A. Maldonado, V. Rull, M. S. Tonello, B. S. Whitney, and C. González-Arango
Clim. Past, 12, 483–523, https://doi.org/10.5194/cp-12-483-2016, https://doi.org/10.5194/cp-12-483-2016, 2016
Short summary
Short summary
This paper serves as a guide to high-quality pollen records in South America that capture environmental variability during the last 2 millennia. We identify the pollen records suitable for climate modelling and discuss their sensitivity to the spatial signature of climate modes. Furthermore, evidence for human land use in pollen records is useful for archaeological hypothesis testing and important in distinguishing natural from anthropogenically driven vegetation change.
Solmaz Mohadjer, Todd Alan Ehlers, Rebecca Bendick, Konstanze Stübner, and Timo Strube
Nat. Hazards Earth Syst. Sci., 16, 529–542, https://doi.org/10.5194/nhess-16-529-2016, https://doi.org/10.5194/nhess-16-529-2016, 2016
Short summary
Short summary
The Central Asia Fault Database is the first publicly accessible digital repository for active faults in central Asia and the surrounding regions. It includes an interactive map and a search tool that allow users to query and display critical fault information such as slip rates and earthquake history. The map displays over 1196 fault traces and 34 000 earthquake locations. The database contains attributes for 123 faults mentioned in the literature.
M. Forrest, J. T. Eronen, T. Utescher, G. Knorr, C. Stepanek, G. Lohmann, and T. Hickler
Clim. Past, 11, 1701–1732, https://doi.org/10.5194/cp-11-1701-2015, https://doi.org/10.5194/cp-11-1701-2015, 2015
Short summary
Short summary
We simulated Late Miocene (11-7 Million years ago) vegetation using two plausible CO2 concentrations: 280ppm CO2 and 450ppm CO2. We compared the simulated vegetation to existing plant fossil data for the whole Northern Hemisphere. Our results suggest that during the Late Miocene the CO2 levels have been relatively low, or that other factors that are not included in the models maintained the seasonal temperate forests and open vegetation.
M. H. Vermeulen, B. J. Kruijt, T. Hickler, and P. Kabat
Earth Syst. Dynam., 6, 485–503, https://doi.org/10.5194/esd-6-485-2015, https://doi.org/10.5194/esd-6-485-2015, 2015
Short summary
Short summary
We compared a process-based ecosystem model (LPJ-GUESS) with EC measurements to test whether observed interannual variability (IAV) in carbon and water fluxes can be reproduced because it is important to understand the driving mechanisms of IAV. We show that the model's mechanistic process representation for photosynthesis at low temperatures and during drought could be improved, but other process representations are still lacking in order to fully reproduce the observed IAV.
R. M. Headley and T. A. Ehlers
Earth Surf. Dynam., 3, 153–170, https://doi.org/10.5194/esurf-3-153-2015, https://doi.org/10.5194/esurf-3-153-2015, 2015
Short summary
Short summary
Within a landscape evolution model operating over geologic timescales, this work evaluates how different assumptions and levels of complexity for modeling glacier flow impact the pattern and amount of glacial erosion. Compared to those in colder climates, modeled glaciers in warmer and wetter climates are more sensitive to the choice of glacier flow model. Differences between landscapes evolved with different glacier flow models are intensified over multiple cycles.
J. Liakka, J. T. Eronen, H. Tang, and F. T. Portmann
Clim. Past Discuss., https://doi.org/10.5194/cpd-10-4535-2014, https://doi.org/10.5194/cpd-10-4535-2014, 2014
Preprint withdrawn
D. Wårlind, B. Smith, T. Hickler, and A. Arneth
Biogeosciences, 11, 6131–6146, https://doi.org/10.5194/bg-11-6131-2014, https://doi.org/10.5194/bg-11-6131-2014, 2014
C. Werner, K. Reiser, M. Dannenmann, L. B. Hutley, J. Jacobeit, and K. Butterbach-Bahl
Biogeosciences, 11, 6047–6065, https://doi.org/10.5194/bg-11-6047-2014, https://doi.org/10.5194/bg-11-6047-2014, 2014
Short summary
Short summary
Atmospheric loss of N from savanna soil was dominated by N2 emissions (82-99% of total N loss to atmosphere). Nitric oxide emissions significantly contributed at 50% WFPS; high temperatures and N2O emissions were negligible. Based on a simple upscale approach we estimated annual loss of N to the atmosphere at 7.5kg yr-1. N2O emission was low for most samples, but high for a small subset of cores at 75% WFPS (due to short periods where such conditions occur this has little effect on totals).
C. Buendía, S. Arens, T. Hickler, S. I. Higgins, P. Porada, and A. Kleidon
Biogeosciences, 11, 3661–3683, https://doi.org/10.5194/bg-11-3661-2014, https://doi.org/10.5194/bg-11-3661-2014, 2014
B. Smith, D. Wårlind, A. Arneth, T. Hickler, P. Leadley, J. Siltberg, and S. Zaehle
Biogeosciences, 11, 2027–2054, https://doi.org/10.5194/bg-11-2027-2014, https://doi.org/10.5194/bg-11-2027-2014, 2014
N. Gharahi Ghehi, C. Werner, K. Hufkens, R. Kiese, E. Van Ranst, D. Nsabimana, G. Wallin, L. Klemedtsson, K. Butterbach-Bahl, and P. Boeckx
Biogeosciences Discuss., https://doi.org/10.5194/bgd-10-1483-2013, https://doi.org/10.5194/bgd-10-1483-2013, 2013
Revised manuscript not accepted
Related subject area
Biological: Bio-Geomorphology
On the relative role of abiotic and biotic controls in channel network development: insights from scaled tidal flume experiments
Benthos as a key driver of morphological change in coastal regions
Higher sediment redistribution rates related to burrowing animals than previously assumed as revealed by time-of-flight-based monitoring
Effect of hydro-climate variation on biofilm dynamics and its impact in intertidal environments
Biogeomorphic modeling to assess the resilience of tidal-marsh restoration to sea level rise and sediment supply
Using a calibrated upper living position of marine biota to calculate coseismic uplift: a case study of the 2016 Kaikōura earthquake, New Zealand
Mapping landscape connectivity as a driver of species richness under tectonic and climatic forcing
Effect of changing vegetation and precipitation on denudation – Part 2: Predicted landscape response to transient climate and vegetation cover over millennial to million-year timescales
Quantifying biostabilisation effects of biofilm-secreted and extracted extracellular polymeric substances (EPSs) on sandy substrate
Observations of the effect of emergent vegetation on sediment resuspension under unidirectional currents and waves
Sarah Hautekiet, Jan-Eike Rossius, Olivier Gourgue, Maarten Kleinhans, and Stijn Temmerman
Earth Surf. Dynam., 12, 601–619, https://doi.org/10.5194/esurf-12-601-2024, https://doi.org/10.5194/esurf-12-601-2024, 2024
Short summary
Short summary
This study examined how vegetation growing in marshes affects the formation of tidal channel networks. Experiments were conducted to imitate marsh development, both with and without vegetation. The results show interdependency between biotic and abiotic factors in channel development. They mainly play a role when the landscape changes from bare to vegetated. Overall, the study suggests that abiotic factors are more important near the sea, while vegetation plays a larger role closer to the land.
Peter Arlinghaus, Corinna Schrum, Ingrid Kröncke, and Wenyan Zhang
Earth Surf. Dynam., 12, 537–558, https://doi.org/10.5194/esurf-12-537-2024, https://doi.org/10.5194/esurf-12-537-2024, 2024
Short summary
Short summary
Benthos is recognized to strongly influence sediment stability, deposition, and erosion. This is well studied on small scales, but large-scale impact on morphological change is largely unknown. We quantify the large-scale impact of benthos by modeling the evolution of a tidal basin. Results indicate a profound impact of benthos by redistributing sediments on large scales. As confirmed by measurements, including benthos significantly improves model results compared to an abiotic scenario.
Paulina Grigusova, Annegret Larsen, Sebastian Achilles, Roland Brandl, Camilo del Río, Nina Farwig, Diana Kraus, Leandro Paulino, Patricio Pliscoff, Kirstin Übernickel, and Jörg Bendix
Earth Surf. Dynam., 10, 1273–1301, https://doi.org/10.5194/esurf-10-1273-2022, https://doi.org/10.5194/esurf-10-1273-2022, 2022
Short summary
Short summary
In our study, we developed, tested, and applied a cost-effective time-of-flight camera to autonomously monitor rainfall-driven and animal-driven sediment redistribution in areas affected by burrowing animals with high temporal (four times a day) and spatial (6 mm) resolution. We estimated the sediment redistribution rates on a burrow scale and then upscaled the redistribution rates to entire hillslopes. Our findings can be implemented into long-term soil erosion models.
Elena Bastianon, Julie A. Hope, Robert M. Dorrell, and Daniel R. Parsons
Earth Surf. Dynam., 10, 1115–1140, https://doi.org/10.5194/esurf-10-1115-2022, https://doi.org/10.5194/esurf-10-1115-2022, 2022
Short summary
Short summary
Biological activity in shallow tidal environments significantly influence sediment dynamics and morphology. Here, a bio-morphodynamic model is developed that accounts for hydro-climate variations in biofilm development to estimate the effect of biostabilisation on the bed. Results reveal that key parameters such as growth rate and temperature strongly influence the development of biofilm under a range of disturbance periodicities and intensities, shaping the channel equilibrium profile.
Olivier Gourgue, Jim van Belzen, Christian Schwarz, Wouter Vandenbruwaene, Joris Vanlede, Jean-Philippe Belliard, Sergio Fagherazzi, Tjeerd J. Bouma, Johan van de Koppel, and Stijn Temmerman
Earth Surf. Dynam., 10, 531–553, https://doi.org/10.5194/esurf-10-531-2022, https://doi.org/10.5194/esurf-10-531-2022, 2022
Short summary
Short summary
There is an increasing demand for tidal-marsh restoration around the world. We have developed a new modeling approach to reduce the uncertainty associated with this development. Its application to a real tidal-marsh restoration project in northwestern Europe illustrates how the rate of landscape development can be steered by restoration design, with important consequences for restored tidal-marsh resilience to increasing sea level rise and decreasing sediment supply.
Catherine Reid, John Begg, Vasiliki Mouslopoulou, Onno Oncken, Andrew Nicol, and Sofia-Katerina Kufner
Earth Surf. Dynam., 8, 351–366, https://doi.org/10.5194/esurf-8-351-2020, https://doi.org/10.5194/esurf-8-351-2020, 2020
Tristan Salles, Patrice Rey, and Enrico Bertuzzo
Earth Surf. Dynam., 7, 895–910, https://doi.org/10.5194/esurf-7-895-2019, https://doi.org/10.5194/esurf-7-895-2019, 2019
Short summary
Short summary
Mountainous landscapes have long been recognized as potential drivers for genetic drift, speciation, and ecological resilience. We present a novel approach that can be used to assess and quantify drivers of biodiversity, speciation, and endemism over geological time. Using coupled climate–landscape models, we show that biodiversity under tectonic and climatic forcing relates to landscape dynamics and that landscape complexity drives species richness through orogenic history.
Manuel Schmid, Todd A. Ehlers, Christian Werner, Thomas Hickler, and Juan-Pablo Fuentes-Espoz
Earth Surf. Dynam., 6, 859–881, https://doi.org/10.5194/esurf-6-859-2018, https://doi.org/10.5194/esurf-6-859-2018, 2018
Short summary
Short summary
We present a numerical modeling study into the interactions between transient climate and vegetation cover with hillslope and fluvial processes. We use a state-of-the-art landscape evolution model library (Landlab) and design model experiments to investigate the effect of climate change and the associated changes in surface vegetation cover on main basin metrics. This paper is a companion paper to Part 1 (this journal), which investigates the effect of climate change on surface vegetation cover.
Wietse I. van de Lageweg, Stuart J. McLelland, and Daniel R. Parsons
Earth Surf. Dynam., 6, 203–215, https://doi.org/10.5194/esurf-6-203-2018, https://doi.org/10.5194/esurf-6-203-2018, 2018
Short summary
Short summary
Sticky sediments are an important component of many rivers and coasts. Stickiness depends on many factors including the presence of micro-organisms, also known as biofilms. We performed a laboratory study to better understand the role of biofilms in controlling sediment transport and dynamics. We find that sand with biofilms requires significantly higher flow velocities to be mobilised compared to uncolonised sand. This will help improve predictions of sediment in response to currents and waves.
R. O. Tinoco and G. Coco
Earth Surf. Dynam., 2, 83–96, https://doi.org/10.5194/esurf-2-83-2014, https://doi.org/10.5194/esurf-2-83-2014, 2014
Cited articles
Acosta, V. T., Schildgen, T. F., Clarke, B. A., Scherler, D., Bookhagen, B.,
Wittmann, H., von Blanckenburg, F., and Strecker, M. R.: Effect of
vegetation cover on millennial-scale landscape denudation rates in East
Africa, Lithosphere, 7, 408–420, https://doi.org/10.1130/L402.1, 2015.
Allen, J. R. M., Hickler, T., Singarayer, J. S., Sykes, M. T., Valdes, P.
J., and Huntley, B.: Last glacial vegetation of northern Eurasia, Quaternary Sci. Rev., 29, 2604–2618, https://doi.org/10.1016/j.quascirev.2010.05.031, 2010.
Armesto, J. J., Arroyo, M. T. K., and Hinojosa, L. F.: The Mediterranean
environment of central Chile, in: The Physical Geography of South America,
edited by: Veblen, T. T., Young, K. R., and Orme, A. R., Oxford University
Press, 184-199, 2007.
Armesto, J. J., Manuschevich, D., Mora, A., Smith-Ramirez, C., Rozzi, R.,
Abarzua, A. M., and Marquet, P. A.: From the Holocene to the Anthropocene: A
historical framework for land cover change in southwestern South America in
the past 15 000 years, Land Use Policy, 27, 148–160, https://doi.org/10.1016/j.landusepol.2009.07.006, 2010.
Arroyo, M. T. K., Pliscoff, P., Mihoc, M., and Arroyo-Karlin, M.: The
Magellanic moorland, in: The World's Largest Wetlands, edited by: Fraser, L.
H. and Keddy, P. A., Cambridge University Press 424–445, 2005.
Batjes, N. H.: ISRIC-WISE Derived soil properties on a 5 by 5 arc-minutes
grid (version 1.2), ISRIC Report 2012/01, 2012.
Bonan, G. B.: Forests and climate change: Forcings, feedbacks, and the
climate benefits of forests, Science, 320, 1444–1449, https://doi.org/10.1126/science.1155121, 2008.
Bonan, G. B., Levis, S., Kergoat, L., and Oleson, K. W.: Landscapes as
patches of plant functional types: An integrating concept for climate and
ecosystem models, Global Biogeochem. Cy., 16, 1021–1025, https://doi.org/10.1029/2000GB001360, 2002.
Bragg, F. J., Prentice, I. C., Harrison, S. P., Eglinton, G., Foster, P. N., Rommerskirchen, F., and Rullkötter, J.: Stable isotope and
modelling evidence for CO2 as a driver of glacial-interglacial vegetation shifts in southern Africa, Biogeosciences, 10, 2001–2010, https://doi.org/10.5194/bg-10-2001-2013, 2013.
Brook, E.: Windows on the greenhouse, Nature, 453, 291–292, 2008.
Brovkin, V., Raddatz, T., Reick, C. H., Claussen, M., and Gayler, V.: Global
biogeophysical interactions between forest and climate, Geophys. Res. Lett.,
36, L07405, https://doi.org/10.1029/2009GL037543, 2009.
Bugmann, H.: A review of forest gap models, Climatic Change, 51,
259–305, 2001.
Collins, D. B. G., Bras, R. L., and Tucker, G. E.: Modeling the effects of
vegetation-erosion coupling on landscape evolution, J. Geophys. Res.-Earth, 109, F03004, https://doi.org/10.1029/2003JF000028, 2004.
Collins, W. D., Bitz, C. M., Blackmon, M. L., Bonan, G. B., Bretherton, C.
S., Carton, J. A., Chang, P., Doney, S. C., Hack, J., James, Henderson, T.
B., Kiehl, J. T., Large, W. G., McKenna, D. S., Santer, B. D., and Smith, R.
D.: The Community Climate System Model Version 3 (CCSM3), J. Climate, 19,
2122–2143, https://doi.org/10.1175/JCLI3761.1, 2006.
Cramer, W., Bondeau, A., Woodward, F., Prentice, I., Betts, R., Brovkin, V.
and, Cox, P., Fisher, V., Foley, J., Friend, A., Kucharik, C., Lomas,
M., Ramankutty, N., Sitch, S., Smith, B, White, A., and Young-Molling, C.:
Global response of terrestrial ecosystem structure and function to CO2
and climate change: results from six dynamic global vegetation models, Glob.
Change Biol., 7, 357–373, https://doi.org/10.1046/j.1365-2486.2001.00383.x, 2001.
Dai, A.: Precipitation characteristics in eighteen coupled climate models,
J. Climate, 19, 4605–4630, Precipitation Characteristics in Eighteen
Coupled Climate Models, 2006.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., Berg, L. van de, Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P.,
Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M.,
Morcrette, J. J., Park, B. K., Peubey, C., Rosnay, P. de, Tavolato, C.,
Thépaut, J. N., and Vitart, F.: The ERA-Interim reanalysis:
configuration and performance of the data assimilation system, Q. J. Roy.
Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
De Kauwe, M. G., Medlyn, B. E., Walker, A. P., Zaehle, S., Asao, S., Guenet,
B., Harper, A. B., Hickler, T., Jain, A. K., Luo, Y., Lu, X., Luus, K.,
Parton, W. J., Shu, S., Wang, Y.-P., Werner, C., Xia, J., Pendall, E.,
Morgan, J. A., Ryan, E. M., Carrillo, Y., Dijkstra, F. A., Zelikova, T. J.,
and Norby, R. J.: Challenging terrestrial biosphere models with data from the
long-term multifactor Prairie Heating and CO2 Enrichment experiment,
Glob. Change Biol., 23, 3623–3645, https://doi.org/10.1111/gcb.13643, 2017.
Diaz, F. P., Latorre, C., Maldonado, A., Quade, J., and Betancourt, J. L.:
Rodent middens reveal episodic, long-distance plant colonizations across the
hyperarid Atacama Desert over the last 34 000 years, J. Biogeogr., 39,
510–525, https://doi.org/10.1111/j.1365-2699.2011.02617.x, 2012.
Dimiceli, C., Carroll, M., Sohlberg, R., Kim, D. H., Kelly, M., and
Townshend, J. R. G.: MOD44B MODIS/Terra Vegetation Continuous Fields Yearly
L3 Global 250m SIN Grid V006. 2015, distributed by NASA EOSDIS Land
Processes DAAC, doi.org/10.5067/MODIS/MOD44B.006, 2015.
Donoso, C. D. O.: Reseña ecologica de los bosques mediterraneos de
Chile, Bosque (Valdivia), 4, 117–146, 1982.
Escobar Avaria, C. A.: Simulating current regional pattern and composition
of Chilean native forests using a dynamic ecosystem model, Student thesis
series INES, available at: http://lup.lub.lu.se/student-papers/record/3877156
(last access: 15 September 2018), 2013.
Farquhar, G. D., von Caemmerer, S, and Berry, J. A.: A biochemical model of
photosynthetic CO2 assimilation in leaves of C3 species, Planta,
149, 78–90, https://doi.org/10.1007/BF00386231, 1980.
Forrest, M., Eronen, J. T., Utescher, T., Knorr, G., Stepanek, C., Lohmann, G., and Hickler, T.: Climate-vegetation modelling
and fossil plant data suggest low atmospheric CO2 in the late Miocene, Clim. Past, 11, 1701–1732, https://doi.org/10.5194/cp-11-1701-2015, 2015.
Garreaud, R. and Aceituno, P.: Atmospheric circulation and climatic
variability, in: The Physical Geography of South America, edited by: Veblen,
T. T., Young, K. R., and Orme, A. R., Oxford University Press, 45–59, 2007.
Garreaud, R., Barichivich, J., Christie, D. A., and Maldonado, A.:
Interannual variability of the coastal fog at Fray Jorge relict forests in
semiarid Chile, J. Geophys. Res., 113, G04011, https://doi.org/10.1029/2008JG000709, 2008.
Garreaud, R., Falvey, M., and Montecinos, A.: Orographic Precipitation in
Coastal Southern Chile: Mean Distribution, Temporal Variability, and Linear
Contribution, J. Hydrometeorol., 17, 1185–1202, https://doi.org/10.1175/JHM-D-15-0170.1,
2016.
Gerten, D., Schaphoff, S., Haberlandt, U., Lucht, W., and Sitch, S.:
Terrestrial vegetation and water balance – hydrological evaluation of a
dynamic global vegetation model, J. Hydrol., 286, 249–270, https://doi.org/10.1016/j.jhydrol.2003.09.029, 2004.
Gerten, D., Lucht, W., Schaphoff, S., Cramer, W., Hickler, T., and Wagner,
W.: Hydrologic resilience of the terrestrial biosphere, Geophys. Res. Lett.,
32, L21408, https://doi.org/10.1029/2005GL024247, 2005.
Giesecke, T., Miller, P. A., Sykes M. T., Ojala, A. E. K., Seppä, H., and
Bradshaw, R. H. W.: The effect of past changes in inter-annual temperature
variability on tree distribution limits, J. Biogeogr., 37, 1394–1405,
https://doi.org/10.1111/j.1365-2699.2010.02296.x, 2010.
Grosjean, M., Van Leeuwen, J. F. N., Van Der Knaap, W. O., Geyh, M. A.,
Ammann, B., Tanner, W., Messerli, B., Núñez, L. A.,
Valero-Garcés, B. L., and Veit, H.: A 22 000 14C year BP sediment and
pollen record of climate change from Laguna Miscanti (23∘ S),
northern Chile, Global Planet. Change, 28, 35–51, https://doi.org/10.1016/S0921-8181(00)00063-1, 2001.
Gyssels, G., Poesen, J., Bochet, E., and Li, Y.: Impact of plant roots on
the resistance of soils to erosion by water: a review, Prog. Phys. Geogr.,
29, 189–217, https://doi.org/10.1191/0309133305pp443ra, 2005.
Harrison, S. P. and Prentice, C. I.: Climate and CO2 controls on global
vegetation distribution at the last glacial maximum: analysis based on
palaeovegetation data, biome modelling and palaeoclimate simulations, Glob.
Change Biol., 9, 983–1004, https://doi.org/10.1046/j.1365-2486.2003.00640.x, 2003.
Hempel, S., Frieler, K., Warszawski, L., Schewe, J., and Piontek, F.: A trend-preserving bias correction – the ISI-MIP approach,
Earth Syst. Dynam., 4, 219–236, https://doi.org/10.5194/esd-4-219-2013, 2013.
Heusser, C. J.: Ice age vegetation and climate of subtropical Chile,
Palaeogeogr. Palaeocl., 80, 107–127, 1990.
Hickler, T., Smith, B., Sykes, M. T., Davis, M. B., Sugita, S., and Walker,
K.: Using a generalized vegetation model to simulate vegetation dynamics in
northeastern USA, Ecology, 85, 519–530, https://doi.org/10.1890/02-0344, 2004.
Hickler, T., Vohland, K., Feehan, J., Miller, P. A., Smith, B., Costa, L.,
Giesecke, T., Fronzek, S., Carter, T. R., Cramer, W., Kühn, I., and
Sykes, M. T.: Projecting the future distribution of European potential
natural vegetation zones with a generalized, tree species-based dynamic
vegetation model, Global Ecol. Biogeogr., 21, 50–63, https://doi.org/10.1111/j.1466-8238.2010.00613.x, 2012.
Hickler, T., Rammig, A., and Werner, C.: Modelling CO2 impacts on forest
productivity, Curr. Forestry Rep., 1, 1–12, https://doi.org/10.1007/s40725-015-0014-8, 2015.
Hobley, D. E. J., Adams, J. M., Nudurupati, S. S., Hutton, E. W. H., Gasparini, N. M., Istanbulluoglu, E., and Tucker, G. E.:
Creative computing with Landlab: an open-source toolkit for building, coupling, and exploring two-dimensional numerical models
of Earth-surface dynamics, Earth Surf. Dynam., 5, 21–46, https://doi.org/10.5194/esurf-5-21-2017, 2017.
Hopcroft, P. O., Valdes, P. J., Harper, A. B., and Beerling, D. J.: Multi
vegetation model evaluation of the Green Sahara climate regime,
Geophys. Res. Lett., 44, 6804–6813, https://doi.org/10.1002/2017GL073740, 2017.
Huntley, B., Allen, J. R. M., Collingham, Y. C., Hickler, T., Lister, A. M.,
Singarayer, J., Stuart, A. J., Sykes, M. T., and Valdes, P. J.: Millennial
climatic fluctuations are key to the structure of Last Glacial ecosystems,
PLOS One, 8, e61963, https://doi.org/10.1371/journal.pone.0061963, 2013.
Istanbulluoglu, E. and Bras, R. L.: Vegetation-modulated landscape
evolution: Effects of vegetation on landscape processes, drainage density,
and topography, J. Geophys. Res.-Earth, 110, F02012, https://doi.org/10.1029/2004JF000249, 2005.
Jeffery, M. L., Yanites, B. J., Poulsen, C. J., and Ehlers, T. A.:
Vegetation-precipitation controls on Central Andean topography, J. Geophys.
Res.-Earth, 119, 1354–1375, https://doi.org/10.1002/2013JF002919, 2014.
Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H.,
Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., and Kessler, M.:
Climatologies at high resolution for the earth's land surface areas,
Scientific Data, 4, 170122, 2017.
Kobrick, M. and Crippen, R.: SRTMGL1: NASA Shuttle Radar Topography Mission
Global 1 arc second V003, https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003, 2017.
Kosmas, C., Danalatos, N. G., and Gerontidis, S.: The effect of land
parameters on vegetation performance and degree of erosion under
Mediterranean conditions, Catena, 40, 3–17, 2000.
Langbein, W. B. and Schumm, S. A.: Yield of sediment in relation to mean
annual precipitation, EOS T. Am. Geophys. Un., 39,
1076–1084, https://doi.org/10.1029/TR039i006p01076, 1958.
Lehnert, L., Thies, B., Trachte, K., Achilles, S., Osses, P., Baumann, K.,
Schmidt, J., Samolov, E., Jung, P., Leinweber, P., Büdel, B., and
Bendix, J.: A case study on fog/low stratus occurrence at Las Lomitas,
Atacama Desert (Chile) as a water source for biological soil crusts, Aerosol
Air Qual. Res., 18, 254–269, 2018.
Leung, L. R. and Ghan, J., S.: Parameterizing subgrid orographic
precipitation and surface cover in climate models, Mon. Weather Rev.,
126, 3271–3291, https://doi.org/10.1175/1520-0493(1998)126<3271:PSOPAS>2.0.CO;2, 1998.
Lara, A., Solari, M. E., Del Rosario Prieto, and Peña, M. P.:
Reconstrucción de la cobertura de la vegetación y uso del suelo
hacia 1550 y sus cambios a 2007 en la ecorregión de los bosques
valdivianos lluviosos de Chile (35∘– 43∘30'S). Bosque (Valdivia), 33, 03–04, https://doi.org/10.4067/S0717-92002012000100002, 2012.
Liakka, J., Colleoni, F., Ahrens, B., and Hickler, T.: The impact of
climate-vegetation interactions on the onset of the Antarctic ice sheet,
Geophys. Res. Lett., 41, 1269–1276, https://doi.org/10.1002/2013GL058994, 2014.
Liu, Z., Otto-Bliesner, B. L., He, F., Brady, E. C., Tomas, R., Clark, P.
U., Carlson, A. E., Lynch-Stieglitz, J., Curry, W., Brook, E., Erickson, D.,
Jacob, R., Kutzbach, J., and Cheng, J.: Transient simulation of last
deglaciation with a new mechanism for Bølling-Allerød warming,
Science, 325, 310–314, https://doi.org/10.1126/science.1171041, 2009.
Luebert, F. and Pliscoff, P.: Sinopsis bioclimática y vegetacional de
Chile, 2Nd Edition, Editorial Universitaria, Santiago, Chile, 384 pp.,
2017.
Lovelock, J. E. and Whitfield, M.: Life span of the biosphere, Nature, 296,
561–563, https://doi.org/10.1038/296561a0, 1982.
Maldonado, A. and Villagrán, C.: Climate variability over the last 9900
cal yr BP from a swamp forest pollen record along the semiarid coast of
Chile, Quaternary Res., 66, 246–258, https://doi.org/10.1016/j.yqres.2006.04.003, 2006.
Maldonado, A., Betancourt, J. L., Latorre, C., and Villagran, C.: Pollen
analyses from a 50 000-yr rodent midden series in the southern Atacama
Desert (25∘ 30' S), J. Quaternary Sci., 20, 493–507, https://doi.org/10.1002/jqs.936, 2005.
Marchant, R., Cleef, A., Harrison, S. P., Hooghiemstra, H., Markgraf, V., van Boxel, J., Ager, T., Almeida, L., Anderson, R., Baied, C., Behling, H.,
Berrio, J. C., Burbridge, R., Björck, S., Byrne, R., Bush, M., Duivenvoorden, J., Flenley, J., De Oliveira, P., van Geel, B., Graf, K.,
Gosling, W. D., Harbele, S., van der Hammen, T., Hansen, B., Horn, S., Kuhry, P., Ledru, M.-P., Mayle, F., Leyden, B., Lozano-García, S.,
Melief, A. M., Moreno, P., Moar, N. T., Prieto, A., van Reenen, G., Salgado-Labouriau, M., Schäbitz, F., Schreve-Brinkman, E. J.,
and Wille, M.: Pollen-based biome reconstructions for Latin America at 0, 6000 and 18 000 radiocarbon years ago, Clim. Past, 5,
725–767, https://doi.org/10.5194/cp-5-725-2009, 2009.
Medlyn, B. E., Zaehle, S., De Kauwe, M. G., Walker, A. P., Dietze, M. C.,
Hanson, P. J., Hickler, T., Jain, A. K., Luo, Y., Parton, W., Prentice, I.
C., Thornton, P. E., Wang, S., Wang, Y.-P., Weng, E., Iversen, C. M.,
McCarthy, H. R., Warren, J. M., Oren, R., and Norby, R. J.: Using ecosystem
experiments to improve vegetation models, Nat. Clim. Change 5, 528–534,
https://doi.org/10.1038/nclimate2621, 2015.
Meinshausen, M., Vogel, E., Nauels, A., Lorbacher, K., Meinshausen, N., Etheridge, D. M., Fraser, P. J., Montzka, S. A., Rayner, P. J.,
Trudinger, C. M., Krummel, P. B., Beyerle, U., Canadell, J. G., Daniel, J. S., Enting, I. G., Law, R. M., Lunder, C. R., O'Doherty, S.,
Prinn, R. G., Reimann, S., Rubino, M., Velders, G. J. M., Vollmer, M. K., Wang, R. H. J., and Weiss, R.: Historical greenhouse gas
concentrations for climate modelling (CMIP6), Geosci. Model Dev., 10, 2057–2116, https://doi.org/10.5194/gmd-10-2057-2017, 2017.
Monnin, E., Indermuhle, A., Dallenbach, A., Fluckiger, J., Stauffer, B.,
Stocker, T. F., Raynaud, D., and Barnola, J. M.: Atmospheric CO2
concentrations over the last glacial termination, Science, 291,
112–114, https://doi.org/10.1126/science.291.5501.112, 2001.
Monsi, M. and Saeki, T.: On the factor light in plant communities and its
importance for matter production, Ann. Bot., 95, 549–567, https://doi.org/10.1093/aob/mci052, 2005.
Montecinos, A. and Aceituno, P.: Seasonality of the ENSO-related rainfall
variability in central Chile and associated circulation anomalies, J. Climate,
16, 281–296, https://doi.org/10.1175/1520-0442(2003)016<0281:SOTERR>2.0.CO;2, 2003.
Morales, P., Hickler, T., Rowell, D. P., Smith, B., and Sykes, M. T.:
Changes in European ecosystem productivity and carbon balance driven by
regional climate model output, Glob. Change Biol., 13, 108–122, https://doi.org/10.1111/j.1365-2486.2006.01289.x, 2007.
Moreira-Muñoz, A.: Plant Geography of Chile, Springer Netherlands,
Dordrecht, 2011.
Moreno, P. I. and Videla, J.: Centennial and millennial-scale hydroclimate
changes in northwestern Patagonia since 16,000 yr BP, Quaternary. Sci. Rev., 149,
326–337, https://doi.org/10.1016/j.quascirev.2016.08.008, 2016.
Mutz, S. G., Ehlers, T. A., Werner, M., Lohmann, G., Stepanek, C., and Li, J.: Estimates of late Cenozoic climate change
relevant to Earth surface processes in tectonically active orogens, Earth Surf. Dynam., 6, 271–301, https://doi.org/10.5194/esurf-6-271-2018, 2018.
O'ishi, R. and Abe-Ouchi, A.: Polar amplification in the mid-Holocene
derived from dynamical vegetation change with a GCM, Geophys. Res. Lett.,
38, L14702, https://doi.org/10.1029/2011GL048001, 2011.
Pappas, C., Fatichi, S., Rimkus, S., Burlando, P., and Huber, M. O.: The role
of local-scale heterogeneities in terrestrial ecosystem modeling, J.
Geophys. Res.-Biogeosci., 120, 341–360, https://doi.org/10.1002/2014JG002735, 2015.
Pollmann, W.: A long-term record of Nothofagus dominance in the southern Andes, Chile,
Aust. Ecol., 30, 91–102, https://doi.org/10.1046/j.1442-9993.2004.01427.x 2005.
Prentice, I. C. and Guiot, J.: Reconstructing biomes from palaeoecological
data: a general method and its application to European pollen data at 0 and
6 ka, Clim. Dynam., 12, 185–194, https://doi.org/10.1007/BF00211617, 1996.
Prentice, I. C., Sykes, M. T., and Cramer, W.: A simulation model for the
transient effects of climate change on forest landscapes, Ecol. Modell.,
65, 51–70, https://doi.org/10.1016/0304-3800(93)90126-D, 1993.
Prentice, I. C., Bondeau, A., Cramer, W., Harrison, S. P., Hickler, T.,
Lucht, W., Sitch, S., Smith, B., and Sykes, M. T.: Dynamic global vegetation
modeling: Quantifying terrestrial ecosystem responses to large-scale
environmental change Terrestrial Ecosystems in a Changing World, in:
Terrestrial Ecosystems in a Changing World, edited by: Canadell, J. G.,
Pataki, D. E., Pitelka, L. F., Springer, 175–192, 2007.
Prentice, I. C., Harrison, S. P., and Bartlein, P. J.: Global vegetation and
terrestrial carbon cycle changes after the last ice age, New Phytol., 189,
988–998, https://doi.org/10.1111/j.1469-8137.2010.03620.x, 2011.
Raddatz, T. J., Reick, C. H., Knorr, W., Kattge, J., Roeckner, E., Schnur,
R., Schnitzler, K.-G., Wetzel, P., and Jungclaus, J.: Will the tropical land
biosphere dominate the climate–carbon cycle feedback during the
twenty-first century?, Clim. Dynam., 29, 565–574, https://doi.org/10.1007/s00382-007-0247-8, 2007.
Reick, C. H., Raddatz, T., Brovkin, V., and Gayler, V.: Representation of
natural and anthropogenic land cover change in MPI-ESM, J. Adv. Model. Earth
Syst., 5, 459–482, https://doi.org/10.1002/jame.20022, 2013.
Riebe, C. S., Kirchner, J. W., Granger, D. E., and Finkel, R. C.: Minimal
climatic control on erosion rates in the Sierra Nevada, California, Geology,
29, 447–450, https://doi.org/10.1130/0091-7613(2001)029<0447:MCCOER>2.0.CO;2, 2001.
Rundel, P. W., Villagra, P. E., Dillon, M. O., Roig-Juñent, S., and
Debandi, G.: Arid and semi-arid ecosystems, in: The Physical Geography of
South America, edited by: Veblen, T. T., Young, K. R., and Orme, A. R.,
Oxford University Press, 158–183, 2007.
Schmid, M., Ehlers, T. A., Werner, C., Hickler, T., and Fuentes-Espoz, J.-P.: Effect of changing vegetation and precipitation on denudation – Part 2:
Predicted landscape response to transient climate and
vegetation cover over millennial to million-year timescales, Earth Surf. Dynam. Discuss., 6, 859–881, https://doi.org/10.5194/esurf-6-859-2018, 2018.
Seiler, C., Hutjes, R. W. A., Kruijt, B., Quispe, J., Añez, S., Arora,
V. K., Melton, J. R., Hickler, T., and Kabat, P.: Modeling forest dynamics
along climate gradients in Bolivia, J. Geophys. Res.-Biogeosci., 119,
758–775, https://doi.org/10.1002/2013JG002509, 2014.
Seiler, C. R., Hutjes, W. A., Kruijt, B., and Hickler, T.: The sensitivity
of wet and dry tropical forests to climate change in Bolivia, J. Geophys.
Res.-Biogeosci., 120, 399–413, https://doi.org/10.1002/2014JG002749, 2015.
Sexton, J. O., Song, X.-P., Feng, M., Noojipady, P., Anand, A., Huang, C.,
Kim, D.-H., Collins, K. M., Channan, S., DiMiceli, C., and Townshend, J. R.:
Global, 30-m resolution continuous fields of tree cover: Landsat-based
rescaling of MODIS vegetation continuous fields with lidar-based estimates
of error, Int. J. Digit. Earth, 6, 427–448, https://doi.org/10.1080/17538947.2013.786146, 2013.
Shellito, C. J. and Sloan, L. C.: Reconstructing a lost Eocene Paradise,
Part II: On the utility of dynamic global vegetation models in
pre-Quaternary climate studies, Glob. Planet. Change, 50, 18–32, https://doi.org/10.1016/j.gloplacha.2005.08.002, 2006.
Smith, B., Prentice, I. C., and Sykes, M. T.: Representation of vegetation
dynamics in the modelling of terrestrial ecosystems comparing two
contrasting approaches within European climate space, Global Ecol.
Biogeogr., 10, 621–637, https://doi.org/10.1046/j.1466-822X.2001.t01-1-00256.x,
2001.
Smith, B., Wårlind, D., Arneth, A., Hickler, T., Leadley, P., Siltberg, J., and Zaehle, S.: Implications of incorporating N cycling and N
limitations on primary production in an individual-based dynamic vegetation model, Biogeosciences, 11, 2027–2054, https://doi.org/10.5194/bg-11-2027-2014, 2014.
Snell, R. S., Huth, A., Nabel, J. E., Bocedi, G., Travis, J. M., Gravel,
D., Bugmann, H., Gutiérrez, A. G., Hickler, T., Higgins, S. I.,
Reineking, B., Scherstjanoi, M., Zurbriggen, N., and Lischke, H.: Using
dynamic vegetation models to simulate plant range shifts, Ecography, 37,
1184–1197, https://doi.org/10.1111/ecog.00580, 2014.
Sternberg, M. and Shoshany, M.: Influence of slope aspect on Mediterranean
woody formations: Comparison of a semiarid and an arid site in Israel, Ecol.
Res., 16, 335–345, https://doi.org/10.1046/j.1440-1703.2001.00393.x, 2001.
Thompson, L. G., Mosley-Thompson, E., Davis, M. E., Lin, P. N., Henderson,
K. A., Cole-Dai, J., Bolzan, J. F., and Liu, K.-B.: Late Glacial Stage and
Holocene tropical ice core records from Huascarán, Peru, Science,
269, 46–50, https://doi.org/10.1126/science.269.5220.46, 1995.
Thonicke, K., Venevsky, S., Sitch, S., and Cramer, W.: The role of fire
disturbance for global vegetation dynamics: coupling fire into a Dynamic
Global Vegetation Model, Glob. Ecol. Biogeogr., 10, 661–677, https://doi.org/10.1046/j.1466-822X.2001.00175.x, 2001.
Uribe, J. M., Cabrera, R., de la Fuente, A., and Paneque M: Atlas
Bioclimático De Chile, Santiago, Universidad de Chile, 2012.
Valero-Garcés, B. L., Jenny, B., Rondanelli, M., Delgado-Huertas, A.,
Burns, S. J., Veit, H., and Moreno, A.: Palaeohydrology of Laguna de Tagua
Tagua (34∘ 30′ S) and moisture fluctuations in Central
Chile for the last 46 000 yr, J. Quaternary Sci., 20, 625–641, https://doi.org/10.1002/jqs.988, 2005.
Vanacker, V., von Blanckenburg, F., Govers, G., Molina, A., Poesen, J.,
Deckers, J., and Kubik, P: Restoring dense vegetation can slow mountain
erosion to near natural benchmark levels, Geology, 35, 303–306, https://doi.org/10.1130/G23109A.1, 2007.
Vaughan, W. W.: Basic atmospheric structure and concepts, Standard
Atmosphere, 12–16, 2015.
Veblen, T. T.: Temperate forests of the Southern Andean region, in: The
Physical Geography of South America, edited by: Veblen, T. T., Young, K. R.,
and Orme, A. R., Oxford University Press, 217–231, 2007.
Veblen, T. T., Donoso, C., Kitzberger, T., and Rebertus, A. J.: Ecology of
southern Chilean and Argentinean Nothofagus forests, in: The ecology and biogeography
of Nothofagus forests, edited by: Veblen, T. T., Hill, R. S., and Read, J., Yale
University Press, 293–253, 1996.
Villa-Martínez, R., Villagran, C., and Jenny, B.: The last 7500 cal yr
B.P. of westerly rainfall in Central Chile inferred from a high-resolution
pollen record from Laguna Aculeo (34∘ S), Quaternary Res., 60,
284–293, https://doi.org/10.1016/j.yqres.2003.07.007, 2003.
Villagrán, C. M.: Expansion of Magellanic Moorland during the late
Pleistocene: Palynological evidence from northern Isla de Chiloé, Chile,
Quaternary Res., 30, 304–314, https://doi.org/10.1016/0033-5894(88)90006-3, 1988.
Villagrán, C. M.: Quaternary history of the Mediterranean vegetation of
Chile, in: Ecology and biogeography of Mediterranean ecosystems in Chile,
California, and Australia, edited by: Arroyo, M. T. K., Zedler, P. H., and Fox,
M. D., Springer New York, 1995.
Weiss, A.: Topographic position and landforms analysis, Poster presentation, ESRI User Conference, San Diego, CA, Vol. 200, 2001.
Wramneby, A., Smith, B., Zaehle, S., and Sykes, M. T.: Parameter
uncertainties in the modelling of vegetation dynamics – Effects on tree
community structure and ecosystem functioning in European forest biomes,
Ecol. Modell., 216, 277–290, https://doi.org/10.1016/j.ecolmodel.2008.04.013,
2008.
Wramneby, A., Smith, B., and Samuelsson, P.: Hot spots of vegetation-climate
feedbacks under future greenhouse forcing in Europe, J. Geophys. Res.,
115, D21119, https://doi.org/10.1029/2010JD014307, 2010.
Young, K. R., Berry, P. E., and Veblen, T. T.: Flora and vegetation, in: The
Physical Geography of South America, edited by: Veblen, T. T., Young, K. R.,
and Orme, A. R., Oxford University Press, 91–100, 2007.
Yu, M., Wang, G., and Chen, H.: Quantifying the impacts of land surface
schemes and dynamic vegetation on the model dependency of projected changes
in surface energy and water budgets, J. Adv. Model. Earth Syst., 8,
370–386, https://doi.org/10.1002/2015MS000492, 2016.
Zaehle, S., Medlyn, B. E., De Kauwe, M. G., Walker, A. P., Dietze, M. C.,
Hickler, T., Luo, Y., Wang, Y.-P., El-Masri, B., Thornton, P., Jain, A.,
Wang, S., Wårlind, D., Weng, E., Parton, W., Iversen, C. M.,
Gallet-Budynek, A., McCarthy, H., Finzi, A., Hanson, P. J., Prentice, I. C.,
Oren, R., and Norby, R. J.,: Evaluation of 11 terrestrial carbon-nitrogen
cycle models against observations from two temperate Free-Air CO2
Enrichment studies, New Phytol., 202, 803–822, https://doi.org/10.1111/nph.12697, 2014.
Short summary
Vegetation is crucial for modulating rates of denudation and landscape evolution, and is directly influenced by climate conditions and atmospheric CO2 concentrations. Using transient climate data and a state-of-the-art dynamic vegetation model we simulate the vegetation composition and cover from the Last Glacial Maximum to present along the Coastal Cordillera of Chile. In part 2 we assess the landscape response to transient climate and vegetation cover using a landscape evolution model.
Vegetation is crucial for modulating rates of denudation and landscape evolution, and is...