Articles | Volume 6, issue 4
https://doi.org/10.5194/esurf-6-971-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-6-971-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Measuring decadal vertical land-level changes from SRTM-C (2000) and TanDEM-X ( ∼ 2015) in the south-central Andes
Benjamin Purinton
CORRESPONDING AUTHOR
Institute of Earth and Environmental Science, Universität Potsdam, Potsdam, Germany
Bodo Bookhagen
Institute of Earth and Environmental Science, Universität Potsdam, Potsdam, Germany
Related authors
Benjamin Purinton and Bodo Bookhagen
Earth Surf. Dynam., 7, 859–877, https://doi.org/10.5194/esurf-7-859-2019, https://doi.org/10.5194/esurf-7-859-2019, 2019
Short summary
Short summary
We develop and test new methods for counting pebble-size distributions in photos of gravel-bed rivers. Our open-source algorithms provide good estimates in complex imagery from high-energy mountain rivers. We discuss methods of river cross-section photo collection and processing into seamless georeferenced imagery. Application of a semi-automated version of the algorithm in small patches can be used as validation data for upscaling to entire survey sites using a fully automated version.
Benjamin Purinton and Bodo Bookhagen
Earth Surf. Dynam., 5, 211–237, https://doi.org/10.5194/esurf-5-211-2017, https://doi.org/10.5194/esurf-5-211-2017, 2017
Short summary
Short summary
We evaluate the 12 m TanDEM-X DEM for geomorphometry and compare elevation accuracy (using over 300 000 dGPS measurements) and geomorphic metrics (e.g., slope and curvature) to other modern satellite-derived DEMs. The optically generated 5 m ALOS World 3D is less useful due to high-frequency noise. Despite improvements in radar-derived satellite DEMs, which are useful for elevation differencing and catchment analysis, lidar data are still necessary for fine-scale analysis of hillslope processes.
Ariane Mueting and Bodo Bookhagen
Earth Surf. Dynam., 12, 1121–1143, https://doi.org/10.5194/esurf-12-1121-2024, https://doi.org/10.5194/esurf-12-1121-2024, 2024
Short summary
Short summary
This study investigates the use of optical PlanetScope data for offset tracking of the Earth's surface movement. We found that co-registration accuracy is locally degraded when outdated elevation models are used for orthorectification. To mitigate this bias, we propose to only correlate scenes acquired from common perspectives or base orthorectification on more up-to-date elevation models generated from PlanetScope data alone. This enables a more detailed analysis of landslide dynamics.
Natalie Lützow, Bretwood Higman, Martin Truffer, Bodo Bookhagen, Friedrich Knuth, Oliver Korup, Katie E. Hughes, Marten Geertsema, John J. Clague, and Georg Veh
EGUsphere, https://doi.org/10.5194/egusphere-2024-2812, https://doi.org/10.5194/egusphere-2024-2812, 2024
Short summary
Short summary
As the atmosphere warms, thinning glacier dams impound smaller lakes at their margins. Yet, some lakes deviate from this trend and have instead grown over time, increasing the risk of glacier floods to downstream populations and infrastructure. In this article, we examine the mechanisms behind the growth of an ice-dammed lake in Alaska. We find that the growth in size and outburst volumes is more controlled by glacier front downwaste, than by overall mass loss over the entire glacier surface.
Benjamin Purinton and Bodo Bookhagen
Earth Surf. Dynam., 7, 859–877, https://doi.org/10.5194/esurf-7-859-2019, https://doi.org/10.5194/esurf-7-859-2019, 2019
Short summary
Short summary
We develop and test new methods for counting pebble-size distributions in photos of gravel-bed rivers. Our open-source algorithms provide good estimates in complex imagery from high-energy mountain rivers. We discuss methods of river cross-section photo collection and processing into seamless georeferenced imagery. Application of a semi-automated version of the algorithm in small patches can be used as validation data for upscaling to entire survey sites using a fully automated version.
Katalyn A. Voss, Bodo Bookhagen, Dirk Sachse, and Oliver A. Chadwick
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-534, https://doi.org/10.5194/hess-2018-534, 2018
Preprint withdrawn
Short summary
Short summary
Water supply in the Himalayas is derived from rainfall, snowpack, glacial melt, and groundwater that vary spatially and seasonally. This study provides new data collected from rain, snow, and glacial-sourced surface waters over a 5000 m elevation range from April to October 2016. We identify water sourced from the summer monsoon versus winter westerly storms and track major snow and glacial melt events to elucidate the sourcing and timing of Himalayan streamflow and inform water management.
Benjamin Purinton and Bodo Bookhagen
Earth Surf. Dynam., 5, 211–237, https://doi.org/10.5194/esurf-5-211-2017, https://doi.org/10.5194/esurf-5-211-2017, 2017
Short summary
Short summary
We evaluate the 12 m TanDEM-X DEM for geomorphometry and compare elevation accuracy (using over 300 000 dGPS measurements) and geomorphic metrics (e.g., slope and curvature) to other modern satellite-derived DEMs. The optically generated 5 m ALOS World 3D is less useful due to high-frequency noise. Despite improvements in radar-derived satellite DEMs, which are useful for elevation differencing and catchment analysis, lidar data are still necessary for fine-scale analysis of hillslope processes.
V. Stolbova, P. Martin, B. Bookhagen, N. Marwan, and J. Kurths
Nonlin. Processes Geophys., 21, 901–917, https://doi.org/10.5194/npg-21-901-2014, https://doi.org/10.5194/npg-21-901-2014, 2014
M. N. Hanshaw and B. Bookhagen
The Cryosphere, 8, 359–376, https://doi.org/10.5194/tc-8-359-2014, https://doi.org/10.5194/tc-8-359-2014, 2014
Related subject area
Cross-cutting themes: Digital Landscapes: Insights into geomorphological processes from high-resolution topography and quantitative interrogation of topographic data
Geomorphic indicators of continental-scale landscape transience in the Hengduan Mountains, SE Tibet, China
Evaluating the accuracy of binary classifiers for geomorphic applications
Massive sediment pulses triggered by a multi-stage 130 000 m3 alpine cliff fall (Hochvogel, DE–AT)
Multi-sensor monitoring and data integration reveal cyclical destabilization of the Äußeres Hochebenkar rock glacier
Size, shape and orientation matter: fast and semi-automatic measurement of grain geometries from 3D point clouds
Rockfall trajectory reconstruction: a flexible method utilizing video footage and high-resolution terrain models
Drainage reorganization induces deviations in the scaling between valley width and drainage area
Unraveling the hydrology and sediment balance of an ungauged lake in the Sudano-Sahelian region of West Africa using remote sensing
Comparative analysis of the Copernicus, TanDEM-X, and UAV-SfM digital elevation models to estimate lavaka (gully) volumes and mobilization rates in the Lake Alaotra region (Madagascar)
Beyond 2D landslide inventories and their rollover: synoptic 3D inventories and volume from repeat lidar data
Coastal change patterns from time series clustering of permanent laser scan data
Measurement of rock glacier surface change over different timescales using terrestrial laser scanning point clouds
Short communication: A semiautomated method for bulk fault slip analysis from topographic scarp profiles
Short Communication: A simple workflow for robust low-cost UAV-derived change detection without ground control points
Computing water flow through complex landscapes – Part 1: Incorporating depressions in flow routing using FlowFill
Relationships between regional coastal land cover distributions and elevation reveal data uncertainty in a sea-level rise impacts model
A segmentation approach for the reproducible extraction and quantification of knickpoints from river long profiles
A method based on structure-from-motion photogrammetry to generate sub-millimetre-resolution digital elevation models for investigating rock breakdown features
A comparison of structure from motion photogrammetry and the traversing micro-erosion meter for measuring erosion on shore platforms
Bank erosion processes measured with UAV-SfM along complex banklines of a straight mid-sized river reach
Identification of stable areas in unreferenced laser scans for automated geomorphometric monitoring
Unsupervised detection of salt marsh platforms: a topographic method
The determination of high-resolution spatio-temporal glacier motion fields from time-lapse sequences
Bumps in river profiles: uncertainty assessment and smoothing using quantile regression techniques
Unravelling earth flow dynamics with 3-D time series derived from UAV-SfM models
Tree-root control of shallow landslides
Automated terrestrial laser scanning with near-real-time change detection – monitoring of the Séchilienne landslide
Validation of digital elevation models (DEMs) and comparison of geomorphic metrics on the southern Central Andean Plateau
3-D models and structural analysis of rock avalanches: the study of the deformation process to better understand the propagation mechanism
Frontiers in Geomorphometry and Earth Surface Dynamics: possibilities, limitations and perspectives
How does grid-resolution modulate the topographic expression of geomorphic processes?
Suitability of ground-based SfM–MVS for monitoring glacial and periglacial processes
Image-based surface reconstruction in geomorphometry – merits, limits and developments
Topography-based flow-directional roughness: potential and challenges
A nondimensional framework for exploring the relief structure of landscapes
Topographic roughness as a signature of the emergence of bedrock in eroding landscapes
Tracing the boundaries of Cenozoic volcanic edifices from Sardinia (Italy): a geomorphometric contribution
Transitional relation exploration for typical loess geomorphologic types based on slope spectrum characteristics
Extracting topographic swath profiles across curved geomorphic features
Short Communication: TopoToolbox 2 – MATLAB-based software for topographic analysis and modeling in Earth surface sciences
Katrina D. Gelwick, Sean D. Willett, and Rong Yang
Earth Surf. Dynam., 12, 783–800, https://doi.org/10.5194/esurf-12-783-2024, https://doi.org/10.5194/esurf-12-783-2024, 2024
Short summary
Short summary
We evaluated the intensity and spatial extent of landscape change in the Hengduan Mountains by identifying areas where river network reorganization is occurring or expected in the future. We combine four metrics that measure topographic imbalances at different spatial and temporal scales. Our study provides a deeper understanding of the dynamic nature of the Hengduan Mountains landscape and associated drivers, such as tectonic uplift, and insights for applying similar methods elsewhere.
Matthew William Rossi
Earth Surf. Dynam., 12, 765–782, https://doi.org/10.5194/esurf-12-765-2024, https://doi.org/10.5194/esurf-12-765-2024, 2024
Short summary
Short summary
Accurately identifying the presence and absence of landforms is important to inferring processes and testing numerical models of landscape evolution. Using synthetic scenarios, I show that the Matthews correlation coefficient (MCC) should be favored over the F1 score when comparing accuracy across scenes where landform abundances vary. Despite the resilience of MCC to imbalanced data, strong sensitivity to the size and shape of features can still occur when truth and model data are misaligned.
Natalie Barbosa, Johannes Leinauer, Juilson Jubanski, Michael Dietze, Ulrich Münzer, Florian Siegert, and Michael Krautblatter
Earth Surf. Dynam., 12, 249–269, https://doi.org/10.5194/esurf-12-249-2024, https://doi.org/10.5194/esurf-12-249-2024, 2024
Short summary
Short summary
Massive sediment pulses in catchments are a key alpine multi-risk component. Combining high-resolution aerial imagery and seismic information, we decipher a multi-stage >130.000 m³ rockfall and subsequent sediment pulses over 4 years, reflecting sediment deposition up to 10 m, redistribution in the basin, and finally debouchure to the outlet. This study provides generic information on spatial and temporal patterns of massive sediment pulses in highly charged alpine catchments.
Lea Hartl, Thomas Zieher, Magnus Bremer, Martin Stocker-Waldhuber, Vivien Zahs, Bernhard Höfle, Christoph Klug, and Alessandro Cicoira
Earth Surf. Dynam., 11, 117–147, https://doi.org/10.5194/esurf-11-117-2023, https://doi.org/10.5194/esurf-11-117-2023, 2023
Short summary
Short summary
The rock glacier in Äußeres Hochebenkar (Austria) moved faster in 2021–2022 than it has in about 70 years of monitoring. It is currently destabilizing. Using a combination of different data types and methods, we show that there have been two cycles of destabilization at Hochebenkar and provide a detailed analysis of velocity and surface changes. Because our time series are very long and show repeated destabilization, this helps us better understand the processes of rock glacier destabilization.
Philippe Steer, Laure Guerit, Dimitri Lague, Alain Crave, and Aurélie Gourdon
Earth Surf. Dynam., 10, 1211–1232, https://doi.org/10.5194/esurf-10-1211-2022, https://doi.org/10.5194/esurf-10-1211-2022, 2022
Short summary
Short summary
The morphology and size of sediments influence erosion efficiency, sediment transport and the quality of aquatic ecosystem. In turn, the spatial evolution of sediment size provides information on the past dynamics of erosion and sediment transport. We have developed a new software which semi-automatically identifies and measures sediments based on 3D point clouds. This software is fast and efficient, offering a new avenue to measure the geometrical properties of large numbers of sediment grains.
François Noël, Michel Jaboyedoff, Andrin Caviezel, Clément Hibert, Franck Bourrier, and Jean-Philippe Malet
Earth Surf. Dynam., 10, 1141–1164, https://doi.org/10.5194/esurf-10-1141-2022, https://doi.org/10.5194/esurf-10-1141-2022, 2022
Short summary
Short summary
Rockfall simulations are often performed to make sure infrastructure is safe. For that purpose, rockfall trajectory data are needed to calibrate the simulation models. In this paper, an affordable, flexible, and efficient trajectory reconstruction method is proposed. The method is tested by reconstructing trajectories from a full-scale rockfall experiment involving 2670 kg rocks and a flexible barrier. The results highlight improvements in precision and accuracy of the proposed method.
Elhanan Harel, Liran Goren, Onn Crouvi, Hanan Ginat, and Eitan Shelef
Earth Surf. Dynam., 10, 875–894, https://doi.org/10.5194/esurf-10-875-2022, https://doi.org/10.5194/esurf-10-875-2022, 2022
Short summary
Short summary
Drainage reorganization redistributes drainage area across basins, resulting in channel and valley widths that may be unproportional to the new drainage area. We demonstrate scaling between valley width and drainage area in reorganized drainages that deviates from scaling in non-reorganized drainages. Further, deviation patterns are associated with different reorganization categories. Our findings are consequential for studies that rely on this scaling for valley width estimation.
Silvan Ragettli, Tabea Donauer, Peter Molnar, Ron Delnoije, and Tobias Siegfried
Earth Surf. Dynam., 10, 797–815, https://doi.org/10.5194/esurf-10-797-2022, https://doi.org/10.5194/esurf-10-797-2022, 2022
Short summary
Short summary
This paper presents a novel methodology to identify and quantitatively analyze deposition and erosion patterns in ephemeral ponds or in perennial lakes with strong water level fluctuations. We apply this method to unravel the water and sediment balance of Lac Wégnia, a designated Ramsar site in Mali. The study can be a showcase for monitoring Sahelian lakes using remote sensing data, as it sheds light on the actual drivers of change in Sahelian lakes.
Liesa Brosens, Benjamin Campforts, Gerard Govers, Emilien Aldana-Jague, Vao Fenotiana Razanamahandry, Tantely Razafimbelo, Tovonarivo Rafolisy, and Liesbet Jacobs
Earth Surf. Dynam., 10, 209–227, https://doi.org/10.5194/esurf-10-209-2022, https://doi.org/10.5194/esurf-10-209-2022, 2022
Short summary
Short summary
Obtaining accurate information on the volume of geomorphic features typically requires high-resolution topographic data, which are often not available. Here, we show that the globally available 12 m TanDEM-X DEM can be used to accurately estimate gully volumes and establish an area–volume relationship after applying a correction. This allowed us to get a first estimate of the amount of sediment that has been mobilized by large gullies (lavaka) in central Madagascar over the past 70 years.
Thomas G. Bernard, Dimitri Lague, and Philippe Steer
Earth Surf. Dynam., 9, 1013–1044, https://doi.org/10.5194/esurf-9-1013-2021, https://doi.org/10.5194/esurf-9-1013-2021, 2021
Short summary
Short summary
Both landslide mapping and volume estimation accuracies are crucial to quantify landscape evolution and manage such a natural hazard. We developed a method to robustly detect landslides and measure their volume from repeat 3D point cloud lidar data. This method detects more landslides than classical 2D inventories and resolves known issues of indirect volume measurement. Our results also suggest that the number of small landslides classically detected from 2D imagery is underestimated.
Mieke Kuschnerus, Roderik Lindenbergh, and Sander Vos
Earth Surf. Dynam., 9, 89–103, https://doi.org/10.5194/esurf-9-89-2021, https://doi.org/10.5194/esurf-9-89-2021, 2021
Short summary
Short summary
Sandy coasts are areas that undergo a lot of changes, which are caused by different influences, such as tides, wind or human activity. Permanent laser scanning is used to generate a three-dimensional representation of a part of the coast continuously over an extended period. By comparing three unsupervised learning algorithms, we develop a methodology to analyse the resulting data set and derive which processes are dominating changes in the beach and dunes.
Veit Ulrich, Jack G. Williams, Vivien Zahs, Katharina Anders, Stefan Hecht, and Bernhard Höfle
Earth Surf. Dynam., 9, 19–28, https://doi.org/10.5194/esurf-9-19-2021, https://doi.org/10.5194/esurf-9-19-2021, 2021
Short summary
Short summary
In this work, we use 3D point clouds to detect topographic changes across the surface of a rock glacier. These changes are presented as the relative contribution of surface change during a 3-week period to the annual surface change. By comparing these different time periods and looking at change in different directions, we provide estimates showing that different directions of surface change are dominant at different times of the year. This demonstrates the benefit of frequent monitoring.
Franklin D. Wolfe, Timothy A. Stahl, Pilar Villamor, and Biljana Lukovic
Earth Surf. Dynam., 8, 211–219, https://doi.org/10.5194/esurf-8-211-2020, https://doi.org/10.5194/esurf-8-211-2020, 2020
Short summary
Short summary
This short communication presents an efficient method for analyzing large fault scarp data sets. The programs and workflow required are open-source and the methodology is easy to use; thus the barrier to entry is low. This tool can be applied to a broad range of active tectonic studies. A case study in the Taupo Volcanic Zone, New Zealand, exemplifies the novelty of this tool by generating results that are consistent with extensive field campaigns in only a few hours at a work station.
Kristen L. Cook and Michael Dietze
Earth Surf. Dynam., 7, 1009–1017, https://doi.org/10.5194/esurf-7-1009-2019, https://doi.org/10.5194/esurf-7-1009-2019, 2019
Short summary
Short summary
UAVs have become popular tools for detecting topographic changes. Traditionally, detecting small amounts of change between two UAV surveys requires each survey to be highly accurate. We take an alternative approach and present a simple processing workflow that produces survey pairs or sets that are highly consistent with each other, even when the overall accuracy is relatively low. This greatly increases our ability to detect changes in settings where ground control is not possible.
Kerry L. Callaghan and Andrew D. Wickert
Earth Surf. Dynam., 7, 737–753, https://doi.org/10.5194/esurf-7-737-2019, https://doi.org/10.5194/esurf-7-737-2019, 2019
Short summary
Short summary
Lakes and swales are real landscape features but are generally treated as data errors when calculating water flow across a surface. This is a problem because depressions can store water and fragment drainage networks. Until now, there has been no good generalized approach to calculate which depressions fill and overflow and which do not. We addressed this problem by simulating runoff flow across a landscape, selectively flooding depressions and more realistically connecting lakes and rivers.
Erika E. Lentz, Nathaniel G. Plant, and E. Robert Thieler
Earth Surf. Dynam., 7, 429–438, https://doi.org/10.5194/esurf-7-429-2019, https://doi.org/10.5194/esurf-7-429-2019, 2019
Short summary
Short summary
Our findings examine several data inputs for probabilistic regional sea-level rise (SLR) impact predictions. To predict coastal response to SLR, detailed information on the landscape, including elevation, vegetation, and/or level of development, is needed. However, we find that the inherent relationship between elevation and land cover datasets (e.g., beaches tend to be low lying) is used to reduce error in a coastal response to SLR model, suggesting new applications for areas of limited data.
Boris Gailleton, Simon M. Mudd, Fiona J. Clubb, Daniel Peifer, and Martin D. Hurst
Earth Surf. Dynam., 7, 211–230, https://doi.org/10.5194/esurf-7-211-2019, https://doi.org/10.5194/esurf-7-211-2019, 2019
Short summary
Short summary
The shape of landscapes is influenced by climate changes, faulting or the nature of the rocks under the surface. One of the most sensitive parts of the landscape to these changes is the river system that eventually adapts to such changes by adapting its slope, the most extreme example being a waterfall. We here present an algorithm that extracts changes in river slope over large areas from satellite data with the aim of investigating climatic, tectonic or geologic changes in the landscape.
Ankit Kumar Verma and Mary Carol Bourke
Earth Surf. Dynam., 7, 45–66, https://doi.org/10.5194/esurf-7-45-2019, https://doi.org/10.5194/esurf-7-45-2019, 2019
Short summary
Short summary
The article describes the development of a portable triangle control target to register structure-from-motion-derived topographic data. We were able to generate sub-millimetre-resolution 3-D models with sub-millimetre accuracy. We verified the accuracy of our models in an experiment and demonstrated the potential of our method by collecting microtopographic data on weathered Moenkopi sandstone in Arizona. The results from our study confirm the efficacy of our method at sub-millimetre scale.
Niamh Danielle Cullen, Ankit Kumar Verma, and Mary Clare Bourke
Earth Surf. Dynam., 6, 1023–1039, https://doi.org/10.5194/esurf-6-1023-2018, https://doi.org/10.5194/esurf-6-1023-2018, 2018
Short summary
Short summary
This research article provides a comparison between the traditional method of measuring erosion on rock shore platforms using a traversing micro-erosion meter (TMEM) and a new approach using structure from motion (SfM) photogrammetry. Our results indicate that SfM photogrammetry offers several advantages over the TMEM, allowing for erosion measurement at different scales on rock surfaces with low roughness while also providing a means to identify different processes and styles of erosion.
Gonzalo Duró, Alessandra Crosato, Maarten G. Kleinhans, and Wim S. J. Uijttewaal
Earth Surf. Dynam., 6, 933–953, https://doi.org/10.5194/esurf-6-933-2018, https://doi.org/10.5194/esurf-6-933-2018, 2018
Short summary
Short summary
The challenge to measure three-dimensional bank irregularities in a mid-sized river reach can be quickly solved in the field flying a drone with ground-control points and later applying structure from motion photogrammetry. We tested a simple approach that achieved sufficient resolution and accuracy to identify the full bank erosion cycle, including undermining. This is an easy-to-use and quickly deployed survey alternative to measure bank erosion processes along extended distances.
Daniel Wujanz, Michael Avian, Daniel Krueger, and Frank Neitzel
Earth Surf. Dynam., 6, 303–317, https://doi.org/10.5194/esurf-6-303-2018, https://doi.org/10.5194/esurf-6-303-2018, 2018
Short summary
Short summary
The importance of increasing the degree of automation in the context of monitoring natural hazards or geological phenomena is apparent. A vital step in the processing chain of monitoring deformations is the transformation of captured epochs into a common reference systems. This led to the motivation to develop an algorithm that realistically carries out this task. The algorithm was tested on three different geomorphic events while the results were quite satisfactory.
Guillaume C. H. Goodwin, Simon M. Mudd, and Fiona J. Clubb
Earth Surf. Dynam., 6, 239–255, https://doi.org/10.5194/esurf-6-239-2018, https://doi.org/10.5194/esurf-6-239-2018, 2018
Short summary
Short summary
Salt marshes are valuable environments that provide multiple services to coastal communities. However, their fast-paced evolution poses a challenge to monitoring campaigns due to time-consuming processing. The Topographic Identification of Platforms (TIP) method uses high-resolution topographic data to automatically detect the limits of salt marsh platforms within a landscape. The TIP method provides sufficient accuracy to monitor salt marsh change over time, facilitating coastal management.
Ellen Schwalbe and Hans-Gerd Maas
Earth Surf. Dynam., 5, 861–879, https://doi.org/10.5194/esurf-5-861-2017, https://doi.org/10.5194/esurf-5-861-2017, 2017
Short summary
Short summary
The simple use of time-lapse cameras as a visual observation tool may already be a great help for environmental investigations. However, beyond that, they have the potential to also deliver precise measurements with high temporal and spatial resolution when applying appropriate processing techniques. In this paper we introduce a method for the determination of glacier motion fields from time-lapse images, but it might also be adapted for other environmental motion analysis tasks.
Wolfgang Schwanghart and Dirk Scherler
Earth Surf. Dynam., 5, 821–839, https://doi.org/10.5194/esurf-5-821-2017, https://doi.org/10.5194/esurf-5-821-2017, 2017
Short summary
Short summary
River profiles derived from digital elevation models are affected by errors. Here we present two new algorithms – quantile carving and the CRS algorithm – to hydrologically correct river profiles. Both algorithms preserve the downstream decreasing shape of river profiles, while CRS additionally smooths profiles to avoid artificial steps. Our algorithms are able to cope with the problems of overestimation and asymmetric error distributions.
François Clapuyt, Veerle Vanacker, Fritz Schlunegger, and Kristof Van Oost
Earth Surf. Dynam., 5, 791–806, https://doi.org/10.5194/esurf-5-791-2017, https://doi.org/10.5194/esurf-5-791-2017, 2017
Short summary
Short summary
This work aims at understanding the behaviour of an earth flow located in the Swiss Alps by reconstructing very accurately its topography over a 2-year period. Aerial photos taken from a drone, which are then processed using a computer vision algorithm, were used to derive the topographic datasets. Combination and careful interpretation of high-resolution topographic analyses reveal the internal mechanisms of the earthflow and its complex rotational structure, which is evolving over time.
Denis Cohen and Massimiliano Schwarz
Earth Surf. Dynam., 5, 451–477, https://doi.org/10.5194/esurf-5-451-2017, https://doi.org/10.5194/esurf-5-451-2017, 2017
Short summary
Short summary
Tree roots reinforce soils on slopes. A new slope stability model is presented that computes root reinforcement including the effects of root heterogeneities and dependence of root strength on tensile and compressive strain. Our results show that roots stabilize slopes that would otherwise fail under a rainfall event. Tension in roots is more effective than compression. Redistribution of forces in roots across the hillslope plays a key role in the stability of the slope during rainfall events.
Ryan A. Kromer, Antonio Abellán, D. Jean Hutchinson, Matt Lato, Marie-Aurelie Chanut, Laurent Dubois, and Michel Jaboyedoff
Earth Surf. Dynam., 5, 293–310, https://doi.org/10.5194/esurf-5-293-2017, https://doi.org/10.5194/esurf-5-293-2017, 2017
Short summary
Short summary
We developed and tested an automated terrestrial laser scanning (ATLS) system with near-real-time change detection at the Séchilienne landslide. We monitored the landslide for a 6-week period collecting a point cloud every 30 min. We detected various slope processes including movement of scree material, pre-failure deformation of discrete rockfall events and deformation of the main landslide body. This system allows the study of slope processes a high level of temporal detail.
Benjamin Purinton and Bodo Bookhagen
Earth Surf. Dynam., 5, 211–237, https://doi.org/10.5194/esurf-5-211-2017, https://doi.org/10.5194/esurf-5-211-2017, 2017
Short summary
Short summary
We evaluate the 12 m TanDEM-X DEM for geomorphometry and compare elevation accuracy (using over 300 000 dGPS measurements) and geomorphic metrics (e.g., slope and curvature) to other modern satellite-derived DEMs. The optically generated 5 m ALOS World 3D is less useful due to high-frequency noise. Despite improvements in radar-derived satellite DEMs, which are useful for elevation differencing and catchment analysis, lidar data are still necessary for fine-scale analysis of hillslope processes.
Céline Longchamp, Antonio Abellan, Michel Jaboyedoff, and Irene Manzella
Earth Surf. Dynam., 4, 743–755, https://doi.org/10.5194/esurf-4-743-2016, https://doi.org/10.5194/esurf-4-743-2016, 2016
Short summary
Short summary
The main objective of this research is to analyze rock avalanche dynamics by means of a detailed structural analysis of the deposits coming from data of 3-D measurements. The studied deposits are of different magnitude: (1) decimeter level scale laboratory experiments and (2) well-studied rock avalanches.
Filtering techniques were developed and applied to a 3-D dataset in order to detect fault structures present in the deposits and to propose kinematic mechanisms for the propagation.
Giulia Sofia, John K. Hillier, and Susan J. Conway
Earth Surf. Dynam., 4, 721–725, https://doi.org/10.5194/esurf-4-721-2016, https://doi.org/10.5194/esurf-4-721-2016, 2016
Short summary
Short summary
The interdisciplinarity of geomorphometry is its greatest strength and one of its major challenges. This special issue showcases exciting developments that are the building blocks for the next step-change in the field. In reading and compiling the contributions we hope that the scientific community will be inspired to seek out collaborations and share ideas across subject-boundaries, between technique-developers and users, enabling us as a community to gather knowledge from our digital landscape
Stuart W. D. Grieve, Simon M. Mudd, David T. Milodowski, Fiona J. Clubb, and David J. Furbish
Earth Surf. Dynam., 4, 627–653, https://doi.org/10.5194/esurf-4-627-2016, https://doi.org/10.5194/esurf-4-627-2016, 2016
Short summary
Short summary
High-resolution topographic data are becoming more prevalent, yet many areas of geomorphic interest do not have such data available. We produce topographic data at a range of resolutions to explore the influence of decreasing resolution of data on geomorphic analysis. We test the accuracy of the calculation of curvature, a hillslope sediment transport coefficient, and the identification of channel networks, providing guidelines for future use of these methods on low-resolution topographic data.
Livia Piermattei, Luca Carturan, Fabrizio de Blasi, Paolo Tarolli, Giancarlo Dalla Fontana, Antonio Vettore, and Norbert Pfeifer
Earth Surf. Dynam., 4, 425–443, https://doi.org/10.5194/esurf-4-425-2016, https://doi.org/10.5194/esurf-4-425-2016, 2016
Short summary
Short summary
We investigated the applicability of the SfM–MVS approach for calculating the geodetic mass balance of a glacier and for the detection of the surface displacement rate of an active rock glacier located in the eastern Italian Alps. The results demonstrate that it is possible to reliably quantify the investigated glacial and periglacial processes by means of a quick ground-based photogrammetric survey that was conducted using a consumer grade SRL camera and natural targets as ground control points.
Anette Eltner, Andreas Kaiser, Carlos Castillo, Gilles Rock, Fabian Neugirg, and Antonio Abellán
Earth Surf. Dynam., 4, 359–389, https://doi.org/10.5194/esurf-4-359-2016, https://doi.org/10.5194/esurf-4-359-2016, 2016
Short summary
Short summary
Three-dimensional reconstruction of earth surfaces from overlapping images is a promising tool for geoscientists. The method is very flexible, cost-efficient and easy to use, leading to a high variability in applications at different scales. Performance evaluation reveals that good accuracies are achievable but depend on the requirements of the individual case study. Future applications and developments (i.e. big data) will consolidate this essential tool for digital surface mapping.
Sebastiano Trevisani and Marco Cavalli
Earth Surf. Dynam., 4, 343–358, https://doi.org/10.5194/esurf-4-343-2016, https://doi.org/10.5194/esurf-4-343-2016, 2016
Short summary
Short summary
The generalization of the concept of roughness implies the need to refer to a family of roughness indices capturing specific aspects of surface morphology. We test the application of a flow-oriented directional measure of roughness based on the geostatistical index MAD (median of absolute directional differences), computed considering gravity-driven flow direction. The use of flow-directional roughness improves geomorphometric modeling and the interpretation of landscape morphology.
Stuart W. D. Grieve, Simon M. Mudd, Martin D. Hurst, and David T. Milodowski
Earth Surf. Dynam., 4, 309–325, https://doi.org/10.5194/esurf-4-309-2016, https://doi.org/10.5194/esurf-4-309-2016, 2016
Short summary
Short summary
Relationships between the erosion rate and topographic relief of hillslopes have been demonstrated in a number of diverse settings and such patterns can be used to identify the impact of tectonic plate motion on the Earth's surface. Here we present an open-source software tool which can be used to explore these relationships in any landscape where high-resolution topographic data have been collected.
D. T. Milodowski, S. M. Mudd, and E. T. A. Mitchard
Earth Surf. Dynam., 3, 483–499, https://doi.org/10.5194/esurf-3-483-2015, https://doi.org/10.5194/esurf-3-483-2015, 2015
Short summary
Short summary
Rock is exposed at the Earth surface when erosion rates locally exceed rates of soil production. This transition is marked by a diagnostic increase in topographic roughness, which we demonstrate can be a powerful indicator of the location of rock outcrop in a landscape. Using this to explore how hillslopes in two landscapes respond to increasing erosion rates, we find that the transition from soil-mantled to bedrock hillslopes is patchy and spatially heterogeneous.
M. T. Melis, F. Mundula, F. DessÌ, R. Cioni, and A. Funedda
Earth Surf. Dynam., 2, 481–492, https://doi.org/10.5194/esurf-2-481-2014, https://doi.org/10.5194/esurf-2-481-2014, 2014
S. Zhao and W. Cheng
Earth Surf. Dynam., 2, 433–441, https://doi.org/10.5194/esurf-2-433-2014, https://doi.org/10.5194/esurf-2-433-2014, 2014
S. Hergarten, J. Robl, and K. Stüwe
Earth Surf. Dynam., 2, 97–104, https://doi.org/10.5194/esurf-2-97-2014, https://doi.org/10.5194/esurf-2-97-2014, 2014
W. Schwanghart and D. Scherler
Earth Surf. Dynam., 2, 1–7, https://doi.org/10.5194/esurf-2-1-2014, https://doi.org/10.5194/esurf-2-1-2014, 2014
Cited articles
Arrell, K., Wise, S., Wood, J., and Donoghue, D.: Spectral filtering as a method
of visualising and removing striped artefacts in digital elevation data, Earth
Surf. Proc. Land., 33, 943–961, 2008. a
Baade, J. and Schmullius, C.: TanDEM-X IDEM precision and accuracy assessment
based on a large assembly of differential GNSS measurements in Kruger National
Park, South Africa, ISPRS J. Photogram. Remote Sens., 119, 496–508, 2016. a
Bagnardi, M., González, P. J., and Hooper, A.: High-resolution digital
elevation model from tri-stereo Pleiades-1 satellite imagery for lava flow
volume estimates at Fogo Volcano, Geophys. Res. Lett., 43, 6267–6275,
https://doi.org/10.1002/2016gl069457, 2016. a, b
Berthier, E., Arnaud, Y., Vincent, C., and Rémy, F.: Biases of SRTM in
high-mountain areas: Implications for the monitoring of glacier volume changes,
Geophys. Res. Lett., 33, L08502, https://doi.org/10.1029/2006gl025862, 2006. a, b
Berthier, E., Arnaud, Y., Kumar, R., Ahmad, S., Wagnon, P., and Chevallier, P.:
Remote sensing estimates of glacier mass balances in the Himachal Pradesh
(Western Himalaya, India), Remote Sens. Environ., 108, 327–338, https://doi.org/10.1016/j.rse.2006.11.017, 2007. a, b
Bessette-Kirton, E. K., Coe, J. A., and Zhou, W.: Using Stereo Satellite Imagery
to Account for Ablation, Entrainment, and Compaction in Volume Calculations for
Rock Avalanches on Glaciers: Application to the 2016 Lamplugh Rock Avalanche in
Glacier Bay National Park, Alaska, J. Geophys. Res.-Earth, 123, 622–641,
https://doi.org/10.1002/2017JF004512, 2018. a, b
Bookhagen, B. and Strecker, M. R.: Orographic barriers, high-resolution TRMM
rainfall, and relief variations along the eastern Andes, Geophys. Res. Lett.,
35, L06403, https://doi.org/10.1029/2007gl032011, 2008. a
Bookhagen, B. and Strecker, M. R.: Spatiotemporal trends in erosion rates across
a pronounced rainfall gradient: Examples from the southern Central Andes, Earth
Planet. Sc. Lett., 327–328, 97–110, https://doi.org/10.1016/j.epsl.2012.02.005, 2012. a
Booth, A. M., Roering, J. J., and Perron, J. T.: Automated landslide mapping
using spectral analysis and high-resolution topographic data: Puget Sound
lowlands, Washington, and Portland Hills, Oregon, Geomorphology, 109, 132–147,
https://doi.org/10.1016/j.geomorph.2009.02.027, 2009. a
Bourgine, B. and Baghdadi, N.: Assessment of C-band SRTM DEM in a dense
equatorial forest zone, Comptes Rendus Geoscience, 337, 1225–1234, 2005. a
Brun, F., Berthier, E., Wagnon, P., Kääb, A., and Treichler, D.: A
spatially resolved estimate of High Mountain Asia glacier mass balances
from 2000 to 2016, Nat. Geosci., 10, 668–673, https://doi.org/10.1038/ngeo2999, 2017. a, b
Castino, F., Bookhagen, B., and Strecker, M.: River-discharge dynamics in the
Southern Central Andes and the 1976–77 global climate shift, Geophys. Res.
Lett., 43, 679–687, https://doi.org/10.1002/2016GL070868, 2016a. a, b
Comiti, F., Da Canal, M., Surian, N., Mao, L., Picco, L., and Lenzi, M.: Channel
adjustments and vegetation cover dynamics in a large gravel bed river over the
last 200 years, Geomorphology, 125, 147–159, 2011. a
Crippen, R., Buckley, S., Agram, P., Belz, E., Gurrola, E., Hensley, S., Kobrick,
M., Lavalle, M., Martin, J., Neumann, M., Nguyen, Q., Rosen, P., Shimada, J.,
Simard, M., and Tung, W.: NASADEM global elevation model: methods and progress,
ISPRS Int. Arch. Photogram. Remote Sens. Spat. Inform. Sci., XLI-B4, 125–128,
https://doi.org/10.5194/isprs-archives-XLI-B4-125-2016, 2016. a, b, c, d, e, f
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S.,
Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada,
J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.: The Shuttle
Radar Topography Mission, Rev. Geophys., 45, RG2004, https://doi.org/10.1029/2005RG000183, 2007. a, b, c, d, e, f
Fisher, G. B., Bookhagen, B., and Amos, C. B.: Channel planform geometry and
slopes from freely available high-spatial resolution imagery and DEM fusion:
Implications for channel width scalings, erosion proxies, and fluvial signatures
in tectonically active landscapes, Geomorphology, 194, 46–56, https://doi.org/10.1016/j.geomorph.2013.04.011, 2013. a, b
Gallant, J. and Read, A.: Enhancing the SRTM data for Australia, Proc.
Geomorphomet., 31, 149–154, 2009. a
Gardelle, J., Berthier, E., and Arnaud, Y.: Impact of resolution and radar
penetration on glacier elevation changes computed from DEM differencing, J.
Glaciol., 58, 419–422, https://doi.org/10.3189/2012JoG11J175, 2012. a, b
Girod, L., Nuth, C., Kääb, A., McNabb, R., and Galland, O.: MMASTER:
Improved ASTER DEMs for Elevation Change Monitoring, Remote Sensing, 9, 704, 2017. a
Gorokhovich, Y. and Voustianiouk, A.: Accuracy assessment of the processed
SRTM-based elevation data by CGIAR using field data from USA and Thailand and
its relation to the terrain characteristics, Remote Sens. Environ., 104, 409–415,
https://doi.org/10.1016/j.rse.2006.05.012, 2006. a, b, c
Grant, G. E.: The Geomorphic Response of Gravel-Bed Rivers to Dams: Perspectives
and Prospects, in: Gravel-Bed Rivers, edited by: Church, M., Biron, P. M., and
Roy, A. G., John Wiley & Sons, West Sussex, UK, 165–181, https://doi.org/10.1002/9781119952497.ch15, 2012. a
Hilley, G. E. and Strecker, M. R.: Processes of oscillatory basin filling and
excavation in a tectonically active orogen: Quebrada del Toro Basin, NW Argentina,
Geol. Soc. Am. Bull., 117, 887–901, 2005. a
Hofton, M., Dubayah, R., Blair, J. B., and Rabine, D.: Validation of SRTM
Elevations Over Vegetated and Non-vegetated Terrain Using Medium Footprint Lidar,
Photogram. Eng. Remote Sens., 72, 279–285, https://doi.org/10.14358/pers.72.3.279, 2006. a
Höhle, J. and Höhle, M.: Accuracy assessment of digital elevation models
by means of robust statistical methods, ISPRS J. Photogram. Remote Sens., 64,
398–406, https://doi.org/10.1016/j.isprsjprs.2009.02.003, 2009. a
Hovius, N., Stark, C. P., and Allen, P. A.: Sediment flux from a mountain belt
derived by landslide mapping, Geology, 25, 231–234, 1997. a
Huete, A., Justice, C., and Liu, H.: Development of vegetation and soil indices
for MODIS-EOS, Remote Sens. Environ., 49, 224–234, 1994. a
Jarvis, A., Reuter, H. I., Nelson, A., and Guevara, E.: Hole-filled SRTM for
the globe Version 4, available from the CGIAR-CSI SRTM 90 m Database, available
at: http://srtm.csi.cgiar.org (last access: 26 October 2018), 2008. a
Javernick, L., Brasington, J., and Caruso, B.: Modeling the topography of
shallow braided rivers using Structure-from-Motion photogrammetry, Geomorphology,
213, 166–182, 2014. a
Kondolf, G.: Hungry water: Effects of dams and gravel mining on river channels,
Environ. Manage., 21, 533–551, https://doi.org/10.1007/s002679900048, 1997. a
Krieger, G., Zink, M., Bachmann, M., Bräutigam, B., Schulze, D., Martone,
M., Rizzoli, P., Steinbrecher, U., Walter Antony, J., De Zan, F., Hajnsek, I.,
Papathanassiou, K., Kugler, F., Rodriguez Cassola, M., Younis, M., Baumgartner,
S., López-Dekker, P., Prats, P., and Moreira, A.: TanDEM-X: A radar
interferometer with two formation-flying satellites, Acta Astronaut., 89,
83–98, https://doi.org/10.1016/j.actaastro.2013.03.008, 2013. a
Marrett, R., Allmendinger, R., Alonso, R., and Drake, R.: Late Cenozoic tectonic
evolution of the Puna Plateau and adjacent foreland, northwestern Argentine Andes,
J. S. Am. Earth Sci., 7, 179–207, 1994. a
Mason, J. and Mohrig, D.: Using Time-Lapse Lidar to Quantify River Bend
Evolution on the Meandering Coastal Trinity River, Texas, USA, J. Geophys.
Res.-Earth, 123, 1133–1144, https://doi.org/10.1029/2017JF004492, 2018. a
Neelmeijer, J., Motagh, M., and Bookhagen, B.: High-resolution digital elevation
models from single-pass TanDEM-X interferometry over mountainous regions: A case
study of Inylchek Glacier, Central Asia, ISPRS J. Photogram. Remote Sens., 130,
108–121, https://doi.org/10.1016/j.isprsjprs.2017.05.011, 2017. a, b, c
Nuimura, T., Fujita, K., Yamaguchi, S., and Sharma, R. R.: Elevation changes of
glaciers revealed by multitemporal digital elevation models calibrated by GPS
survey in the Khumbu region, Nepal Himalaya, 1992–2008, J. Glaciol., 58, 648–656, 2012. a
Oskin, M. E., Arrowsmith, J. R., Corona, A. H., Elliott, A. J., Fletcher, J. M.,
Fielding, E. J., Gold, P. O., Garcia, J. J. G., Hudnut, K. W., Liu-Zeng, J.,
and Teran, O. J.: Near-field deformation from the El Mayor–Cucapah earthquake
revealed by differential LIDAR, Science, 335, 702–705, 2012. a
Passalacqua, P., Belmont, P., Staley, D. M., Simley, J. D., Arrowsmith, J. R.,
Bode, C. A., Crosby, C., DeLong, S. B., Glenn, N. F., Kelly, S. A., Lague, D.,
Sangireddy, H., Schaffrath, K., Tarboton, D. G., Wasklewicz, T., and Wheaton,
J. M.: Analyzing high resolution topography for advancing the understanding of
mass and energy transfer through landscapes: A review, Earth-Sci. Rev., 148,
174–193, https://doi.org/10.1016/j.earscirev.2015.05.012, 2015. a, b
Paul, F.: Calculation of glacier elevation changes with SRTM: is there an
elevation-dependent bias?, J. Glaciol., 54, 945–946, 2008. a
Peduzzi, P., Herold, C., and Silverio, W.: Assessing high altitude glacier
thickness, volume and area changes using field, GIS and remote sensing techniques:
the case of Nevado Coropuna (Peru), The Cryosphere, 4, 313–323, https://doi.org/10.5194/tc-4-313-2010, 2010. a
Perroy, R. L., Bookhagen, B., Asner, G. P., and Chadwick, O. A.: Comparison of
gully erosion estimates using airborne and ground-based LiDAR on Santa Cruz
Island, California, Geomorphology, 118, 288–300, 2010. a
Purinton, B.: SRTM-TanDEM-dh Github Repository, https://github.com/UP-RS-ESP/TanDEM-SRTM-dh,
last access: 26 October 2018. a
Racoviteanu, A. E., Manley, W. F., Arnaud, Y., and Williams, M. W.: Evaluating
digital elevation models for glaciologic applications: An example from Nevado
Coropuna, Peruvian Andes, Global Planet. Change, 59, 110–125, https://doi.org/10.1016/j.gloplacha.2006.11.036, 2007. a
Rexer, M. and Hirt, C.: Comparison of free high resolution digital elevation
data sets (ASTER GDEM2, SRTM v2.1/v4.1) and validation against accurate heights
from the Australian National Gravity Database, Aust. J. Earth Sci., 61, 213–226,
https://doi.org/10.1080/08120099.2014.884983, 2014. a
Rignot, E., Echelmeyer, K., and Krabill, W.: Penetration depth of interferometric
synthetic-aperture radar signals in snow and ice, Geophys. Res. Lett., 28,
3501–3504, https://doi.org/10.1029/2000GL012484, 2001. a, b
Rizzoli, P., Martone, M., Gonzalez, C., Wecklich, C., Tridon, D. B.,
Bräutigam, B., Bachmann, M., Schulze, D., Fritz, T., Huber, M., Wessel, B.,
Krieger, G., Zink, M., and Moreira, A.: Generation and performance assessment
of the global TanDEM-X digital elevation model, ISPRS J. Photogram. Remote Sens.,
132, 119–139, 2017. a, b, c, d, e, f, g
Rodríguez, E., Morris, C. S., and Belz, J. E.: A Global Assessment of the
SRTM Performance, Photogram. Eng. Remote Sens., 72, 249–260, https://doi.org/10.14358/pers.72.3.249, 2006. a, b, c
Rossi, C., Minet, C., Fritz, T., Eineder, M., and Bamler, R.: Temporal monitoring
of subglacial volcanoes with TanDEM-X – Application to the 2014–2015 eruption
within the Bárðarbunga volcanic system, Iceland, Remote Sens. Environ.,
181, 186–197, https://doi.org/10.1016/j.rse.2016.04.003, 2016. a, b
Rovira, A., Batalla, R., and Sala, M.: Response of a river sediment budget after
historical gravel mining (the lower Tordera, NE Spain), River Res. Appl.,
21, 829–847, 2005. a
Schildgen, T. F., Robinson, R. A., Savi, S., Phillips, W. M., Spencer, J. Q.,
Bookhagen, B., Scherler, D., Tofelde, S., Alonso, R. N., Kubik, P. W., Binnie,
S. A., and Strecker, M. R.: Landscape response to late Pleistocene climate
change in NW Argentina: Sediment flux modulated by basin geometry and
connectivity, J. Geophys. Res.-Earth, 121, 392–414, 2016. a, b
Schutz, B., Zwally, H., Shuman, C., Hancock, D., and DiMarzio, J.: Overview of
the ICESat mission, Geophys. Res. Lett., 32, L21S01, https://doi.org/10.1029/2005GL024009, 2005. a, b
Shortridge, A. and Messina, J.: Spatial structure and landscape associations of
SRTM error, Remote Sens. Environ., 115, 1576–1587, https://doi.org/10.1016/j.rse.2011.02.017, 2011. a, b
Sun, G., Ranson, K. J., Kharuk, V. I., and Kovacs, K.: Validation of surface
height from shuttle radar topography mission using shuttle laser altimeter,
Remote Sens. Environ., 88, 401–411, 2003. a
Syvitski, J. P., Vörösmarty, C. J., Kettner, A. J., and Green, P.:
Impact of humans on the flux of terrestrial sediment to the global coastal ocean,
Science, 308, 376–380, 2005. a
Tachikawa, T., Kaku, M., Iwasaki, A., Gesch, D. B., Oimoen, M. J., Zhang, Z.,
Danielson, J. J., Krieger, T., Curtis, B., Haase, J., Abrams, M., Crippen, R.,
and Carabajal, C.: ASTER global digital elevation model version 2 – summary of
validation results, Tech. rep., Joint Japan – US ASTER Science Team, available
at: http://www.jspacesystems.or.jp/ersdac/GDEM/ver2Validation/Summary_GDEM_validation_report_final.pdf
(last access: 26 October 2018), 2011. a, b, c
Tadono, T., Ishida, H., Oda, F., Naito, S., Minakawa, K., and Iwamoto, H.:
Precise Global DEM Generation by ALOS PRISM, ISPRS Ann. Photogram. Remote Sens.
Spat. Inform. Sci., II-4, 71–76, https://doi.org/10.5194/isprsannals-ii-4-71-2014, 2014.
a
US Government: NASADEM MEaSUREs, available at: https://e4ftl01.cr.usgs.gov/provisional/MEaSUREs/NASADEM/,
last access: 26 October 2018. a
Van Niel, T. G., McVicar, T. R., Li, L., Gallant, J. C., and Yang, Q.: The
impact of misregistration on SRTM and DEM image differences, Remote Sens.
Environ., 112, 2430–2442, https://doi.org/10.1016/j.rse.2007.11.003, 2008. a, b, c
Walter, R. C. and Merritts, D. J.: Natural streams and the legacy of water-powered
mills, Science, 319, 299–304, 2008. a
Wang, D. and Kääb, A.: Modeling glacier elevation change from DEM time
series, Remote Sensing, 7, 10117–10142, 2015. a
Wendleder, A., Wessel, B., Roth, A., Breunig, M., Martin, K., and Wagenbrenner,
S.: TanDEM-X water indication mask: Generation and first evaluation results,
IEEE J. Select. Top. Appl. Earth Obs. Remote Sens., 6, 171–179, 2013. a
Zwally, H., Schutz, R., Bentley, C., Bufton, J., Herring, T., Minster, J.,
Spinhirne, J., and Thomas, R.: GLAS/ICESat L2 Global Land Surface Altimetry
Data, version 34, NASA National Snow and Ice Data Center Distributed Active
Archive Center, Boulder, Colorado, USA, https://doi.org/10.5067/ICESAT/GLAS/DATA227, 2009. a
Short summary
We show a new use for the SRTM-C digital elevation model from February 2000 and the newer TanDEM-X dataset from ~ 2015. We difference the datasets over hillslopes and gravel-bed channels to extract vertical land-level changes. These signals are associated with incision, aggradation, and landsliding. This requires careful correction of the SRTM-C biases using the TanDEM-X and propagation of significant uncertainties. The method can be applied to moderate relief areas with SRTM-C coverage.
We show a new use for the SRTM-C digital elevation model from February 2000 and the newer...