Articles | Volume 8, issue 3
https://doi.org/10.5194/esurf-8-769-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-8-769-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Timing of exotic, far-traveled boulder emplacement and paleo-outburst flooding in the central Himalayas
Marius L. Huber
CORRESPONDING AUTHOR
Geological Institute, Department of Earth Sciences, ETH Zurich, Zurich 8092, Switzerland
current address: Université de Lorraine, CNRS, CRPG,
54000 Nancy, France
Maarten Lupker
Geological Institute, Department of Earth Sciences, ETH Zurich, Zurich 8092, Switzerland
Sean F. Gallen
Department of Geosciences, Colorado State University, Fort Collins,
Colorado 80523, USA
Marcus Christl
Laboratory of Ion Beam Physics (LIP), Department of Physics, ETH
Zurich, Zurich 8093, Switzerland
Ananta P. Gajurel
Department of Geology, Tribhuvan University, Kirtipur, Kathmandu,
Nepal
Related authors
No articles found.
Chantal Schmidt, David Mair, Naki Akçar, Marcus Christl, Negar Haghipour, Christof Vockenhuber, Philip Gautschi, Brian McArdell, and Fritz Schlunegger
EGUsphere, https://doi.org/10.5194/egusphere-2025-3055, https://doi.org/10.5194/egusphere-2025-3055, 2025
This preprint is open for discussion and under review for Earth Surface Dynamics (ESurf).
Short summary
Short summary
Our study examines erosion in a small, pre-Alpine basin by using cosmogenic nuclides in river sediments. Based on a dense measuring network we were able to distinguish two main zones: an upper zone with slow erosion of surface material, and a steeper, lower zone where faster erosion is driven by landslides. The data suggests that sediment has been constantly produced over thousands of years, indicating a stable, long-term balance between contrasting erosion processes.
Janet C. Richardson, Veerle Vanacker, David M. Hodgson, Marcus Christl, and Andreas Lang
Earth Surf. Dynam., 13, 315–339, https://doi.org/10.5194/esurf-13-315-2025, https://doi.org/10.5194/esurf-13-315-2025, 2025
Short summary
Short summary
Pediments are long flat surfaces that extend outwards from the foot of mountains; within South Africa they are regarded as ancient landforms that can give key insights into landscape and mantle dynamics. Cosmogenic nuclide dating has been incorporated with geological (soil formation) and geomorphological (river incision) evidence, which shows that the pediments are long-lived features beyond the ages reported by cosmogenic nuclide dating.
Niklas Kappelt, Eric Wolff, Marcus Christl, Christof Vockenhuber, Philip Gautschi, and Raimund Muscheler
EGUsphere, https://doi.org/10.5194/egusphere-2025-1780, https://doi.org/10.5194/egusphere-2025-1780, 2025
Short summary
Short summary
By measuring the radioactive decay of atmospherically produced 36Cl and 10Be in an ice core drilled in West Antarctica, we were able to determine the age of the deepest sample close to bedrock to be about 550 thousand years old. This means that the ice in this location, known as Skytrain Ice Rise, has survived several warm periods in the past, which occur about every 100 thousand years.
Anne-Marie Wefing, Annabel Payne, Marcel Scheiwiller, Christof Vockenhuber, Marcus Christl, Toste Tanhua, and Núria Casacuberta
EGUsphere, https://doi.org/10.5194/egusphere-2025-1322, https://doi.org/10.5194/egusphere-2025-1322, 2025
Short summary
Short summary
Here we used the anthropogenic radionuclides I-129 and U-236 as tracers for Atlantic Water circulation in the Arctic Ocean. New data collected in 2021 allowed to assess the distribution of Atlantic Water and mixing with Pacific-origin water in the surface layer in that year. By using historical tracer data from 2011 to 2021, we looked into temporal changes of the circulation and found slightly older waters in the central Arctic Ocean in 2021 compared to 2015.
Chiara I. Paleari, Florian Mekhaldi, Tobias Erhardt, Minjie Zheng, Marcus Christl, Florian Adolphi, Maria Hörhold, and Raimund Muscheler
Clim. Past, 19, 2409–2422, https://doi.org/10.5194/cp-19-2409-2023, https://doi.org/10.5194/cp-19-2409-2023, 2023
Short summary
Short summary
In this study, we test the use of excess meltwater from continuous flow analysis from a firn core from Greenland for the measurement of 10Be for solar activity reconstructions. We show that the quality of results is similar to the measurements on clean firn, which opens the possibility to obtain continuous 10Be records without requiring large amounts of clean ice. Furthermore, we investigate the possibility of identifying solar storm signals in 10Be records from Greenland and Antarctica.
Catharina Dieleman, Philip Deline, Susan Ivy Ochs, Patricia Hug, Jordan Aaron, Marcus Christl, and Naki Akçar
EGUsphere, https://doi.org/10.5194/egusphere-2023-1873, https://doi.org/10.5194/egusphere-2023-1873, 2023
Preprint withdrawn
Short summary
Short summary
Valleys in the Alps are shaped by glaciers, rivers, mass movements, and slope processes. An understanding of such processes is of great importance in hazard mitigation. We focused on the evolution of the Frébouge cone, which is composed of glacial, debris flow, rock avalanche, and snow avalanche deposits. Debris flows started to form the cone prior to ca. 2 ka ago. In addition, the cone was overrun by a 10 Mm3 large rock avalanche at 1.3 ± 0.1 ka and by the Frébouge glacier at 300 ± 40 a.
Giulia Sinnl, Florian Adolphi, Marcus Christl, Kees C. Welten, Thomas Woodruff, Marc Caffee, Anders Svensson, Raimund Muscheler, and Sune Olander Rasmussen
Clim. Past, 19, 1153–1175, https://doi.org/10.5194/cp-19-1153-2023, https://doi.org/10.5194/cp-19-1153-2023, 2023
Short summary
Short summary
The record of past climate is preserved by several archives from different regions, such as ice cores from Greenland or Antarctica or speleothems from caves such as the Hulu Cave in China. In this study, these archives are aligned by taking advantage of the globally synchronous production of cosmogenic radionuclides. This produces a new perspective on the global climate in the period between 20 000 and 25 000 years ago.
Robert Mulvaney, Eric W. Wolff, Mackenzie M. Grieman, Helene H. Hoffmann, Jack D. Humby, Christoph Nehrbass-Ahles, Rachael H. Rhodes, Isobel F. Rowell, Frédéric Parrenin, Loïc Schmidely, Hubertus Fischer, Thomas F. Stocker, Marcus Christl, Raimund Muscheler, Amaelle Landais, and Frédéric Prié
Clim. Past, 19, 851–864, https://doi.org/10.5194/cp-19-851-2023, https://doi.org/10.5194/cp-19-851-2023, 2023
Short summary
Short summary
We present an age scale for a new ice core drilled at Skytrain Ice Rise, an ice rise facing the Ronne Ice Shelf in Antarctica. Various measurements in the ice and air phases are used to match the ice core to other Antarctic cores that have already been dated, and a new age scale is constructed. The 651 m ice core includes ice that is confidently dated to 117 000–126 000 years ago, in the last interglacial. Older ice is found deeper down, but there are flow disturbances in the deeper ice.
Richard Ott, Sean F. Gallen, and David Helman
Earth Surf. Dynam., 11, 247–257, https://doi.org/10.5194/esurf-11-247-2023, https://doi.org/10.5194/esurf-11-247-2023, 2023
Short summary
Short summary
We compile data on carbonate denudation, the sum of mechanical erosion and chemical weathering, from cosmogenic nuclides and use them in conjunction with weathering data to constrain the partitioning of denudation into erosion and weathering. We show how carbonate erosion and weathering respond to different climatic and tectonic conditions and find that variations in denudation partitioning can be used to explain the vastly different morphology of carbonate landscapes on Earth.
Nathan Vandermaelen, Koen Beerten, François Clapuyt, Marcus Christl, and Veerle Vanacker
Geochronology, 4, 713–730, https://doi.org/10.5194/gchron-4-713-2022, https://doi.org/10.5194/gchron-4-713-2022, 2022
Short summary
Short summary
We constrained deposition phases of fluvial sediments (NE Belgium) over the last 1 Myr with analysis and modelling of rare isotopes accumulation within sediments, occurring as a function of time and inverse function of depth. They allowed the determination of three superposed deposition phases and intercalated non-deposition periods of ~ 40 kyr each. These phases correspond to 20 % of the sediment age, which highlights the importance of considering deposition phase when dating fluvial sediments.
Melissa Sophia Schwab, Hannah Gies, Chantal Valérie Freymond, Maarten Lupker, Negar Haghipour, and Timothy Ian Eglinton
Biogeosciences, 19, 5591–5616, https://doi.org/10.5194/bg-19-5591-2022, https://doi.org/10.5194/bg-19-5591-2022, 2022
Short summary
Short summary
The majority of river studies focus on headwater or floodplain systems, while often neglecting intermediate river segments. Our study on the subalpine Sihl River bridges the gap between streams and lowlands and demonstrates that moderately steep river segments are areas of significant instream alterations, modulating the export of organic carbon over short distances.
Joanne Elkadi, Benjamin Lehmann, Georgina E. King, Olivia Steinemann, Susan Ivy-Ochs, Marcus Christl, and Frédéric Herman
Earth Surf. Dynam., 10, 909–928, https://doi.org/10.5194/esurf-10-909-2022, https://doi.org/10.5194/esurf-10-909-2022, 2022
Short summary
Short summary
Glacial and non-glacial processes have left a strong imprint on the landscape of the European Alps, but further research is needed to better understand their long-term effects. We apply a new technique combining two methods for bedrock surface dating to calculate post-glacier erosion rates next to a Swiss glacier. Interestingly, the results suggest non-glacial erosion rates are higher than previously thought, but glacial erosion remains the most influential on landscape evolution.
Richard F. Ott, Sean F. Gallen, and Darryl E. Granger
Geochronology, 4, 455–470, https://doi.org/10.5194/gchron-4-455-2022, https://doi.org/10.5194/gchron-4-455-2022, 2022
Short summary
Short summary
Cosmogenic nuclides are a tool to quantify denudation – the total removal of mass from near the Earth's surface. Chemical weathering can introduce biases to cosmogenic-nuclide-based denudation rates measurements. Here, we investigate the effects of weathering on cosmogenic nuclides and develop tools to correct for this influence. Our results highlight which additional measurements are required to determine accurate denudation rates in regions where weathering is not negligible.
Elena Serra, Pierre G. Valla, Romain Delunel, Natacha Gribenski, Marcus Christl, and Naki Akçar
Earth Surf. Dynam., 10, 493–512, https://doi.org/10.5194/esurf-10-493-2022, https://doi.org/10.5194/esurf-10-493-2022, 2022
Short summary
Short summary
Alpine landscapes are transformed by several erosion processes. 10Be concentrations measured in river sediments at the outlet of a basin represent a powerful tool to quantify how fast the catchment erodes. We measured erosion rates within the Dora Baltea catchments (western Italian Alps). Our results show that erosion is governed by topography, bedrock resistance and glacial imprint. The Mont Blanc massif has the highest erosion and therefore dominates the sediment flux of the Dora Baltea river.
Elena T. Bruni, Richard F. Ott, Vincenzo Picotti, Negar Haghipour, Karl W. Wegmann, and Sean F. Gallen
Earth Surf. Dynam., 9, 771–793, https://doi.org/10.5194/esurf-9-771-2021, https://doi.org/10.5194/esurf-9-771-2021, 2021
Short summary
Short summary
The Klados River catchment contains seemingly overlarge, well-preserved alluvial terraces and fans. Unlike previous studies, we argue that the deposits formed in the Holocene based on their position relative to a paleoshoreline uplifted in 365 CE and seven radiocarbon dates. We also find that constant sediment supply from high-lying landslide deposits disconnected the valley from regional tectonics and climate controls, which resulted in fan and terrace formation guided by stochastic events.
Anne-Marie Wefing, Núria Casacuberta, Marcus Christl, Nicolas Gruber, and John N. Smith
Ocean Sci., 17, 111–129, https://doi.org/10.5194/os-17-111-2021, https://doi.org/10.5194/os-17-111-2021, 2021
Short summary
Short summary
Atlantic Water that carries heat and anthropogenic carbon into the Arctic Ocean plays an important role in the Arctic sea-ice cover decline, but its pathways and travel times remain unclear. Here we used two radionuclides of anthropogenic origin (129I and 236U) to track Atlantic-derived waters along their way through the Arctic Ocean, estimating their travel times and mixing properties. Results help to understand how future changes in Atlantic Water properties will spread through the Arctic.
Hannah Gies, Frank Hagedorn, Maarten Lupker, Daniel Montluçon, Negar Haghipour, Tessa Sophia van der Voort, and Timothy Ian Eglinton
Biogeosciences, 18, 189–205, https://doi.org/10.5194/bg-18-189-2021, https://doi.org/10.5194/bg-18-189-2021, 2021
Short summary
Short summary
Understanding controls on the persistence of organic matter in soils is essential to constrain its role in the carbon cycle. Emerging concepts suggest that the soil carbon pool is predominantly comprised of stabilized microbial residues. To test this hypothesis we isolated microbial membrane lipids from two Swiss soil profiles and measured their radiocarbon age. We find that the ages of these compounds are in the range of millenia and thus provide evidence for stabilized microbial mass in soils.
Leonie Peti, Kathryn E. Fitzsimmons, Jenni L. Hopkins, Andreas Nilsson, Toshiyuki Fujioka, David Fink, Charles Mifsud, Marcus Christl, Raimund Muscheler, and Paul C. Augustinus
Geochronology, 2, 367–410, https://doi.org/10.5194/gchron-2-367-2020, https://doi.org/10.5194/gchron-2-367-2020, 2020
Short summary
Short summary
Orakei Basin – a former maar lake in Auckland, New Zealand – provides an outstanding sediment record over the last ca. 130 000 years, but an age model is required to allow the reconstruction of climate change and volcanic eruptions contained in the sequence. To construct a relationship between depth in the sediment core and age of deposition, we combined tephrochronology, radiocarbon dating, luminescence dating, and the relative intensity of the paleomagnetic field in a Bayesian age–depth model.
Cited articles
Abramowski, U., Glaser, B., Kharki, K., Kubik, P., and Zech, W.: Late
Pleistocene and holocene paleoglaciations of the Nepal Himalaya: 10be
surface exposure dating, Zeitschrift fur Gletscherkunde und
Glazialgeologie, 39, 183–196, 2003.
Ader, T., Avouac, J. P., Liu-Zeng, J., Lyon-Caen, H., Bollinger, L.,
Galetzka, J., Genrich, J., Thomas, M., Chanard, K., and Sapkota, S. N.:
Convergence rate across the Nepal Himalaya and interseismic coupling on the
Main Himalayan Thrust: Implications for seismic hazard, J. Geophys. Res.-Sol. Ea., 117, B04403,
https://doi.org/10.1029/2011JB009071, 2012.
Alexander, J. and Cooker, M. J.: Moving boulders in flash floods and
estimating flow conditions using boulders in ancient deposits,
Sedimentology, 63, 1582–1595, https://doi.org/10.1111/sed.12274, 2016.
Amatya, K. M. and Jnawali, B. M.: Geological map of Nepal, scale: 1 : 1,000,000, Department of Mines and Geology, International Centre for
Integrated Mountain Development (ICIMOD), Carl Duisberg Gesellschaft e. V.,
and United Nations Environment Programme, Kathmandu, Nepal, 1994.
Andermann, C., Crave, A., Gloaguen, R., Davy, P., and Bonnet, S.: Connecting
source and transport: Suspended sediments in the Nepal Himalayas, Earth
Planet. Sc. Lett., 351, 158–170, https://doi.org/10.1016/j.epsl.2012.06.059,
2012.
Attal, M. and Lavé, J.: Pebble abrasion during fluvial transport:
Experimental results and implications for the evolution of the sediment load
along rivers, J. Geophys. Res.-Ea., 114, F04023,
https://doi.org/10.1029/2009JF001328, 2009.
Avouac, J.-P.: Mountain building, erosion, and the seismic cycle in the
Nepal Himalaya, Adv. Geophys., 46, 1–80,
https://doi.org/10.1016/S0065-2687(03)46001-9, 2003.
Bilham, R.: Himalayan earthquakes: a review of historical seismicity and
early 21st century slip potential, Geological Society, London, Special
Publications, 483, 423–482, https://doi.org/10.1144/SP483.16, 2019.
Bilham, R., Larson, K., and Freymueller, J.: GPS measurements of present-day
convergence across the Nepal Himalaya, Nature, 386, 61,
https://doi.org/10.1038/386061a0, 1997.
Bollinger, L., Sapkota, S. N., Tapponnier, P., Klinger, Y., Rizza, M., Van
Der Woerd, J., Tiwari, D., Pandey, R., Bitri, A., and Bes de Berc, S.:
Estimating the return times of great Himalayan earthquakes in eastern Nepal:
Evidence from the Patu and Bardibas strands of the Main Frontal Thrust, J.
Geophys. Res.-Sol. Ea., 119, 7123–7163,
https://doi.org/10.1002/2014JB010970, 2014.
Bookhagen, B. and Burbank, D. W.: Toward a complete Himalayan hydrological
budget: Spatiotemporal distribution of snowmelt and rainfall and their
impact on river discharge, J. Geophys. Res.-Ea., 115, F03019,
https://doi.org/10.1029/2009JF001426, 2010.
Bradley, W. and Mears, A.: Calculations of flows needed to transport coarse
fraction of Boulder Creek alluvium at Boulder, Colorado, Geol. Soc. Am.
Bull., 91, 1057–1090, https://doi.org/10.1130/GSAB-P2-91-1057, 1980.
Bronk Ramsay, C: Computer Programme: OxCal software version 4.3, available at:
https://c14.arch.ox.ac.uk/oxcal.html (last access: February 2020), Oxford Radiocarbon Accelerator Unit,
Calibration: IntCal13: Northern Hemisphere, 2013.
Bull, W. B.: Geomorphic responses to climatic change, Oxford University
Press, New York, NY, USA, 326 pp., 1991.
Carling, P. and Tinkler, K.: Conditions for the entrainment of cuboid
boulders in bedrock streams: an historical review of literature with respect
to recent investigations, in: Rivers over rock: Fluvial processes in bedrock
channels, edited by: Tinkler, K. J. and Wohl, E. E., Geophysical Monograph
107, American Geophysical Union, Washington, DC, USA, 19–34, 1998.
Carling, P., Villanueva, I., Herget, J., Wright, N., Borodavko, P., and
Morvan, H.: Unsteady 1D and 2D hydraulic models with ice dam break for
Quaternary megaflood, Altai Mountains, southern Siberia, Global Planet.
Change, 70, 24–34, https://doi.org/10.1016/j.gloplacha.2009.11.005, 2010.
Carling, P. A. and Fan, X.: Particle comminution defines megaflood and
superflood energetics, Earth-Sci. Rev., 204, 103087,
https://doi.org/10.1016/j.earscirev.2020.103087, 2020.
Cenderelli, D. A.: Floods from natural and artificial dam failures, in:
Inland Flood Hazards: human, riparian and aquatic communities, edited by:
Wohl, E. E., Cambridge University Press Cambridge, UK, 73–103,
https://doi.org/10.1017/CBO9780511529412.004, 2000.
Cenderelli, D. A. and Wohl, E. E.: Peak discharge estimates of glacial-lake
outburst floods and “normal” climatic floods in the Mount Everest region,
Nepal, Geomorphology, 40, 57–90,
https://doi.org/10.1016/S0169-555X(01)00037-X, 2001.
Chaulagain, H., Gautam, D., and Rodrigues, H.: Revisiting major historical
earthquakes in Nepal: Overview of 1833, 1934, 1980, 1988, 2011, and 2015
seismic events, in: Impacts and insights of the Gorkha earthquake, edited
by: Gautam, D. and Rodrigues, H., Elsevier, Amsterdam, Oxford, Cambridge,
1–17, https://doi.org/10.1016/B978-0-12-812808-4.00001-8,
2018.
Christl, M., Vockenhuber, C., Kubik, P., Wacker, L., Lachner, J., Alfimov,
V., and Synal, H.-A.: The ETH Zurich AMS facilities: Performance parameters
and reference materials, Nucl. Instrum. Meth. B, 294, 29–38,
https://doi.org/10.1016/j.nimb.2012.03.004, 2013.
Clague, J. J. and Evans, S. G.: A review of catastrophic drainage of
moraine-dammed lakes in British Columbia, Quaternary Sci. Rev., 19,
1763–1783, https://doi.org/10.1016/S0277-3791(00)00090-1, 2000.
Clarke, A. O.: Estimating probable maximum floods in the Upper Santa Ana
Basin, Southern California, from stream boulder size, Environ. Eng. Geosci.,
2, 165–182, https://doi.org/10.2113/gseegeosci.II.2.165, 1996.
Cook, K. L., Andermann, C., Gimbert, F., Adhikari, B. R., and Hovius, N.:
Glacial lake outburst floods as drivers of fluvial erosion in the Himalaya,
Science, 362, 53–57, https://doi.org/10.1126/science.aat4981, 2018.
Costa, J. E.: Paleohydraulic reconstruction of flash-flood peaks from
boulder deposits in the Colorado Front Range, Geol. Soc. Am. Bull., 94,
986–1004, https://doi.org/10.1130/0016-7606(1983)94<986:PROFPF>2.0.CO;2, 1983.
Costa, J. E.: Physical geomorphology of debris flows, in: Developments and
applications of geomorphology, edited by: Costa, J. E. and Fleisher, P. J.,
Springer, Berlin, Heidelberg, 268–317,
https://doi.org/10.1007/1978-1003-1642-69759-69753_69759, 1984.
Costa, J. E. and Schuster, R. L.: The formation and failure of natural
dams, Geol. Soc. Am. Bull., 100, 1054–1068,
https://doi.org/10.1130/0016-7606(1988)100<1054:TFAFON>2.3.CO;2, 1988.
Dai, F. C., Lee, C. F., Deng, J. H., and Tham, L. G.: The 1786
earthquake-triggered landslide dam and subsequent dam-break flood on the
Dadu River, southwestern China, Geomorphology, 65, 205–221,
https://doi.org/10.1016/j.geomorph.2004.08.011, 2005.
Davies, T. R. and Korup, O.: Sediment cascades in active landscapes, in:
Sediment Cascades: An Integrated Approach, edited by: Burt, T. P. and
Allison, R. J., John Wiley and Sons, Ltd, Chichester, UK, 89–115, 2010.
Delaney, K. B. and Evans, S. G.: The 2000 Yigong landslide (Tibetan
Plateau), rockslide-dammed lake and outburst flood: review, remote sensing
analysis, and process modelling, Geomorphology, 246, 377–393,
https://doi.org/10.1016/j.geomorph.2015.06.020, 2015.
Denlinger, R. P. and O'Connell, D.: Simulations of cataclysmic outburst
floods from Pleistocene Glacial Lake Missoula, Geol. Soc. Am. Bull., 122,
678–689, https://doi.org/10.1130/B26454.1, 2010.
Dhital, M. R.: Geology of the Nepal Himalaya – Regional Perspective of the
Classic Collided Orogen, Springer International Publishing, Switzerland,
https://doi.org/10.1007/978-3-319-02496-7, 2015.
DiBiase, R. A. and Whipple, K. X.: The influence of erosion thresholds and
runoff variability on the relationships among topography, climate, and
erosion rate, J. Geophys. Res.-Ea., 116, F04036,
https://doi.org/10.1029/2011JF002095, 2011.
Dortch, J. M., Owen, L. A., Caffee, M. W., and Kamp, U.: Catastrophic
partial drainage of Pangong Tso, northern India and Tibet, Geomorphology,
125, 109–121, https://doi.org/10.1016/j.geomorph.2010.08.017, 2011.
Finkel, R. C., Owen, L. A., Barnard, P. L., and Caffee, M. W.: Beryllium-10
dating of Mount Everest moraines indicates a strong monsoon influence and
glacial synchroneity throughout the Himalaya, Geology, 31, 561–564,
https://doi.org/10.1130/0091-7613(2003)031<0561:BDOMEM>2.0.CO;2, 2003.
Fort, M.: Sporadic morphogenesis in a continental subduction setting: an
example from the Annapurna Range, Nepal Himalaya, Z. Geomorphol., 63, 9–36,
1987.
Fort, M., Cossart, E., and Arnaud-Fassetta, G.: Hillslope-channel coupling
in the Nepal Himalayas and threat to man-made structures: The middle Kali
Gandaki valley, Geomorphology, 124, 178–199,
https://doi.org/10.1016/j.geomorph.2010.09.010, 2010.
Gansser, A.: Geology of the Himalayas, 1 ed., Regional Geology Series, John
Wiley and Sons Ltd, London, New York, Sydney (tr. Zurich), 1964.
Gauckler, P.: Etudes Théoriques et Pratiques sur l'Ecoulement et le
Mouvement des Eaux, Compt. rend. de l'Acad. de Sc. de Paris, t. 64,
Gauthier-Villars, Paris, France, 1867.
Gayer, E., Lavé, J., Pik, R., and France-Lanord, C.: Monsoonal forcing
of Holocene glacier fluctuations in Ganesh Himal (Central Nepal) constrained
by cosmogenic 3He exposure ages of garnets, Earth Planet. Sc. Lett., 252,
275–288, https://doi.org/10.1016/j.epsl.2006.09.040, 2006.
Glade, R. C., Shobe, C. M., Anderson, R. S., and Tucker, G. E.: Canyon shape
and erosion dynamics governed by channel-hillslope feedbacks, Geology, 47,
650–654, https://doi.org/10.1130/G46219.1, 2019.
GLIMS and NSIDC: Global Land Ice Measurements from Space glacier database,
compiled and made available by the international GLIMS community and the
National Snow and Ice Data Center, Boulder CO, USA,
https://doi.org/10.7265/N5V98602, 2005 (updated 2018).
Google Earth: Satellite Imagery for central Nepal, from Google Earth Version
7.3, retrieved: January 2019.
Gupta, V. and Sah, M.: Impact of the trans-Himalayan landslide lake
outburst flood (LLOF) in the Satluj catchment, Himachal Pradesh, India, Nat.
Hazards, 45, 379–390, https://doi.org/10.1007/s11069-007-9174-6, 2008.
Harrison, S., Kargel, J. S., Huggel, C., Reynolds, J., Shugar, D. H., Betts, R. A., Emmer, A., Glasser, N., Haritashya, U. K., Klimeš, J., Reinhardt, L., Schaub, Y., Wiltshire, A., Regmi, D., and Vilímek, V.: Climate change and the global pattern of moraine-dammed glacial lake outburst floods, The Cryosphere, 12, 1195–1209, https://doi.org/10.5194/tc-12-1195-2018, 2018.
Heim, A. and Gansser, A.: Thron der Götter: Erlebnisse der ersten
Schweizerischen Himalaya-Expedition, Morgarten-Verlag
Zürich, Switzerland, 1938.
Herzschuh, U.: Palaeo-moisture evolution in monsoonal Central Asia during
the last 50,000 years, Quaternary Sci. Rev., 25, 163–178,
https://doi.org/10.1016/j.quascirev.2005.02.006, 2006.
Hewitt, K.: Natural dams and outburst floods of the Karakoram Himalaya,
IAHS-AISH P., 138, 259–269, 1982.
Hewitt, K., Gosse, J., and Clague, J. J.: Rock avalanches and the pace of
late Quaternary development of river valleys in the Karakoram Himalaya,
Geol. Soc. Am. Bull., 123, 1836–1850, https://doi.org/10.1130/B30341.1,
2011.
Huber, M. L.: bouldersforpaleohydrology, Gitlab repository, available at: https://gitlab.com/mlh300/bouldersforpaleohydrology/, last modified: July 2019.
Huggel, C., Clague, J. J., and Korup, O.: Is climate change responsible for
changing landslide activity in high mountains?, Earth Surf. Proc. Land., 37,
77–91, https://doi.org/10.1002/esp.2223, 2012.
Hungr, O., Leroueil, S., and Picarelli, L.: The Varnes classification of
landslide types, an update, Landslides, 11, 167–194,
https://doi.org/10.1007/s10346-013-0436-y, 2014.
ICIMOD: Glacial lakes and glacial lake outburst floods in Nepal,
International Centre for Integrated Mountain Development, Kathmandu, Nepal,
2011.
Ives, J. D., Shrestha, R. B., and Mool, P. K.: Formation of glacial lakes in
the Hindu Kush-Himalayas and GLOF risk assessment, International Centre for
Integrated Mountain Development (ICIMOD), Kathmandu, Nepal, 2010.
Kattelmann, R.: Glacial lake outburst floods in the Nepal Himalaya: a
manageable hazard?, Nat. Hazards, 28, 145–154,
https://doi.org/10.1023/A:1021130101283, 2003.
Korup, O. and Tweed, F.: Ice, moraine, and landslide dams in mountainous
terrain, Quaternary Sci. Rev., 26, 3406–3422,
https://doi.org/10.1016/j.quascirev.2007.10.012, 2007.
Lang, K. A., Huntington, K. W., and Montgomery, D. R.: Erosion of the Tsangpo Gorge by megafloods, Eastern Himalaya, Geology, 41, 1003–1006,
https://doi.org/10.1130/G34693.1, 2013.
Lavé, J. and Avouac, J. P.: Fluvial incision and tectonic uplift across
the Himalayas of central Nepal, J. Geophys. Res.-Sol. Ea., 106,
26561–26591, https://doi.org/10.1029/2001JB000359, 2001.
Liu, M., Chen, N., Zhang, Y., and Deng, M.: Glacial Lake Inventory and Lake
Outburst Flood/Debris Flow Hazard Assessment after the Gorkha Earthquake in
the Bhote Koshi Basin, Water-Sui., 12, 464,
https://doi.org/10.3390/w12020464, 2020.
Lu, N. and Godt, J. W.: Hillslope hydrology and stability, Cambridge
University Press, New York, USA,
https://doi.org/10.1017/CBO9781139108164, 2013.
Lupker, M., Blard, P.-H., Lavé, J., France-Lanord, C., Leanni, L.,
Puchol, N., Charreau, J., and Bourlès, D.: 10Be-derived Himalayan
denudation rates and sediment budgets in the Ganga basin, Earth Planet. Sc.
Lett., 333–334, 146–156, https://doi.org/10.1016/j.epsl.2012.04.020, 2012.
Maharjan, S. B., Mool, P. K., Lizong, W., Xiao, G., Shrestha, F., Shrestha,
R. B., Khanal, N. R., Bajracharya, S. R., Joshi, S., Shai, S., and Baral,
P.: The Status of Glacial Lakes in the Hindu Kush Himalaya, International
Centre for Integrated Mountain Development – Research Report, Kathmandu,
Nepal, 2018.
Manning, R.: On the flow of water in open channels and pipes, Transactions
of the Institution of Civil Engineers of Ireland, Vol. XX, 161–207, 1891.
Marc, O., Hovius, N., and Meunier, P.: The mass balance of earthquakes and
earthquake sequences, Geophys. Res. Lett., 43, 3708–3716,
https://doi.org/10.1002/2016GL068333, 2016.
Martin, L., Blard, P.-H., Balco, G., Lavé, J., Delunel, R., Lifton, N.,
and Laurent, V.: The CREp program and the ICE-D production rate calibration
database: A fully parameterizable and updated online tool to compute
cosmic-ray exposure ages, Quat. Geochronol., 38, 25–49,
https://doi.org/10.1016/j.quageo.2016.11.006, 2017.
Mason, K.: Indus floods and Shyok glaciers, Himalayan Journal, 1, 10–29,
1929.
Maurer, J., Schaefer, J., Rupper, S., and Corley, A.: Acceleration of ice
loss across the Himalayas over the past 40 years, Sci. Adv., 5,
eaav7266, https://doi.org/10.1126/sciadv.aav7266, 2019.
McAdoo, B. G., Quak, M., Gnyawali, K. R., Adhikari, B. R., Devkota, S., Rajbhandari, P. L., and Sudmeier-Rieux, K.: Roads and landslides in Nepal: how development affects environmental risk, Nat. Hazards Earth Syst. Sci., 18, 3203–3210, https://doi.org/10.5194/nhess-18-3203-2018, 2018.
Montgomery, D. R., Hallet, B., Yuping, L., Finnegan, N., Anders, A.,
Gillespie, A., and Greenberg, H. M.: Evidence for Holocene megafloods down
the Tsangpo River gorge, southeastern Tibet, Quaternary Res., 62, 201–207,
https://doi.org/10.1016/j.yqres.2004.06.008, 2004.
Nie, Y., Sheng, Y., Liu, Q., Liu, L., Liu, S., Zhang, Y., and Song, C.: A
regional-scale assessment of Himalayan glacial lake changes using satellite
observations from 1990 to 2015, Remote Sens. Environ., 189, 1–13,
https://doi.org/10.1016/j.rse.2016.11.008, 2017.
O'Connor, J. E. and Beebee, R. A.: Floods from natural rock-material dams,
in: Megaflooding on Earth and Mars, edited by: Burr, D. M., Carling, P. A.,
and Baker, V. R., Cambridge University Press, New York, USA, 128–163,
https://doi.org/10.1017/CBO9780511635632.008, 2009
Owen, L. A.: Quaternary glaciation of the Himalaya and adjacent mountains,
in: Himalayan Weather and Climate and their Impact on the Environment,
edited by: Dimri, A., Bookhagen, B., Stoffel, M., and Yasunari, T.,
Springer, Cham, CH, 239–260,
https://doi.org/10.1017/CBO9780511635632.008, 2020.
Owen, L. A. and Benn, D. I.: Equilibrium-line altitudes of the Last Glacial
Maximum for the Himalaya and Tibet: an assessment and evaluation of results,
Quatern. Int., 138, 55–78, https://doi.org/10.1016/j.quaint.2005.02.006,
2005.
Owen, L. A. and Dortch, J. M.: Nature and timing of Quaternary glaciation
in the Himalayan–Tibetan orogen, Quaternary Sci. Rev., 88, 14–54,
https://doi.org/10.1016/j.quascirev.2013.11.016, 2014.
Pêcher, A.: The metamorphism in the central Himalaya, J. Metamorph.
Geol., 7, 31–41, https://doi.org/10.1111/j.1525-1314.1989.tb00573.x, 1989.
Pierson, T. C.: Hyperconcentrated flow – transitional process between water
flow and debris flow, in: Debris-flow Hazards and Related Phenomena,
Springer Praxis Books, Springer, Berlin, Heidelberg, 159–202,
https://doi.org/10.1007/3-540-27129-5_8, 2005.
Pierson, T. C. and Costa, J. E.: A rheologic classification of subaerial
sediment-water flows, Rev. Eng. Geol., 7, 1–12, 1987.
Pratt-Sitaula, B., Burbank, D. W., Heimsath, A., and Ojha, T.: Landscape
disequilibrium on 1000–10,000 year scales Marsyandi River, Nepal, central
Himalaya, Geomorphology, 58, 223–241,
https://doi.org/10.1016/j.geomorph.2003.07.002, 2004.
Pratt-Sitaula, B., Burbank, D. W., Heimsath, A. M., Humphrey, N. F., Oskin,
M., and Putkonen, J.: Topographic control of asynchronous glacial advances:
A case study from Annapurna, Nepal, Geophys. Res. Lett., 38, L24502,
https://doi.org/10.1029/2011GL049940, 2011.
Rai, S.: Geology, geochemistry, and radiochronology of the Kathmandu and
Gosainkund crystalline nappes, central Nepal Himalaya, Journal of Nepal
Geological Society, 25, 135–155, 2001.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey,
C. B., Buck, C. E., Cheng, H., Edwards, R. L., and Friedrich, M.: IntCal13
and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP,
Radiocarbon, 55, 1869–1887, https://doi.org/10.2458/azu_js_rc.55.16947, 2013.
Richardson, S. D. and Reynolds, J. M.: An overview of glacial hazards in
the Himalayas, Quatern. Int., 65, 31–47,
https://doi.org/10.1016/S1040-6182(99)00035-X, 2000.
Roback, K., Clark, M. K., West, A. J., Zekkos, D., Li, G., Gallen, S. F.,
Chamlagain, D., and Godt, J. W.: The size, distribution, and mobility of
landslides caused by the 2015 Mw7. 8 Gorkha earthquake, Nepal,
Geomorphology, 301, 121–138, https://doi.org/10.1016/j.geomorph.2017.01.030,
2018.
Rosenwinkel, S., Landgraf, A., Schwanghart, W., Volkmer, F., Dzhumabaeva,
A., Merchel, S., Rugel, G., Preusser, F., and Korup, O.: Late Pleistocene
outburst floods from Issyk Kul, Kyrgyzstan?, Earth Surf. Proc. Land.,
42, 1535–1548, https://doi.org/10.1002/esp.4109, 2017.
Ruiz-Villanueva, V., Allen, S., Arora, M., Goel, N. K., and Stoffel, M.:
Recent catastrophic landslide lake outburst floods in the Himalayan mountain
range, Prog. Phys. Geog., 41, 3–28,
https://doi.org/10.1177/0309133316658614, 2017.
Runqiu, H.: Some catastrophic landslides since the twentieth century in the
southwest of China, Landslides, 6, 69–81,
https://doi.org/10.1007/s10346-009-0142-y, 2009.
Sapkota, S. N., Bollinger, L., Klinger, Y., Tapponnier, P., Gaudemer, Y.,
and Tiwari, D.: Primary surface ruptures of the great Himalayan earthquakes
in 1934 and 1255, Nat. Geosci., 6, 71–76, https://doi.org/10.1038/NGEO1669,
2013.
Sarkar, S., Prasad, S., Wilkes, H., Riedel, N., Stebich, M., Basavaiah, N.,
and Sachse, D.: Monsoon source shifts during the drying mid-Holocene:
Biomarker isotope based evidence from the core `monsoon zone'(CMZ) of India,
Quaternary Sci. Rev., 123, 144–157,
https://doi.org/10.1016/j.quascirev.2015.06.020, 2015.
Schaefer, J. M., Oberholzer, P., Zhao, Z., Ivy-Ochs, S., Wieler, R., Baur,
H., Kubik, P. W., and Schlüchter, C.: Cosmogenic beryllium-10 and
neon-21 dating of late Pleistocene glaciations in Nyalam, monsoonal
Himalayas, Quaternary Sci. Rev., 27, 295–311,
https://doi.org/10.1016/j.quascirev.2007.10.014, 2008.
Schwanghart, W., Bernhardt, A., Stolle, A., Hoelzmann, P., Adhikari, B. R.,
Andermann, C., Tofelde, S., Merchel, S., Rugel, G., and Fort, M.: Repeated
catastrophic valley infill following medieval earthquakes in the Nepal
Himalaya, Science, 351, 147–150, https://doi.org/10.1126/science.aac9865,
2016a.
Schwanghart, W., Worni, R., Huggel, C., Stoffel, M., and Korup, O.:
Uncertainty in the Himalayan energy–water nexus: Estimating regional
exposure to glacial lake outburst floods, Environ. Res. Lett., 11, 074005,
https://doi.org/10.1088/1748-9326/11/7/074005, 2016b.
Shang, Y., Yang, Z., Li, L., Liu, D. A., Liao, Q., and Wang, Y.: A
super-large landslide in Tibet in 2000: background, occurrence, disaster,
and origin, Geomorphology, 54, 225–243,
https://doi.org/10.1016/S0169-555X(02)00358-6, 2003.
Shiraiwa, T. and Watanabe, T.: Late Quaternary glacial fluctuations in the
Langtang valley, Nepal Himalaya, reconstructed by relative dating methods,
Arctic Alpine Res., 23, 404–416, 1991.
Shobe, C. M., Tucker, G. E., and Anderson, R. S.: Hillslope-derived blocks
retard river incision, Geophys. Res. Lett., 43, 5070–5078,
https://doi.org/10.1002/2016GL069262, 2016.
Shobe, C. M., Tucker, G. E., and Rossi, M. W.: Variable-threshold behavior
in rivers arising from hillslope-derived blocks, J. Geophys. Res.-Ea.,
123, 1931–1957, https://doi.org/10.1029/2017JF004575, 2018.
Shrestha, A. B., Eriksson, M., Mool, P., Ghimire, P., Mishra, B., and
Khanal, N. R.: Glacial lake outburst flood risk assessment of Sun Koshi
basin, Nepal, Geomat. Nat. Haz. Risk, 1, 157–169,
https://doi.org/10.1080/19475701003668968, 2010.
Shrestha, S. B., Shrestha, J. N., and Sharma, S. R.: Geological map of
central Nepal, Department of Mines and Geology, Kathmandu, Nepal, 1986.
Shroder, J. F. J., Cornwell, K., and Khan, M. S.: Catastrophic break-out
floods in the western Himalaya, Pakistan, Geological Society of America
Annual Meeting Program with Abstracts, San Diego, CA, USA, Vol. 23, p. 87, 1991.
Stevens, V. L. and Avouac, J. P.: Millenary Mw>9.0 earthquakes
required by geodetic strain in the Himalaya, Geophys. Res. Lett., 43,
1118–1123, https://doi.org/10.1002/2015GL067336, 2016.
Stöcklin, J.: Geology of Nepal and its regional frame: Thirty-third
William Smith Lecture, J. Geol. Soc. London, 137, 1–34,
https://doi.org/10.1144/gsjgs.137.1.0001, 1980.
Stoffel, M., Tiranti, D., and Huggel, C.: Climate change impacts on mass
movements – case studies from the European Alps, Sci. Total Environ., 493,
1255–1266, https://doi.org/10.1016/j.scitotenv.2014.02.102, 2014.
Stolle, A., Bernhardt, A., Schwanghart, W., Hoelzmann, P., Adhikari, B. R.,
Fort, M., and Korup, O.: Catastrophic valley fills record large Himalayan
earthquakes, Pokhara, Nepal, Quaternary Sci. Rev., 177, 88–103,
https://doi.org/10.1016/j.quascirev.2017.10.015, 2017.
Stolle, A., Schwanghart, W., Andermann, C., Bernhardt, A., Fort, M., Jansen,
J. D., Wittmann, H., Merchel, S., Rugel, G., Adhikari, B. R., and Korup, O.:
Protracted river response to medieval earthquakes, Earth Surf. Proc. Land.,
44, 331–341, https://doi.org/10.1002/esp.4517, 2019.
Thompson, L. G., Yao, T., Davis, M. E., Henderson, K. A., Mosley-Thompson,
E., Lin, P.-N., Beer, J., Synal, H.-A., Cole-Dai, J., and Bolzan, J. F.:
Tropical climate instability: The last glacial cycle from a Qinghai-Tibetan
ice core, Science, 276, 1821–1825,
https://doi.org/10.1126/science.276.5320.1821, 1997.
Turzewski, M. D., Huntington, K. W., and LeVeque, R. J.: The geomorphic
impact of outburst floods: Integrating observations and numerical
simulations of the 2000 Yigong flood, eastern Himalaya, J. Geophys.
Res.-Ea., 124, 1056–1079, https://doi.org/10.1029/2018JF004778, 2019.
Upreti, B. N.: An overview of the stratigraphy and tectonics of the Nepal
Himalaya, J. Asian Earth Sci., 17, 577–606,
https://doi.org/10.1016/S1367-9120(99)00047-4, 1999.
Veh, G., Korup, O., von Specht, S., Roessner, S., and Walz, A.: Unchanged
frequency of moraine-dammed glacial lake outburst floods in the Himalaya,
Nat. Clim. Change, 9, 379, https://doi.org/10.1038/s41558-019-0437-5, 2019.
Vuichard, D. and Zimmermann, M.: The 1985 catastrophic drainage of a
moraine-dammed lake, Khumbu Himal, Nepal: cause and consequences, Mt. Res.
Dev., 7, 91–110, https://doi.org/10.2307/3673305, 1987.
Walder, J. S. and Costa, J. E.: Outburst floods from glacier-dammed lakes:
the effect of mode of lake drainage on flood magnitude, Earth Surf. Proc.
Land., 21, 701–723,
https://doi.org/10.1002/(SICI)1096-9837(199608)21:8<701::AID-ESP615>3.0.CO;2-2, 1996.
Wang, W., Xiang, Y., Gao, Y., Lu, A., and Yao, T.: Rapid expansion of
glacial lakes caused by climate and glacier retreat in the Central
Himalayas, Hydrol. Process., 29, 859–874, https://doi.org/10.1002/hyp.10199,
2015.
Wang, Z. Y., Qi, P., and Melching, C. S.: Fluvial hydraulics of
hyperconcentrated floods in Chinese rivers, Earth Surf. Proc. Land., 34,
981–993, https://doi.org/10.1002/esp.1789, 2009.
Wasson, R. J., Sundriyal, Y. P., Chaudhary, S., Jaiswal, M. K., Morthekai,
P., Sati, S. P., and Juyal, N.: A 1000-year history of large floods in the
Upper Ganga catchment, central Himalaya, India, Quaternary Sci. Rev., 77,
156–166, https://doi.org/10.1016/j.quascirev.2013.07.022, 2013.
Willett, S. D. and Brandon, M. T.: On steady states in mountain belts,
Geology, 30, 175–178, https://doi.org/10.1130/0091-7613(2002)030<0175:OSSIMB>2.0.CO;2, 2002.
Wohl, E. E.: Mountain rivers revisited, Water resources monograph (19),
American Geophysical Union, Washington, DC, USA, 2013.
Worni, R., Stoffel, M., Huggel, C., Volz, C., Casteller, A., and Luckman,
B.: Analysis and dynamic modeling of a moraine failure and glacier lake
outburst flood at Ventisquero Negro, Patagonian Andes (Argentina), J.
Hydrol., 444, 134–145, https://doi.org/10.1016/j.jhydrol.2012.04.013, 2012.
Xu, D.: Characteristics of debris flow caused by outburst of glacial lake in
Boqu river, Xizang, China, 1981, GeoJournal, 17, 569–580, 1988.
Yamada, T. and Sharma, C. K.: Glacier lakes and outburst floods in the
Nepal Himalaya, IAHS-AISH P., 218, 319–330, 1993.
Yamanaka, H.: Radiocarbon ages of upper quaternary deposit in central Nepal and their geomorphological significance, Science Reports of the Tohoku University, 7th Series, Geography, 32, 46–60, 1982.
Ziegler, A. D., Wasson, R. J., Bhardwaj, A., Sundriyal, Y. P., Sati, S. P.,
Juyal, N., Nautiyal, V., Srivastava, P., Gillen, J., and Saklani, U.:
Pilgrims, progress, and the political economy of disaster preparedness – the
example of the 2013 Uttarakhand flood and Kedarnath disaster, Hydrol.
Process., 28, 5985–5990, https://doi.org/10.1002/hyp.10349, 2014.
Short summary
Large boulders found in two Himalayan valleys show signs of long fluvial transport (>10 km). Paleo-discharges required to mobilize these boulders exceed typical monsoon discharges. Exposure dating shows that a cluster of these boulders was emplaced ca. 5 kyr ago. This period is coeval with a weakening of the Indian monsoon and glacier retreat in the area. We, therefore, suggest that glacier lake outburst floods are likely mechanisms that can explain these exceptional transport processes.
Large boulders found in two Himalayan valleys show signs of long fluvial transport (>10 km)....