Articles | Volume 8, issue 4
https://doi.org/10.5194/esurf-8-869-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-8-869-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ice sheet and palaeoclimate controls on drainage network evolution: an example from Dogger Bank, North Sea
School of Earth and Environment, University of Leeds, Leeds, UK
David M. Hodgson
School of Earth and Environment, University of Leeds, Leeds, UK
Natasha L. M. Barlow
School of Earth and Environment, University of Leeds, Leeds, UK
Jonathan L. Carrivick
School of Geography, University of Leeds, Leeds, UK
Carol J. Cotterill
British Geological Survey, The Lyell Centre, Edinburgh, UK
Janet C. Richardson
School of Earth and Environment, University of Leeds, Leeds, UK
Ruza F. Ivanovic
School of Earth and Environment, University of Leeds, Leeds, UK
Claire L. Mellett
Wessex Archaeology, Salisbury, UK
Related authors
No articles found.
Laura Endres, Carlos Pérez-Mejías, Ruza Ivanovic, Lauren Gregoire, Anna L. C. Hughes, Hai Cheng, and Heather Stoll
EGUsphere, https://doi.org/10.5194/egusphere-2025-3911, https://doi.org/10.5194/egusphere-2025-3911, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
Stable isotope data of a precisely dated stalagmite from northwestern Iberia indicate gradual North Atlantic meltwater input during the last glacial maximum, followed by abrupt surges early in the last deglaciation. The first abrupt surge was followed by cooling about 850 years later – unlike later events – which reveals that the Atlantic circulation’s sensitivity to meltwater is variable and related to the evolving background climate boundary conditions.
Takashi Obase, Laurie Menviel, Ayako Abe-Ouchi, Tristan Vadsaria, Ruza Ivanovic, Brooke Snoll, Sam Sherriff-Tadano, Paul J. Valdes, Lauren Gregoire, Marie-Luise Kapsch, Uwe Mikolajewicz, Nathaelle Bouttes, Didier Roche, Fanny Lhardy, Chengfei He, Bette Otto-Bliesner, Zhengyu Liu, and Wing-Le Chan
Clim. Past, 21, 1443–1463, https://doi.org/10.5194/cp-21-1443-2025, https://doi.org/10.5194/cp-21-1443-2025, 2025
Short summary
Short summary
This study analyses transient simulations of the last deglaciation performed by six climate models to understand the processes driving high-southern-latitude temperature changes. We find that atmospheric CO2 and AMOC (Atlantic Meridional Overturning Circulation) changes are the primary drivers of the warming and cooling during the middle stage of the deglaciation. The analysis highlights the model's sensitivity of CO2 and AMOC to meltwater and the meltwater history of temperature changes at high southern latitudes.
Janet C. Richardson, Veerle Vanacker, David M. Hodgson, Marcus Christl, and Andreas Lang
Earth Surf. Dynam., 13, 315–339, https://doi.org/10.5194/esurf-13-315-2025, https://doi.org/10.5194/esurf-13-315-2025, 2025
Short summary
Short summary
Pediments are long flat surfaces that extend outwards from the foot of mountains; within South Africa they are regarded as ancient landforms that can give key insights into landscape and mantle dynamics. Cosmogenic nuclide dating has been incorporated with geological (soil formation) and geomorphological (river incision) evidence, which shows that the pediments are long-lived features beyond the ages reported by cosmogenic nuclide dating.
Elisa Ziegler, Nils Weitzel, Jean-Philippe Baudouin, Marie-Luise Kapsch, Uwe Mikolajewicz, Lauren Gregoire, Ruza Ivanovic, Paul J. Valdes, Christian Wirths, and Kira Rehfeld
Clim. Past, 21, 627–659, https://doi.org/10.5194/cp-21-627-2025, https://doi.org/10.5194/cp-21-627-2025, 2025
Short summary
Short summary
During the Last Deglaciation, global surface temperature rose by about 4–7 °C over several millennia. We show that changes in year-to-year up to century-to-century fluctuations of temperature and precipitation during the Deglaciation were mostly larger than during either the preceding or succeeding more stable periods in 15 climate model simulations. The analysis demonstrates how ice sheets, meltwater, and volcanism influence simulated variability to inform future simulation protocols.
Penelope How, Dorthe Petersen, Kristian Kjellerup Kjeldsen, Katrine Raundrup, Nanna Bjørnholt Karlsson, Alexandra Messerli, Anja Rutishauser, Jonathan Lee Carrivick, James M. Lea, Robert Schjøtt Fausto, Andreas Peter Ahlstrøm, and Signe Bech Andersen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-18, https://doi.org/10.5194/essd-2025-18, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
Ice-marginal lakes around Greenland temporarily store glacial meltwater, affecting sea level rise, glacier dynamics and ecosystems. Our study presents an eight-year inventory (2016–2023) of 2918 lakes, mapping their size, abundance, and surface water temperature. This openly available dataset supports future research on sea level projections, lake-driven glacier melting, and sustainable resource planning, including hydropower development under Greenland's climate commitments.
Violet L. Patterson, Lauren J. Gregoire, Ruza F. Ivanovic, Niall Gandy, Stephen Cornford, Jonathan Owen, Sam Sherriff-Tadano, and Robin S. Smith
EGUsphere, https://doi.org/10.5194/egusphere-2024-3896, https://doi.org/10.5194/egusphere-2024-3896, 2025
Short summary
Short summary
Simulations of the last two glacial periods are ran using a computer model in which the atmosphere and ice sheets interact. The model is able to produce ice sheet volumes, extents and dynamics in good agreement with data. Sensitivity analysis is undertaken and shows the Northern Hemisphere ice sheet size is particularly sensitive to the albedo of the ice in the model but the different ice sheets display different sensitivities to other processes.
Christopher L. Hancock, Michael P. Erb, Nicholas P. McKay, Sylvia G. Dee, and Ruza F. Ivanovic
Clim. Past, 20, 2663–2684, https://doi.org/10.5194/cp-20-2663-2024, https://doi.org/10.5194/cp-20-2663-2024, 2024
Short summary
Short summary
We reconstruct global hydroclimate anomalies for the past 21 000 years using a data assimilation methodology blending observations recorded in lake sediments with the climate dynamics simulated by climate models. The reconstruction resolves data–model disagreement in east Africa and North America, and we find that changing global temperatures and associated circulation patterns, as well as orbital forcing, are the dominant controls on global precipitation over this interval.
Violet L. Patterson, Lauren J. Gregoire, Ruza F. Ivanovic, Niall Gandy, Jonathan Owen, Robin S. Smith, Oliver G. Pollard, Lachlan C. Astfalck, and Paul J. Valdes
Clim. Past, 20, 2191–2218, https://doi.org/10.5194/cp-20-2191-2024, https://doi.org/10.5194/cp-20-2191-2024, 2024
Short summary
Short summary
Simulations of the last two glacial periods are run using a computer model in which the atmosphere and ice sheets interact. The results show that the initial conditions used in the simulations are the primary reason for the difference in simulated North American ice sheet volume between each period. Thus, the climate leading up to the glacial maxima and other factors, such as vegetation, are important contributors to the differences in the ice sheets at the Last and Penultimate glacial maxima.
Sam Sherriff-Tadano, Ruza Ivanovic, Lauren Gregoire, Charlotte Lang, Niall Gandy, Jonathan Gregory, Tamsin L. Edwards, Oliver Pollard, and Robin S. Smith
Clim. Past, 20, 1489–1512, https://doi.org/10.5194/cp-20-1489-2024, https://doi.org/10.5194/cp-20-1489-2024, 2024
Short summary
Short summary
Ensemble simulations of the climate and ice sheets of the Last Glacial Maximum (LGM) are performed with a new coupled climate–ice sheet model. Results show a strong sensitivity of the North American ice sheet to the albedo scheme, while the Greenland ice sheet appeared more sensitive to basal sliding schemes. Our result implies a potential connection between the North American ice sheet at the LGM and the future Greenland ice sheet through the albedo scheme.
Brooke Snoll, Ruza Ivanovic, Lauren Gregoire, Sam Sherriff-Tadano, Laurie Menviel, Takashi Obase, Ayako Abe-Ouchi, Nathaelle Bouttes, Chengfei He, Feng He, Marie Kapsch, Uwe Mikolajewicz, Juan Muglia, and Paul Valdes
Clim. Past, 20, 789–815, https://doi.org/10.5194/cp-20-789-2024, https://doi.org/10.5194/cp-20-789-2024, 2024
Short summary
Short summary
Geological records show rapid climate change throughout the recent deglaciation. The drivers of these changes are still misunderstood but are often attributed to shifts in the Atlantic Ocean circulation from meltwater input. A cumulative effort to understand these processes prompted numerous simulations of this period. We use these to explain the chain of events and our collective ability to simulate them. The results demonstrate the importance of the meltwater amount used in the simulation.
Oliver G. Pollard, Natasha L. M. Barlow, Lauren J. Gregoire, Natalya Gomez, Víctor Cartelle, Jeremy C. Ely, and Lachlan C. Astfalck
The Cryosphere, 17, 4751–4777, https://doi.org/10.5194/tc-17-4751-2023, https://doi.org/10.5194/tc-17-4751-2023, 2023
Short summary
Short summary
We use advanced statistical techniques and a simple ice-sheet model to produce an ensemble of plausible 3D shapes of the ice sheet that once stretched across northern Europe during the previous glacial maximum (140,000 years ago). This new reconstruction, equivalent in volume to 48 ± 8 m of global mean sea-level rise, will improve the interpretation of high sea levels recorded from the Last Interglacial period (120 000 years ago) that provide a useful perspective on the future.
Sarah A. Woodroffe, Leanne M. Wake, Kristian K. Kjeldsen, Natasha L. M. Barlow, Antony J. Long, and Kurt H. Kjær
Clim. Past, 19, 1585–1606, https://doi.org/10.5194/cp-19-1585-2023, https://doi.org/10.5194/cp-19-1585-2023, 2023
Short summary
Short summary
Salt marsh in SE Greenland records sea level changes over the past 300 years in sediments and microfossils. The pattern is rising sea level until ~ 1880 CE and sea level fall since. This disagrees with modelled sea level, which overpredicts sea level fall by at least 0.5 m. This is the same even when reducing the overall amount of Greenland ice sheet melt and allowing for more time. Fitting the model to the data leaves ~ 3 mm yr−1 of unexplained sea level rise in SE Greenland since ~ 1880 CE.
Mads Dømgaard, Kristian K. Kjeldsen, Flora Huiban, Jonathan L. Carrivick, Shfaqat A. Khan, and Anders A. Bjørk
The Cryosphere, 17, 1373–1387, https://doi.org/10.5194/tc-17-1373-2023, https://doi.org/10.5194/tc-17-1373-2023, 2023
Short summary
Short summary
Sudden releases of meltwater from glacier-dammed lakes can influence ice flow, cause flooding hazards and landscape changes. This study presents a record of 14 drainages from 2007–2021 from a lake in west Greenland. The time series reveals how the lake fluctuates between releasing large and small amounts of drainage water which is caused by a weakening of the damming glacier following the large events. We also find a shift in the water drainage route which increases the risk of flooding hazards.
Suzanne Robinson, Ruza F. Ivanovic, Lauren J. Gregoire, Julia Tindall, Tina van de Flierdt, Yves Plancherel, Frerk Pöppelmeier, Kazuyo Tachikawa, and Paul J. Valdes
Geosci. Model Dev., 16, 1231–1264, https://doi.org/10.5194/gmd-16-1231-2023, https://doi.org/10.5194/gmd-16-1231-2023, 2023
Short summary
Short summary
We present the implementation of neodymium (Nd) isotopes into the ocean model of FAMOUS (Nd v1.0). Nd fluxes from seafloor sediment and incorporation of Nd onto sinking particles represent the major global sources and sinks, respectively. However, model–data mismatch in the North Pacific and northern North Atlantic suggest that certain reactive components of the sediment interact the most with seawater. Our results are important for interpreting Nd isotopes in terms of ocean circulation.
Michael P. Erb, Nicholas P. McKay, Nathan Steiger, Sylvia Dee, Chris Hancock, Ruza F. Ivanovic, Lauren J. Gregoire, and Paul Valdes
Clim. Past, 18, 2599–2629, https://doi.org/10.5194/cp-18-2599-2022, https://doi.org/10.5194/cp-18-2599-2022, 2022
Short summary
Short summary
To look at climate over the past 12 000 years, we reconstruct spatial temperature using natural climate archives and information from model simulations. Our results show mild global mean warmth around 6000 years ago, which differs somewhat from past reconstructions. Undiagnosed seasonal biases in the data could explain some of the observed temperature change, but this still would not explain the large difference between many reconstructions and climate models over this period.
Suzanne Robinson, Ruza Ivanovic, Lauren Gregoire, Lachlan Astfalck, Tina van de Flierdt, Yves Plancherel, Frerk Pöppelmeier, and Kazuyo Tachikawa
EGUsphere, https://doi.org/10.5194/egusphere-2022-937, https://doi.org/10.5194/egusphere-2022-937, 2022
Preprint archived
Short summary
Short summary
The neodymium (Nd) isotope (εNd) scheme in the ocean model of FAMOUS is used to explore a benthic Nd flux to seawater. Our results demonstrate that sluggish modern Pacific waters are sensitive to benthic flux alterations, whereas the well-ventilated North Atlantic displays a much weaker response. In closing, there are distinct regional differences in how seawater acquires its εNd signal, in part relating to the complex interactions of Nd addition and water advection.
Christopher D. Stringer, Jonathan L. Carrivick, Duncan J. Quincey, and Daniel Nývlt
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-250, https://doi.org/10.5194/essd-2022-250, 2022
Revised manuscript not accepted
Short summary
Short summary
Glaciers in Antarctica have been decreasing in size at a fast rate, leading to the expansion of proglacial areas, with wide-ranging ecological implications. Several global land-cover maps exist, but they do not include Antarctica. We map land cover types across West Antarctica and the McMurdo Dry Valleys to a high degree of accuracy (77.0 %). We highlight the spatial variation in land cover and emphasise the need for more field data.
Kim M. Cohen, Víctor Cartelle, Robert Barnett, Freek S. Busschers, and Natasha L. M. Barlow
Earth Syst. Sci. Data, 14, 2895–2937, https://doi.org/10.5194/essd-14-2895-2022, https://doi.org/10.5194/essd-14-2895-2022, 2022
Short summary
Short summary
We describe a geological sea-level dataset for the Last Interglacial period (peaking ~125 000 years ago). From 80 known sites in and around the North Sea and English Channel (from below coastal plains, from along terraced parts of coastlines, from offshore), we provide and document 146 data points (35 entries in the Netherlands, 10 in Belgium, 23 in Germany, 17 in Denmark, 36 in Britain and the Channel Isles, 25 in France) that are also viewable at https://warmcoasts.eu/world-atlas.html.
Víctor Cartelle, Natasha L. M. Barlow, David M. Hodgson, Freek S. Busschers, Kim M. Cohen, Bart M. L. Meijninger, and Wessel P. van Kesteren
Earth Surf. Dynam., 9, 1399–1421, https://doi.org/10.5194/esurf-9-1399-2021, https://doi.org/10.5194/esurf-9-1399-2021, 2021
Short summary
Short summary
Reconstructing the growth and decay of past ice sheets is critical to understand relationships between global climate and sea-level change. We take advantage of large wind-farm datasets in the southern North Sea to investigate buried landscapes left by ice sheet advance and retreat occurring about 160 000 years ago. We demonstrate the utility of offshore wind-farm data in refining palaeo-ice sheet margin limits and providing insight into the processes influencing marginal ice sheet dynamics.
Masa Kageyama, Sandy P. Harrison, Marie-L. Kapsch, Marcus Lofverstrom, Juan M. Lora, Uwe Mikolajewicz, Sam Sherriff-Tadano, Tristan Vadsaria, Ayako Abe-Ouchi, Nathaelle Bouttes, Deepak Chandan, Lauren J. Gregoire, Ruza F. Ivanovic, Kenji Izumi, Allegra N. LeGrande, Fanny Lhardy, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, André Paul, W. Richard Peltier, Christopher J. Poulsen, Aurélien Quiquet, Didier M. Roche, Xiaoxu Shi, Jessica E. Tierney, Paul J. Valdes, Evgeny Volodin, and Jiang Zhu
Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, https://doi.org/10.5194/cp-17-1065-2021, 2021
Short summary
Short summary
The Last Glacial Maximum (LGM; ~21 000 years ago) is a major focus for evaluating how well climate models simulate climate changes as large as those expected in the future. Here, we compare the latest climate model (CMIP6-PMIP4) to the previous one (CMIP5-PMIP3) and to reconstructions. Large-scale climate features (e.g. land–sea contrast, polar amplification) are well captured by all models, while regional changes (e.g. winter extratropical cooling, precipitations) are still poorly represented.
Ilkka S. O. Matero, Lauren J. Gregoire, and Ruza F. Ivanovic
Geosci. Model Dev., 13, 4555–4577, https://doi.org/10.5194/gmd-13-4555-2020, https://doi.org/10.5194/gmd-13-4555-2020, 2020
Short summary
Short summary
The Northern Hemisphere cooled by several degrees for a century 8000 years ago due to the collapse of an ice sheet in North America that released large amounts of meltwater into the North Atlantic and slowed down its circulation. We numerically model the ice sheet to understand its evolution during this event. Our results match data thanks to good ice dynamics but depend mostly on surface melt and snowfall. Further work will help us understand how past and future ice melt affects climate.
Cited articles
Alho, P., Russell, A. J., Carrivick, J. L., and Käyhkö, J.:
Reconstruction of the largest Holocene jökulhlaup within Jökulsá
á Fjöllum, NE Iceland, Quaternary Sci. Rev., 24, 2319–2334,
https://doi.org/10.1016/j.quascirev.2004.11.021, 2005.
Amos, K. J., Alexander, J., Horn, A., Pocock, G. D., and Fielding, C. R.:
Supply limited sediment transport in a high-discharge event of the tropical
Burdekin River, North Queensland, Australia, Sedimentology, 51, 145–162,
https://doi.org/10.1111/j.1365-3091.2004.00616.x, 2004.
Andersen, K. K., Azuma, N., Barnola, J.-M., Bigler, M., Biscaye, P.,
Caillon, N., Chappellaz, J., Clausen, H. B., Dahl-Jensen, D., Fischer, H.,
Flückiger, J., Fritzsche, D., Fujii, Y., Goto-Azuma, K., Grønvold,
K., Gundestrup, N. S., Hansson, M., Huber, C., Hvidberg, C. S., Johnsen, S.
J., Jonsell, U., Jouzel, J., Kipfstuhl, S., Landais, A., Leuenberger, M.,
Lorrain, R., Masson-Delmotte, V., Miller, H., Motoyama, H., Narita, H.,
Popp, T., Rasmussen, S. O., Raynaud, D., Rothlisberger, R., Ruth, U., Samyn,
D., Schwander, J., Shoji, H., Siggard-Andersen, M.-L., Steffensen, J. P.,
Stocker, T., Sveinbjörnsdóttir, a E., Svensson, A., Takata, M.,
Tison, J.-L., Thorsteinsson, T., Watanabe, O., Wilhelms, F., and White, J. W.
C.: High-resolution record of Northern Hemisphere climate extending into the
last interglacial period, Nature, 431, 147–151,
https://doi.org/10.1038/nature02805, 2004.
Bailey, G. N., Harff, J., and Sakellariou, D.: Under the Sea: Archaeology and
Palaeolandscapes of the Continental Shelf, edited by: Bailey, G. N., Harff, J., and Sakellariou, D., Springer International Publishing, Cham, 2017.
Becker, L. W. M., Sejrup, H. P., Hjelstuen, B. O., Haflidason, H., and
Dokken, T. M.: Ocean-ice sheet interaction along the SE Nordic Seas margin
from 35 to 15 ka BP, Mar. Geol., 402, 99–117,
https://doi.org/10.1016/j.margeo.2017.09.003, 2018.
Bicket, A. and Tizzard, L.: A review of the submerged prehistory and
palaeolandscapes of the British Isles, Proc. Geol. Assoc., 126, 643–663,
https://doi.org/10.1016/j.pgeola.2015.08.009, 2015.
Bicket, A. R., Mellett, C. L., Tizzard, L., and Waddington, C.: Exploring
Holocene palaeogeography in the `white ribbon': a Mesolithic case study from
the Northumberland coast, J. Quaternary Sci., 32, 311–328, https://doi.org/10.1002/jqs.2897, 2016.
Bishop, P.: Drainage rearrangement by river capture, beheading and
diversion, Prog. Phys. Geogr., 19, 449–473,
https://doi.org/10.1177/030913339501900402, 1995.
Bourillet, J.-F., Reynaud, J. Y., Baltzer, A., and Zaragosi, S.: The “Fleuve
Manche”: The submarine sedimentary features from the outer shelf to the
deep-sea fans, J. Quaternary Sci., 18, 261–282, https://doi.org/10.1002/jqs.757, 2003.
Briggs, R. D., Pollard, D., and Tarasov, L.: A data-constrained large
ensemble analysis of Antarctic evolution since the Eemian, Quaternary Sci. Rev., 103, 91–115, https://doi.org/10.1016/j.quascirev.2014.09.003, 2014.
Bristow, C. S. and Best, J. L.: Braided rivers: perspectives and problems, Geol. Soc. London, Spec. Publ., 75, 1–11, https://doi.org/10.1144/GSL.SP.1993.075.01.01, 1993.
Brooks, A. J., Bradley, S. L., Edwards, R. J., and Goodwyn, N.: The
Palaeogeography of Northwest Europe during the last 20,000 years, J. Maps,
5647, 573–587, https://doi.org/10.4113/jom.2011.1160, 2011.
Brown, A., Russell, J., Scaife, R. G., Tizzard, L., Whittaker, J., and Wyles,
S. F.: Lateglacial/early Holocene palaeoenvironments in the southern North
Sea Basin: new data from the Dudgeon offshore wind farm, J. Quaternary Sci.,
33, 597–610, https://doi.org/10.1002/jqs.3039, 2018.
Busschers, F. S., Kasse, C., van Balen, R. T., Vandenberghe, J., Cohen, K.
M., Weerts, H. J. T., Wallinga, J., Johns, C., Cleveringa, P., and Bunnik, F.
P. M.: Late Pleistocene evolution of the Rhine-Meuse system in the southern
North Sea basin: imprints of climate change, sea-level oscillation and
glacio-isostacy, Quaternary Sci. Rev., 26, 3216–3248,
https://doi.org/10.1016/j.quascirev.2007.07.013, 2007.
Cameron, T. D. J., Stoker, M. S., and Long, D.: The history of Quaternary
sedimentation in the UK sector of the North Sea Basin, J. Geol. Soc.
Lond., 144, 43–58, https://doi.org/10.1144/gsjgs.144.1.0043, 1987.
Cameron, T. D. J., Crosby, A., Balson, P., Jeffery, D. H., Lott, G. K.,
Bulat, J., and Harrison, D. J.: United Kingdom offshore regional report: the
geology of the southern North Sea, HMSO, London, 1992.
Carr, S. J., Holmes, R., van der Meer, J. J. M., and Rose, J.: The Last
Glacial Maximum in the North Sea Basin: Micromorphological evidence of
extensive glaciation, J. Quaternar Sci., 21, 131–153, https://doi.org/10.1002/jqs.950,
2006.
Carrivick, J. L. and Rushmer, E. L.: Understanding high-magnitude outburst
floods, Geol. Today, 22, 60–65, https://doi.org/10.1111/j.1365-2451.2006.00554.x, 2006.
Carrivick, J. L. and Rushmer, E. L.: Inter- And intra-catchment variations
in proglacial Geomorphology: An example from Franz Josef glacier and fox
glacier, New Zealand, Arct. Antarct. Alp. Res., 41, 18–36,
https://doi.org/10.1657/1523-0430-41.1.18, 2009.
Carrivick, J. L. and Russell, A. J.: Glaciofluvial Landforms of Deposition,
in: Encyclopedia of Quaternary Science, 2nd Edn., Elsevier, Amsterdam, 6–17, 2013.
Carrivick, J. L., Russell, A. J., and Tweed, F. S.: Geomorphological evidence
for jökulhlaups from Kverkfjöll volcano, Iceland, Geomorphology, 63, 81–102, https://doi.org/10.1016/j.geomorph.2004.03.006, 2004a.
Carrivick, J. L., Russell, A. J., Tweed, F. S., and Twigg, D.: Palaeohydrology and sedimentary impacts of jökulhlaups from Kverkfjöll, Iceland, Sediment. Geol., 172, 19–40,
https://doi.org/10.1016/j.sedgeo.2004.07.005, 2004b.
Carrivick, J. L., Pringle, J. K., Russell, A. J., and Cassidy, N. J.:
GPR-derived sedimentary architecture and stratigraphy of outburst flood
sedimentation within a bedrock valley system, Hraundalur, Iceland, J.
Environ. Eng. Geophys., 12, 127–143, https://doi.org/10.2113/JEEG12.1.127, 2007.
Carrivick, J. L., Tweed, F. S., Carling, P., Alho, P., Marren, P. M.,
Staines, K., Russell, A. J., Rushmer, E. L. and Duller, R.: Discussion of
“Field evidence and hydraulic modeling of a large Holocene jökulhlaup
at Jökulsá á Fjöllum channel, Iceland” by Douglas Howard,
Sheryl Luzzadder-Beach and Timothy Beach, 2012, Geomorphology, 201,
512–519, https://doi.org/10.1016/j.geomorph.2012.10.024, 2013.
Carter, S. P., Fricker, H. A., and Siegfried, M. R.: Evidence of rapid
subglacial water piracy under Whillans Ice Stream, West Antarctica, J.
Glaciol., 59, 1147–1162, https://doi.org/10.3189/2013JoG13J085, 2013.
Clark, C. D., Hughes, A. L. C., Greenwood, S. L., Jordan, C., and Sejrup, H.
P.: Pattern and timing of retreat of the last British-Irish Ice Sheet, Quaternary Sci. Rev., 44, 112–146, https://doi.org/10.1016/j.quascirev.2010.07.019, 2012.
Coles, B. J.: Doggerland: a Speculative Survey, Proc. Prehist. Soc., 64,
45–81, https://doi.org/10.1017/S0079497X00002176, 1998.
Cotterill, C. J., Dove, D., Long, D. and James, L.: Dogger Bank – A Geo
Challenge, in: Proceedings of the seventh international conference, 12–14 September 2012, Royal Geographical Society, London, 127–134, 2012.
Cotterill, C. J., Phillips, E. R., James, L., Forsberg, C. F., and Tjelta, T.
I.: How understanding past landscapes might inform present-day site
investigations: A case study from Dogger Bank, southern central North Sea,
Near Surf. Geophys., 15, 403–413, https://doi.org/10.3997/1873-0604.2017032, 2017a.
Cotterill, C. J., Phillips, E. R., James, L., Forsberg, C. F., Tjelta, T. I., Carter, G. and Dove, D.: The evolution of the Dogger Bank, North Sea: A
complex history of terrestrial, glacial and marine environmental change,
Quaternary Sci. Rev., 171, 136–153, https://doi.org/10.1016/j.quascirev.2017.07.006, 2017b.
Coughlan, M., Fleischer, M., Wheeler, A. J., Hepp, D. A., Hebbeln, D., and
Mörz, T.: A revised stratigraphical framework for the Quaternary
deposits of the German North Sea sector: a geological-geotechnical approach,
Boreas, 47, 80–105, https://doi.org/10.1111/bor.12253, 2018.
Crameri, F.: Geodynamic diagnostics, scientific visualisation and StagLab 3.0, Geosci. Model Dev., 11, 2541–2562, https://doi.org/10.5194/gmd-11-2541-2018, 2018.
Duller, R. A., Warner, N. H., McGonigle, C., De Angelis, S., Russell, A. J.
and Mountney, N. P.: Landscape reaction, response, and recovery following
the catastrophic 1918 Katla jökulhlaup, southern Iceland, Geophys. Res.
Lett., 41, 4214–4221, https://doi.org/10.1002/2014GL060090, 2014.
Emery, A. R., Hodgson, D. M., Barlow, N. L. M., Carrivick, J. L., Cotterill,
C. J., and Phillips, E.: Left High and Dry: Deglaciation of Dogger Bank,
North Sea, Recorded in Proglacial Lake Evolution, Front. Earth Sci.,
7, 1–27, https://doi.org/10.3389/feart.2019.00234, 2019a.
Emery, A. R., Hodgson, D. M., Barlow, N. L. M., Carrivick, J. L., Cotterill,
C. J., Mellett, C. L., and Booth, A. D.: Topographic and hydrodynamic
controls on barrier retreat and preservation: An example from Dogger Bank,
North Sea, Mar. Geol., 416, 105981, https://doi.org/10.1016/j.margeo.2019.105981, 2019b.
Fielding, C. R., Allen, J. P., Alexander, J., and Gibling, M. G.: Facies
model for fluvial systems in the seasonal tropics and subtropics, Geology,
37, 623–626, https://doi.org/10.1130/G25727A.1, 2009.
Fielding, C. R., Alexander, J., and Allen, J. P.: The role of discharge
variability in the formation and preservation of alluvial sediment bodies,
Sediment. Geol., 365, 1–20, https://doi.org/10.1016/j.sedgeo.2017.12.022, 2018.
Figge, K.: Das Elbe–Urstromtal im Bereich der Deutschen Bucht (Nordsee),
Eiszeitalter Gegenwart, 30, 203–211, https://doi.org/10.23689/fidgeo-911, 1980.
Fitch, S., Thomson, K., and Gaffney, V.: Late Pleistocene and Holocene
depositional systems and the palaeogeography of the Dogger Bank, North Sea,
Quatern. Res., 64, 185–196, https://doi.org/10.1016/j.yqres.2005.03.007, 2005.
Flemming, N. C., Harff, J., Moura, D., Burgess, A. and Bailey, G. N.:
Submerged Landscapes of the European Continental Shelf, edited by:
Flemming, N. C., Harff, J., Moura, D., Burgess, A., and Bailey, G. N., Wiley, Oxford, 2017.
Gaffney, V., Thomson, K., and Fitch, S.: Mapping Doggerland: the Mesolithic
landscapes of the southern North Sea, Archaeopress, Oxford, 2007.
Gaffney, V., Fitch, S., and Smith, D. E.: Europe's Lost World: the
Rediscovery of Doggerland, Council for British Archaeology, York, 2009.
Gearey, B. R., Hopla, E.-J., Boomer, I., Smith, D. E., Marshall, P., Fitch,
S., Griffiths, S., and Tappin, D. R.: Multi-proxy palaeoecological approaches
to submerged landscapes: a case study from “Doggerland”, in the southern
North Sea, in the Archaeological and Forensic Applications of Microfossils:
A Deeper Understanding of Human History, The Geological Society
of London on behalf of The Micropalaeontological Society, London, 35–53, 2017.
Gibbard, P. L., Rose, J., and Bridgland, D. R.: The History of the Great
Northwest European Rivers During the Past Three Million Years [and
Discussion], Philos. T. Roy. Soc. B, 318, 559–602,
https://doi.org/10.1098/rstb.1988.0024, 1988.
Gibbard, P. L., West, R. G., Zagwijn, W. H., Balson, P. S., Burger, A. W.,
Funnell, B. M., Jeffery, D. H., de Jong, J., van Kolfschoten, T., Lister, A.
M., Meijer, T., Norton, P. E. P., Preece, R. C., Rose, J., Stuart, A. J.,
Whiteman, C. A., and Zalasiewicz, J. A.: Early and early Middle Pleistocene
correlations in the Southern North Sea basin, Quaternary Sci. Rev., 10,
23–52, https://doi.org/10.1016/0277-3791(91)90029-T, 1991.
Gordon, C., Cooper, C., Senior, C. A., Banks, H., Gregory, J. M., Johns, T.
C., Mitchell, J. F. B., and Wood, R. A.: The simulation of SST, sea ice
extents and ocean heat transports in a version of the Hadley Centre coupled
model without flux adjustments, Clim. Dynam., 16, 147–168,
https://doi.org/10.1007/s003820050010, 2000.
Grieve, S. W. D.: Sinuosity Script, Zenodo, https://doi.org/10.5281/ZENODO.3835970, 2020.
Guan, M., Wright, N. G., Sleigh, P. A., and Carrivick, J. L.: Assessment of
hydro-morphodynamic modelling and geomorphological impacts of a
sediment-charged jökulhlaup, at Sólheimajökull, Iceland, J.
Hydrol., 530, 336–349, https://doi.org/10.1016/j.jhydrol.2015.09.062, 2015.
Hepp, D. A., Warnke, U., Hebbeln, D., and Mörz, T.: Tributaries of the Elbe Palaeovalley: Features of a Hidden Palaeolandscape in the German Bight, North Sea, in: Under the Sea: Archaeology and Palaeolandscapes of the Continental Shelf, edited by: Bailey, G., Harff, J., and Sakellariou, D., Springer, Cham, 211–222, 2017.
Hepp, D. A., Romero, O. E., Mörz, T., de Pol-Holz, R., and Hebbeln, D.:
How a river submerges into the sea: a geological record of changing a
fluvial to a marine paleoenvironment during early Holocene sea level rise,
J. Quaternary Sci., 34, 581–592, https://doi.org/10.1002/jqs.3147, 2019.
Hijma, M. P. and Cohen, K. M.: Holocene transgression of the Rhine river
mouth area, The Netherlands/Southern North Sea: palaeogeography and sequence
stratigraphy, Sedimentology, 58, 1453–1485,
https://doi.org/10.1111/j.1365-3091.2010.01222.x, 2011.
Hijma, M. P., Cohen, K. M., Roebroeks, W., Westerhoff, W. E., and Busschers,
F. S.: Pleistocene Rhine-Thames landscapes: Geological background for
hominin occupation of the southern North Sea region, J. Quaternary Sci., 27,
17–39, https://doi.org/10.1002/jqs.1549, 2012.
Hjelstuen, B. O., Sejrup, H. P., Valvik, E., and Becker, L. W. M.: Evidence
of an ice-dammed lake outburst in the North Sea during the last
deglaciation, Mar. Geol., 402, 118–130, https://doi.org/10.1016/j.margeo.2017.11.021, 2017.
Hughes, A. L. C., Gyllencreutz, R., Lohne, Ø. S., Mangerud, J., and
Svendsen, J. I.: The last Eurasian ice sheets – a chronological database and
time-slice reconstruction, DATED-1, Boreas, 45, 1–45,
https://doi.org/10.1111/bor.12142, 2016.
Ivanovic, R. F., Gregoire, L. J., Kageyama, M., Roche, D. M., Valdes, P. J.,
Burke, A., Drummond, R., Peltier, W. R., and Tarasov, L.: Transient climate
simulations of the deglaciation 21–9 thousand years before present (version 1) – PMIP4 Core experiment design and boundary conditions, Geosci. Model Dev., 9, 2563–2587, https://doi.org/10.5194/gmd-9-2563-2016, 2016.
Jansen, J. H. F., van Weering, T. C. E., and Eisma, D.: Late Quaternary sedimentation in the North Sea, in: The Quaternary history of the North Sea, edited by: Oele, E., Schüttenhelm, R. T. E., and Wiggers, A. J., Symposia Universitatis Upsaliensis Annum Quingentesimum Celebrantis, 2, 175–187, 1979.
Kuchar, J., Milne, G. A., Hubbard, A. L., Patton, H., Bradley, S. L.,
Shennan, I., and Edwards, R.: Evaluation of a numerical model of the
British-Irish ice sheet using relative sea-level data: implications for the
interpretation of trimline observations, J. Quaternary Sci., 27, 597–605,
https://doi.org/10.1002/jqs.2552, 2012.
Liu, Z., Otto-Bliesner, B. L., He, F., Brady, E. C., Tomas, R., Clark, P.
U., Carlson, A. E., Lynch-Stieglitz, J., Curry, W., Brook, E., Erickson, D.,
Jacob, R., Kutzbach, J., and Cheng, J.: Transient simulation of last
deglaciation with a new mechanism for bolling-allerod warming, Science, 325, 310–314, https://doi.org/10.1126/science.1171041, 2009.
Livingstone, S. J. and Clark, C. D.: Morphological properties of tunnel valleys of the southern sector of the Laurentide Ice Sheet and implications for their formation, Earth Surf. Dynam., 4, 567–589,
https://doi.org/10.5194/esurf-4-567-2016, 2016.
Löfverström, M. and Lora, J. M.: Abrupt regime shifts in the North
Atlantic atmospheric circulation over the last deglaciation, Geophys. Res.
Lett., 44, 8047–8055, https://doi.org/10.1002/2017GL074274, 2017.
Lonergan, L., Maidment, S. C. R., and Collier, J. S.: Pleistocene subglacial
tunnel valleys in the central North Sea basin: 3-D morphology and evolution,
J. Quaternary Sci., 21, 891–903, https://doi.org/10.1002/jqs.1015, 2006.
Maizels, J.: Sedimentology, Paleoflow Dynamics and Flood History of
Jökulhlaup Deposits: Paleohydrology of Holocene Sediment Sequences in
Southern Iceland Sandur Deposits, SEPM J. Sediment. Res., 59,
204–223, https://doi.org/10.1306/212F8F4E-2B24-11D7-8648000102C1865D, 1989.
Maizels, J.: Jökulhlaup deposits in proglacial areas, Quaternary Sci. Rev., 16, 793–819, https://doi.org/10.1016/S0277-3791(97)00023-1, 1997.
Marren, P. M.: Magnitude and frequency in proglacial rivers: A
geomorphological and sedimentological perspective, Earth-Sci. Rev.,
70, 203–251, https://doi.org/10.1016/j.earscirev.2004.12.002, 2005.
Marren, P. M. and Toomath, S. C.: Channel pattern of proglacial rivers:
Topographic forcing due to glacier retreat, Earth Surf. Proc. Land.,
39, 943–951, https://doi.org/10.1002/esp.3545, 2014.
Marren, P. M., Russell, A. J., and Rushmer, E. L.: Sedimentology of a sandur
formed by multiple jökulhlaups, Kverkfjöll, Iceland, Sediment.
Geol., 213, 77–88, https://doi.org/10.1016/j.sedgeo.2008.11.006, 2009.
Mellett, C. L., Hodgson, D. M., Plater, A. J., Mauz, B., Selby, I., and Lang,
A.: Denudation of the continental shelf between Britain and France at the
glacial-interglacial timescale, Geomorphology, 203, 79–96,
https://doi.org/10.1016/j.geomorph.2013.03.030, 2013.
Mesri, G. and Ali, S.: Undrained shear strength of a glacial clay overconsolidated by desiccation, Geotechnique, 49, 181–198,
https://doi.org/10.1680/geot.1999.49.2.181, 1999.
Mitchum, R. M., Vail, P. R., and Sangree, J. B.: Seismic Stratigraphy and Global Changes of Sea Level: Part 6. Stratigraphic Interpretation of Seismic Reflection Patterns in Depositional Sequences: Section 2. Application of Seismic Reflection Configuration to Stratigraphic Interpretation, in: M 26: Seismic Stratigraphy – Applications to Hydrocarbon Exploration, AAPG Special Volumes, Tulsa, OK, 117–133, 1977.
Morris, P. J., Swindles, G. T., Valdes, P. J., Ivanovic, R. F., Gregoire, L.
J., Smith, M. W., Tarasov, L., Haywood, A. M., and Bacon, K. L.: Global
peatland initiation driven by regionally asynchronous warming, P. Natl.
Acad. Sci. USA, 115, 4851–4856, https://doi.org/10.1073/pnas.1717838115, 2018.
Mortensen, M. F., Birks, H. H., Christensen, C., Holm, J., Noe-Nygaard, N.,
Odgaard, B. V., Olsen, J., and Rasmussen, K. L.: Lateglacial vegetation
development in Denmark – New evidence based on macrofossils and pollen from
Slotseng, a small-scale site in southern Jutland, Quaternary Sci. Rev.,
30, 2534–2550, https://doi.org/10.1016/j.quascirev.2011.04.018, 2011.
Murton, D. K. and Murton, J. B.: Middle and Late Pleistocene glacial lakes
of lowland Britain and the southern North Sea Basin, Quatern. Int., 260,
115–142, https://doi.org/10.1016/j.quaint.2011.07.034, 2012.
Nicholas, A. P., Sambrook Smith, G. H., Amsler, M. L., Ashworth, P. J.,
Best, J. L., Hardy, R. J., Lane, S. N., Orfeo, O., Parsonsm, D. R., Reesink,
A. J. H., Sandbach, S. D., Simpson, C. J., and Szupiany, R. N.: The role of
discharge variability in determining alluvial stratigraphy, Geology, 44,
3–6, https://doi.org/10.1130/G37215.1, 2016.
Ó Cofaigh, C.: Tunnel valley genesis, Prog. Phys. Geogr., 20, 1–19,
https://doi.org/10.1177/030913339602000101, 1996.
Ottesen, D., Stewart, M., Brönner, M., and Batchelor, C. L.: Tunnel
valleys of the central and northern North Sea (56∘ N to
62∘ N): Distribution and characteristics, Mar. Geol., 425,
106199, https://doi.org/10.1016/j.margeo.2020.106199, 2020.
Peltier, W. R., Argus, D. F., and Drummond, R.: Space geodesy constrains ice
age terminal deglaciation: The global ICE-6G_C (VM5a) model, J. Geophys. Res.-Solid, 120, 450–487, https://doi.org/10.1002/2014JB011176, 2015.
Phillips, E., Cotterill, C. J., Johnson, K., Crombie, K., James, L., Carr,
S., and Ruiter, A.: Large-scale glacitectonic deformation in response to
active ice sheet retreat across Dogger Bank (southern central North Sea)
during the Last Glacial Maximum, Quaternary Sci. Rev., 179, 24–47,
https://doi.org/10.1016/j.quascirev.2017.11.001, 2018.
Phillips, E. R., Hodgson, D. M., and Emery, A. R.: The Quaternary geology of
the North Sea basin, J. Quaternary Sci., 32, 117–126, https://doi.org/10.1002/jqs.2932, 2017.
Pope, V. D., Gallani, M. L., Rowntree, P. R., and Stratton, R. A.: The impact
of new physical parametrizations in the Hadley Centre climate model: HadAM3,
Clim. Dynam., 16, 123–146, https://doi.org/10.1007/s003820050009, 2000.
Praeg, D.: Seismic imaging of mid-Pleistocene tunnel-valleys in the North
Sea Basin-high resolution from low frequencies, J. Appl. Geophys., 53,
273–298, https://doi.org/10.1016/j.jappgeo.2003.08.001, 2003.
Prins, L. T. and Andresen, K. J.: Buried late Quaternary channel systems in
the Danish North Sea – Genesis and geological evolution, Quaternary Sci. Rev., 223, 105943, https://doi.org/10.1016/j.quascirev.2019.105943, 2019.
Prins, L. T., Andresen, K. J., Clausen, O. R., and Piotrowski, J.: Formation
and widening of a North Sea tunnel valley – The impact of slope processes on
valley morphology, Geomorphology, 368, 107347,
https://doi.org/10.1016/j.geomorph.2020.107347, 2020.
Roberts, D. H., Evans, D. J. A., Callard, S. L., Clark, C. D., Bateman, M.
D., Medialdea, A., Dove, D., Cotterill, C. J., Saher, M., Cofaigh, C. Ó., Chiverrell, R. C., Moreton, S. G., Fabel, D. and Bradwell, T.: Ice
marginal dynamics of the last British-Irish Ice Sheet in the southern North
Sea: Ice limits, timing and the influence of the Dogger Bank, Quaternary Sci.
Rev., 198, 181–207, https://doi.org/10.1016/j.quascirev.2018.08.010, 2018.
Robertson, P. K.: Soil classification using the cone penetration test, Can.
Geotech. J., 27, 151–158, https://doi.org/10.1139/t90-014, 1990.
Russell, A. J., Roberts, M. J., Fay, H., Marren, P. M., Cassidy, N. J.,
Tweed, F. S., and Harris, T.: Icelandic jökulhlaup impacts: Implications
for ice-sheet hydrology, sediment transfer and geomorphology, Geomorphology,
75, 33–64, https://doi.org/10.1016/j.geomorph.2005.05.018, 2006.
Salomonsen, I.: A seismic stratigraphic analysis of Lower Pleistocene
deposits in the western Danish sector of the North Sea, Geol. en Mijnb.,
72, 349–361, 1993.
Sejrup, H. P., Clark, C. D., and Hjelstuen, B. O.: Rapid ice sheet retreat
triggered by ice stream debuttressing: Evidence from the North Sea, Geology,
44, 355–358, https://doi.org/10.1130/G37652.1, 2016.
Sejrup, H. P., Larsen, E., Landvik, J., King, E. L., Haflidason, H., and
Nesje, A.: Quaternary glaciations in southern Fennoscandia: Evidence from
southwestern Norway and the northern North Sea region, Quaternary Sci. Rev.,
19, 667–685, https://doi.org/10.1016/S0277-3791(99)00016-5, 2000.
Shennan, I., Lambeck, K., Flather, R., Horton, B., McArthur, J., Innes, J.,
Lloyd, J. M., Rutherford, M., and Wingfield, R.: Modelling western North Sea
paleogeographies and tidal changes during the Holocene, in: Holocene
Land-Ocean Interaction and Environmental Change around the North Sea, vol. 166, Special Publications, Geological Society, London, 299–319, 2000.
Shugar, D. H., Clague, J. J., Best, J. L., Schoof, C., Willis, M. J.,
Copland, L., and Roe, G. H.: River piracy and drainage basin reorganization
led by climate-driven glacier retreat, Nat. Geosci., 10, 370–375,
https://doi.org/10.1038/ngeo2932, 2017.
Smith, D. E., Fitch, S., Gearey, B., Hill, T., Holford, S., Howard, A., and
Jolliffe, C.: The Potential of the Organic Archive for Environmental
Reconstruction: An Assessment of Selected Borehole Sediments from the North
Sea, in: Mapping Doggerland: the Mesolithic landscapes of the southern North
Sea, edited by: Gaffney, V., Thomson, K., and Fitch, S., 93–102,
Archaeopress, Oxford, 2007.
Staines, K. E. H., Carrivick, J. L., Tweed, F. S., Evans, A. J., Russell, A.
J., Jóhannesson, T., and Roberts, M.: A multi-dimensional analysis of
pro-glacial landscape change at Sólheimajökull, Southern Iceland,
Earth Surf. Proc. Land., 40, 809–822, https://doi.org/10.1002/esp.3662, 2015.
Stewart, M. A. and Lonergan, L.: Seven glacial cycles in the middle-late
Pleistocene of northwest Europe: Geomorphic evidence from buried tunnel
valleys, Geology, 39, 283–286, https://doi.org/10.1130/G31631.1, 2011.
Stewart, M. A., Lonergan, L., and Hampson, G.: 3D seismic analysis of buried
tunnel valleys in the central North Sea: Morphology, cross-cutting
generations and glacial history, Quaternary Sci. Rev., 72, 1–17,
https://doi.org/10.1016/j.quascirev.2013.03.016, 2013.
Stoker, M. S., Balson, P. S., Long, D., and Tappin, D. R.: An overview of the
lithostratigraphical framework for the Quaternary deposits on the United
Kingdom continental shelf, British Geological Survey Research Report RR/11/03, British Geological Survey, Keyworth, Nottingham, 2011.
Sturt, F., Garrow, D., and Bradley, S. L.: New models of North West European
Holocene palaeogeography and inundation, J. Archaeol. Sci., 40,
3963–3976, https://doi.org/10.1016/j.jas.2013.05.023, 2013.
Tappin, D. R., Pearce, B,. Fitch, S., Dove, D., Gearey, B., Hill, J. M., Chambers, C., Bates, R., Pinnion, J., Diaz Doce, D., Green, M., Gallyot, J., Georgiou, L., Brutto, D., Marzialetti, S., Hopla, E., Ramsay, E., and Fielding, H.: The Humber Regional Environmental Characterisation, Open Report OR/10/54, British Geological Survey, Keyworth, Nottingham, 357 pp., 2011.
Tarasov, L. and Peltier, W. R.: Greenland glacial history and local
geodynamic consequences, Geophys. J. Int., 150, 198–229,
https://doi.org/10.1046/j.1365-246X.2002.01702.x, 2002.
Tarasov, L., Dyke, A. S., Neal, R. M., and Peltier, W. R.: A data-calibrated
distribution of deglacial chronologies for the North American ice complex
from glaciological modeling, Earth Planet. Sc. Lett., 315–316, 30–40,
https://doi.org/10.1016/j.epsl.2011.09.010, 2012.
Tarasov, L., Hughes, A. L. C., Gyllencreutz, R., Lohne, O. S., Mangerud, J.
and Svendsen, J.-I.: The global GLAC-1c deglaciation chronology, melwater
pulse 1-a, and a question of missing ice, in: IGS Symposium on Contribution
of Glaciers and Ice Sheets to Sea-Level Change, 25–30 May 2014, Chamonix, 2014.
Tizzard, L., Bicket, A. R., Benjamin, J. and De Loecker, D.: A Middle
Palaeolithic site in the southern North Sea: Investigating the archaeology
and palaeogeography of Area 240, J. Quaternary Sci., 29, 698–710,
https://doi.org/10.1002/jqs.2743, 2014.
Toucanne, S., Zaragosi, S., Bourillet, J.-F., Marieu, V., Cremer, M.,
Kageyama, M., Van Vliet-Lanoë, B., Eynaud, F., Turon, J.-L., and Gibbard,
P. L.: The first estimation of Fleuve Manche palaeoriver discharge during
the last deglaciation: Evidence for Fennoscandian ice sheet meltwater flow
in the English Channel ca 20–18 ka ago, Earth Planet. Sc. Lett., 290,
459–473, https://doi.org/10.1016/j.epsl.2009.12.050, 2010.
Toucanne, S., Soulet, G., Freslon, N., Silva Jacinto, R., Dennielou, B.,
Zaragosi, S., Eynaud, F., Bourillet, J.-F., and Bayon, G.: Millennial-scale
fluctuations of the European Ice Sheet at the end of the last glacial, and
their potential impact on global climate, Quaternary Sci. Rev., 123, 113–133, https://doi.org/10.1016/j.quascirev.2015.06.010, 2015.
Valdes, P. J., Armstrong, E., Badger, M. P. S., Bradshaw, C. D., Bragg, F.,
Crucifix, M., Davies-Barnard, T., Day, J., Farnsworth, A., Gordon, C.,
Hopcroft, P. O., Kennedy, A. T., Lord, N. S., Lunt, D. J., Marzocchi, A.,
Parry, L. M., Pope, V., Roberts, W. H. G., Stone, E. J., Tourte, G. J. L.,
and Williams, J. H. T.: The BRIDGE HadCM3 family of climate models:
HadCM3@Bristol v1.0, Geosci. Model Dev., 10, 3715–3743,
https://doi.org/10.5194/gmd-10-3715-2017, 2017.
Vandenberghe, J.: A typology of Pleistocene cold-based rivers, Quatern. Int.,
79, 111–121, https://doi.org/10.1016/S1040-6182(00)00127-0, 2001.
van Heteren, S., Meekes, J. A. C., Bakker, M. A. J., Gaffney, V., Fitch, S.,
Gearey, B. R., and Paap, B. F.: Reconstructing North Sea palaeolandscapes
from 3D and high-density 2D seismic data: An overview, Neth. J. Geosci. – Geol. en Mijnb., 93, 31–42, https://doi.org/10.1017/njg.2014.4, 2014.
Wessex Archaeology: Teesside A & B – Environmental Statement Chapter 18
Appendix A – Archaeology and Cultural History Technical Report, available at: https://subseacablesuk.org.uk/ftp/Dogger Bank Teesside A& B Offshore Wind Farm/6. Environmental Statement/Environmental StatementChapter Appendices/Chapter 18 Appendices/6.18.1 ES Chapter 18 AppendixA.pdf (last access: 22 October 2020), 2014.
Zernitz, E. R.: Drainage Patterns and Their Significance, J. Geol., 40,
498–521, https://doi.org/10.1086/623976, 1932.
Short summary
During the last ice age, sea level was lower, and the North Sea was land. The margin of a large ice sheet was at Dogger Bank in the North Sea. This ice sheet formed large rivers. After the ice sheet retreated down from the high point of Dogger Bank, the rivers had no water supply and dried out. Increased precipitation during the 15 000 years of land exposure at Dogger Bank formed a new drainage network. This study shows how glaciation and climate changes can control how drainage networks evolve.
During the last ice age, sea level was lower, and the North Sea was land. The margin of a large...